
Perl version 5.16.2 documentation - Params::Check

Page 1http://perldoc.perl.org

NAME
Params::Check - A generic input parsing/checking mechanism.

SYNOPSIS
 use Params::Check qw[check allow last_error];

 sub fill_personal_info {
 my %hash = @_;
 my $x;

 my $tmpl = {
 firstname => { required => 1, defined => 1 },
 lastname => { required => 1, store => \$x },
 gender => { required => 1,
 allow => [qr/M/i, qr/F/i],
 },
 married => { allow => [0,1] },
 age => { default => 21,
 allow => qr/^\d+$/,
 },

 phone => { allow => [sub { return 1 if /$valid_re/ },
 '1-800-PERL']
 },
 id_list => { default => [],
 strict_type => 1
 },
 employer => { default => 'NSA', no_override => 1 },
 };

 ### check() returns a hashref of parsed args on success ###
 my $parsed_args = check($tmpl, \%hash, $VERBOSE)
 or die qw[Could not parse arguments!];

 ... other code here ...
 }

 my $ok = allow($colour, [qw|blue green yellow|]);

 my $error = Params::Check::last_error();

DESCRIPTION
Params::Check is a generic input parsing/checking mechanism.

It allows you to validate input via a template. The only requirement
 is that the arguments must be
named.

Params::Check can do the following things for you:

Convert all keys to lowercase

Check if all required arguments have been provided

Set arguments that have not been provided to the default

Perl version 5.16.2 documentation - Params::Check

Page 2http://perldoc.perl.org

Weed out arguments that are not supported and warn about them to the
 user

Validate the arguments given by the user based on strings, regexes,
 lists or even subroutines

Enforce type integrity if required

Most of Params::Check's power comes from its template, which we'll
 discuss below:

Template
As you can see in the synopsis, based on your template, the arguments
 provided will be validated.

The template can take a different set of rules per key that is used.

The following rules are available:

default

This is the default value if none was provided by the user.
 This is also the type strict_type
will look at when checking type
 integrity (see below).

required

A boolean flag that indicates if this argument was a required
 argument. If marked as required
and not provided, check() will fail.

strict_type

This does a ref() check on the argument provided. The ref of the
 argument must be the
same as the ref of the default value for this
 check to pass.

This is very useful if you insist on taking an array reference as
 argument for example.

defined

If this template key is true, enforces that if this key is provided by
 user input, its value is
defined. This just means that the user is
 not allowed to pass undef as a value for this key
and is equivalent
 to:
 allow => sub { defined $_[0] && OTHER TESTS }

no_override

This allows you to specify constants in your template. ie, they
 keys that are not allowed to
be altered by the user. It pretty much
 allows you to keep all your configurable data in one
place; the Params::Check template.

store

This allows you to pass a reference to a scalar, in which the data
 will be stored:

 my $x;
 my $args = check(foo => { default => 1, store => \$x }, $input);

This is basically shorthand for saying:

 my $args = check({ foo => { default => 1 }, $input);
 my $x = $args->{foo};

You can alter the global variable $Params::Check::NO_DUPLICATES to
 control whether the
store'd key will still be present in your
 result set. See the Global Variables section below.

allow

A set of criteria used to validate a particular piece of data if it
 has to adhere to particular rules.

See the allow() function for details.

Perl version 5.16.2 documentation - Params::Check

Page 3http://perldoc.perl.org

Functions
check(\%tmpl, \%args, [$verbose]);

This function is not exported by default, so you'll have to ask for it
 via:

 use Params::Check qw[check];

or use its fully qualified name instead.

check takes a list of arguments, as follows:

Template

This is a hashreference which contains a template as explained in the SYNOPSIS and
Template section.

Arguments

This is a reference to a hash of named arguments which need checking.

Verbose

A boolean to indicate whether check should be verbose and warn
 about what went wrong in a
check or not.

You can enable this program wide by setting the package variable
$Params::Check::VERBOSE to a true value. For details, see the
 section on Global
Variables below.

check will return when it fails, or a hashref with lowercase
 keys of parsed arguments when it
succeeds.

So a typical call to check would look like this:

 my $parsed = check(\%template, \%arguments, $VERBOSE)
 or warn q[Arguments could not be parsed!];

A lot of the behaviour of check() can be altered by setting
 package variables. See the section on
Global Variables for details
 on this.

allow($test_me, \@criteria);
The function that handles the allow key in the template is also
 available for independent use.

