
Perl version 5.16.2 documentation - Safe

Page 1http://perldoc.perl.org

NAME
Safe - Compile and execute code in restricted compartments

SYNOPSIS
 use Safe;

 $compartment = new Safe;

 $compartment->permit(qw(time sort :browse));

 $result = $compartment->reval($unsafe_code);

DESCRIPTION
The Safe extension module allows the creation of compartments
 in which perl code can be evaluated.
Each compartment has

a new namespace

The "root" of the namespace (i.e. "main::") is changed to a
 different package and code
evaluated in the compartment cannot
 refer to variables outside this namespace, even
with run-time
 glob lookups and other tricks.

Code which is compiled outside the compartment can choose to place
 variables into
(or share variables with) the compartment's namespace
 and only that data will be
visible to code evaluated in the
 compartment.

By default, the only variables shared with compartments are the
 "underscore"
variables $_ and @_ (and, technically, the less frequently
 used %_, the _ filehandle
and so on). This is because otherwise perl
 operators which default to $_ will not work
and neither will the
 assignment of arguments to @_ on subroutine entry.

an operator mask

Each compartment has an associated "operator mask". Recall that
 perl code is
compiled into an internal format before execution.
 Evaluating perl code (e.g. via "eval"
or "do 'file'") causes
 the code to be compiled into an internal format and then,
 provided
there was no error in the compilation, executed.
 Code evaluated in a compartment
compiles subject to the
 compartment's operator mask. Attempting to evaluate code in
a
 compartment which contains a masked operator will cause the
 compilation to fail
with an error. The code will not be executed.

The default operator mask for a newly created compartment is
 the ':default' optag.

It is important that you read the Opcode module documentation
 for more information,
especially for detailed definitions of opnames,
 optags and opsets.

Since it is only at the compilation stage that the operator mask
 applies, controlled
access to potentially unsafe operations can
 be achieved by having a handle to a
wrapper subroutine (written
 outside the compartment) placed into the compartment.
For example,

 $cpt = new Safe;
 sub wrapper {
 # vet arguments and perform potentially unsafe
operations
 }
 $cpt->share('&wrapper');

Perl version 5.16.2 documentation - Safe

Page 2http://perldoc.perl.org

WARNING
The authors make no warranty, implied or otherwise, about the
 suitability of this software for safety
or security purposes.

The authors shall not in any case be liable for special, incidental,
 consequential, indirect or other
similar damages arising from the use
 of this software.

Your mileage will vary. If in any doubt do not use it.

METHODS
To create a new compartment, use

 $cpt = new Safe;

Optional argument is (NAMESPACE), where NAMESPACE is the root namespace
 to use for the
compartment (defaults to "Safe::Root0", incremented for
 each new compartment).

Note that version 1.00 of the Safe module supported a second optional
 parameter, MASK. That
functionality has been withdrawn pending deeper
 consideration. Use the permit and deny methods
described below.

The following methods can then be used on the compartment
 object returned by the above
constructor. The object argument
 is implicit in each case.

permit (OP, ...)
Permit the listed operators to be used when compiling code in the
 compartment (in addition to any
operators already permitted).

You can list opcodes by names, or use a tag name; see "Predefined Opcode Tags" in Opcode.

permit_only (OP, ...)
Permit only the listed operators to be used when compiling code in
 the compartment (no other
operators are permitted).

deny (OP, ...)
Deny the listed operators from being used when compiling code in the
 compartment (other operators
may still be permitted).

deny_only (OP, ...)
Deny only the listed operators from being used when compiling code
 in the compartment (all other
operators will be permitted, so you probably
 don't want to use this method).

trap (OP, ...)
untrap (OP, ...)

The trap and untrap methods are synonyms for deny and permit
 respectfully.

share (NAME, ...)
This shares the variable(s) in the argument list with the compartment.
 This is almost identical to
exporting variables using the Exporter
 module.

Each NAME must be the name of a non-lexical variable, typically
 with the leading type identifier
included. A bareword is treated as a
 function name.

Examples of legal names are '$foo' for a scalar, '@foo' for an
 array, '%foo' for a hash, '&foo' or 'foo' for
a subroutine and '*foo'
 for a glob (i.e. all symbol table entries associated with "foo",
 including scalar,
array, hash, sub and filehandle).

Each NAME is assumed to be in the calling package. See share_from
 for an alternative method

Perl version 5.16.2 documentation - Safe

Page 3http://perldoc.perl.org

(which share uses).

share_from (PACKAGE, ARRAYREF)
This method is similar to share() but allows you to explicitly name the
 package that symbols should be
shared from. The symbol names (including
 type characters) are supplied as an array reference.

 $safe->share_from('main', ['$foo', '%bar', 'func']);

Names can include package names, which are relative to the specified PACKAGE.
 So these two calls
have the same effect:

 $safe->share_from('Scalar::Util', ['reftype']);
 $safe->share_from('main', ['Scalar::Util::reftype']);

varglob (VARNAME)
This returns a glob reference for the symbol table entry of VARNAME in
 the package of the
compartment. VARNAME must be the name of a
 variable without any leading type marker. For
example:

 ${$cpt->varglob('foo')} = "Hello world";

has the same effect as:

 $cpt = new Safe 'Root';
 $Root::foo = "Hello world";

but avoids the need to know $cpt's package name.

reval (STRING, STRICT)
This evaluates STRING as perl code inside the compartment.