The function takes as first argument a key to test against, and
 as second argument any form of
criteria that are also allowed by
 the allow key in the template.

You can use the following types of values for allow:

string

The provided argument MUST be equal to the string for the validation
 to pass.

regexp

The provided argument MUST match the regular expression for the
 validation to pass.

subroutine

The provided subroutine MUST return true in order for the validation
 to pass and the argument
accepted.

(This is particularly useful for more complicated data).

array ref

The provided argument MUST equal one of the elements of the array
 ref for the validation to

Perl version 5.16.2 documentation - Params::Check

Page 4http://perldoc.perl.org

pass. An array ref can hold all the above
 values.

It returns true if the key matched the criteria, or false otherwise.

last_error()
Returns a string containing all warnings and errors reported during
 the last time check was called.

This is useful if you want to report then some other way than carp'ing when the verbose flag is on.

It is exported upon request.

Global Variables
The behaviour of Params::Check can be altered by changing the
 following global variables:

$Params::Check::VERBOSE
This controls whether Params::Check will issue warnings and
 explanations as to why certain things
may have failed.
 If you set it to 0, Params::Check will not output any warnings.

The default is 1 when warnings are enabled, 0 otherwise;

$Params::Check::STRICT_TYPE
This works like the strict_type option you can pass to check,
 which will turn on strict_type
globally for all calls to check.

The default is 0;

$Params::Check::ALLOW_UNKNOWN
If you set this flag, unknown options will still be present in the
 return value, rather than filtered out.
This is useful if your
 subroutine is only interested in a few arguments, and wants to pass
 the rest on
blindly to perhaps another subroutine.

The default is 0;

$Params::Check::STRIP_LEADING_DASHES
If you set this flag, all keys passed in the following manner:

 function(-key => 'val');

will have their leading dashes stripped.

$Params::Check::NO_DUPLICATES
If set to true, all keys in the template that are marked as to be
 stored in a scalar, will also be removed
from the result set.

Default is false, meaning that when you use store as a template
 key, check will put it both in the
scalar you supplied, as well as
 in the hashref it returns.

$Params::Check::PRESERVE_CASE
If set to true, Params::Check will no longer convert all keys from
 the user input to lowercase, but
instead expect them to be in the
 case the template provided. This is useful when you want to use

similar keys with different casing in your templates.

Understand that this removes the case-insensitivity feature of this
 module.

Default is 0;

$Params::Check::ONLY_ALLOW_DEFINED
If set to true, Params::Check will require all values passed to be defined. If you wish to enable this
on a 'per key' basis, use the
 template option defined instead.

Perl version 5.16.2 documentation - Params::Check

Page 5http://perldoc.perl.org

Default is 0;

$Params::Check::SANITY_CHECK_TEMPLATE
If set to true, Params::Check will sanity check templates, validating
 for errors and unknown keys.
Although very useful for debugging, this
 can be somewhat slow in hot-code and large loops.

To disable this check, set this variable to false.

Default is 1;

$Params::Check::WARNINGS_FATAL
If set to true, Params::Check will croak when an error during
 template validation occurs, rather than
return false.

Default is 0;

$Params::Check::CALLER_DEPTH
This global modifies the argument given to caller() by Params::Check::check() and is useful
if you have a custom wrapper
 function around Params::Check::check(). The value must be an

integer, indicating the number of wrapper functions inserted between
 the real function call and
Params::Check::check().

Example wrapper function, using a custom stacktrace:

 sub check {
 my ($template, $args_in) = @_;

 local $Params::Check::WARNINGS_FATAL = 1;
 local $Params::Check::CALLER_DEPTH = $Params::Check::CALLER_DEPTH +
 1;
 my $args_out = Params::Check::check($template, $args_in);

 my_stacktrace(Params::Check::last_error) unless $args_out;

 return $args_out;
 }

Default is 0;

Acknowledgements
Thanks to Richard Soderberg for his performance improvements.

BUG REPORTS
Please report bugs or other issues to <bug-params-check@rt.cpan.org>.

AUTHOR
This module by Jos Boumans <kane@cpan.org>.

COPYRIGHT
This library is free software; you may redistribute and/or modify it
 under the same terms as Perl itself.