The code can only see the compartment's namespace (as returned by the root method). The
compartment's root package appears to be the main:: package to the code inside the compartment.

Any attempt by the code in STRING to use an operator which is not permitted
 by the compartment will
cause an error (at run-time of the main program
 but at compile-time for the code in STRING). The
error is of the form
 "'%s' trapped by operation mask...".

If an operation is trapped in this way, then the code in STRING will
 not be executed. If such a trapped
operation occurs or any other
 compile-time or return error, then $@ is set to the error message, just

as with an eval().

If there is no error, then the method returns the value of the last
 expression evaluated, or a return
statement may be used, just as with
 subroutines and eval(). The context (list or scalar) is determined

by the caller as usual.

If the return value of reval() is (or contains) any code reference,
 those code references are wrapped to
be themselves executed always
 in the compartment. See wrap_code_refs_within.

The formerly undocumented STRICT argument sets strictness: if true
 'use strict;' is used, otherwise it
uses 'no strict;'. Note: if
 STRICT is omitted 'no strict;' is the default.

Some points to note:

If the entereval op is permitted then the code can use eval "..." to
 'hide' code which might use denied
ops. This is not a major problem
 since when the code tries to execute the eval it will fail because the

opmask is still in effect. However this technique would allow clever,
 and possibly harmful, code to
'probe' the boundaries of what is
 possible.

Perl version 5.16.2 documentation - Safe

Page 4http://perldoc.perl.org

Any string eval which is executed by code executing in a compartment,
 or by code called from code
executing in a compartment, will be eval'd
 in the namespace of the compartment. This is potentially a
serious
 problem.

Consider a function foo() in package pkg compiled outside a compartment
 but shared with it. Assume
the compartment has a root package called
 'Root'. If foo() contains an eval statement like eval '$foo =
1' then,
 normally, $pkg::foo will be set to 1. If foo() is called from the
 compartment (by whatever
means) then instead of setting $pkg::foo, the
 eval will actually set $Root::pkg::foo.

This can easily be demonstrated by using a module, such as the Socket
 module, which uses eval "..."
as part of an AUTOLOAD function. You can
 'use' the module outside the compartment and share an
(autoloaded)
 function with the compartment. If an autoload is triggered by code in
 the compartment,
or by any code anywhere that is called by any means
 from the compartment, then the eval in the
Socket module's AUTOLOAD
 function happens in the namespace of the compartment. Any variables

created or used by the eval'd code are now under the control of
 the code in the compartment.

A similar effect applies to all runtime symbol lookups in code
 called from a compartment but not
compiled within it.

rdo (FILENAME)
This evaluates the contents of file FILENAME inside the compartment.
 See above documentation on
the reval method for further details.

root (NAMESPACE)
This method returns the name of the package that is the root of the
 compartment's namespace.

Note that this behaviour differs from version 1.00 of the Safe module
 where the root module could be
used to change the namespace. That
 functionality has been withdrawn pending deeper consideration.

mask (MASK)
This is a get-or-set method for the compartment's operator mask.

With no MASK argument present, it returns the current operator mask of
 the compartment.

With the MASK argument present, it sets the operator mask for the
 compartment (equivalent to calling
the deny_only method).

wrap_code_ref (CODEREF)
Returns a reference to an anonymous subroutine that, when executed, will call
 CODEREF with the
Safe compartment 'in effect'. In other words, with the
 package namespace adjusted and the opmask
enabled.

Note that the opmask doesn't affect the already compiled code, it only affects
 any further compilation
that the already compiled code may try to perform.

This is particularly useful when applied to code references returned from reval().

(It also provides a kind of workaround for RT#60374: "Safe.pm sort {} bug with
 -Dusethreads". See
http://rt.perl.org/rt3//Public/Bug/Display.html?id=60374
 for much more detail.)

wrap_code_refs_within (...)
Wraps any CODE references found within the arguments by replacing each with the
 result of calling
wrap_code_ref on the CODE reference. Any ARRAY or HASH
 references in the arguments are
inspected recursively.

Returns nothing.

Perl version 5.16.2 documentation - Safe

Page 5http://perldoc.perl.org

RISKS
This section is just an outline of some of the things code in a compartment
 might do (intentionally or
unintentionally) which can have an effect outside
 the compartment.

Memory

Consuming all (or nearly all) available memory.

CPU

Causing infinite loops etc.

Snooping

Copying private information out of your system. Even something as
 simple as your
user name is of value to others. Much useful information
 could be gleaned from your
environment variables for example.

Signals

Causing signals (especially SIGFPE and SIGALARM) to affect your process.

Setting up a signal handler will need to be carefully considered
 and controlled. What
mask is in effect when a signal handler
 gets called? If a user can get an imported
function to get an
 exception and call the user's signal handler, does that user's

restricted mask get re-instated before the handler is called?
 Does an imported handler
get called with its original mask or
 the user's one?

State Changes

Ops such as chdir obviously effect the process as a whole and not just
 the code in the
compartment. Ops such as rand and srand have a similar
 but more subtle effect.

AUTHOR
Originally designed and implemented by Malcolm Beattie.

Reworked to use the Opcode module and other changes added by Tim Bunce.

Currently maintained by the Perl 5 Porters, <perl5-porters@perl.org>.

