

NAME

Unicode::Collate - Unicode Collation Algorithm

SYNOPSIS

```
use Unicode::Collate;
#construct
$Collator = Unicode::Collate->new(%tailoring);
#sort
@sorted = $Collator->sort(@not_sorted);
#compare
$result = $Collator->cmp($a, $b); # returns 1, 0, or -1.
```

Note: Strings in <code>@not_sorted</code>, \$a and \$b are interpreted according to Perl's Unicode support. See *perlunicode*, *perluniintro*, *perlunitut*, *perlunifaq*, *utf8*. Otherwise you can use <code>preprocess</code> or should decode them before.

DESCRIPTION

This module is an implementation of Unicode Technical Standard #10 (a.k.a. UTS #10) - Unicode Collation Algorithm (a.k.a. UCA).

Constructor and Tailoring

The new method returns a collator object. If new() is called with no parameters, the collator should do the default collation.

```
$Collator = Unicode::Collate->new(
  UCA Version => $UCA Version,
  alternate => $alternate, # alias for 'variable'
  backwards => $levelNumber, # or \@levelNumbers
  entry => $element,
  hangul_terminator => $term_primary_weight,
  ignoreName => qr/$ignoreName/,
  ignoreChar => qr/$ignoreChar/,
  ignore_level2 => $bool,
  katakana before hiragana => $bool,
  level => $collationLevel,
  normalization => $normalization form,
  overrideCJK => \&overrideCJK,
  overrideHangul => \&overrideHangul,
  preprocess => \&preprocess,
  rearrange => \@charList,
  rewrite => \&rewrite,
  suppress => \@charList,
  table => $filename,
  undefName => gr/$undefName/,
  undefChar => qr/$undefChar/,
  upper_before_lower => $bool,
  variable => $variable,
);
```

UCA_Version

If the revision (previously "tracking version") number of UCA is given, behavior of that revision

Perl version 5.16.2 documentation - Unicode::Collate

is emulated on collating. If omitted, the return value of UCA_Version() is used. The following revisions are supported. The default is 24.

UCA	Unicode Standard	DUCET (@version)
8	3.1	3.0.1 (3.0.1d9)
9	3.1 with Corrigendum 3	3.1.1 (3.1.1)
11	4.0	4.0.0 (4.0.0)
14	4.1.0	4.1.0 (4.1.0)
16	5.0	5.0.0 (5.0.0)
18	5.1.0	5.1.0 (5.1.0)
20	5.2.0	5.2.0 (5.2.0)
22	6.0.0	6.0.0 (6.0.0)
24	6.1.0	6.1.0 (6.1.0)

* Noncharacters (e.g. U+FFFF) are not ignored, and can be overridden since UCA_Version 22.

* Fully ignorable characters were ignored, and would not interrupt contractions with UCA_Version 9 and 11.

* Treatment of ignorables after variables and some behaviors were changed at UCA_Version 9.

* Characters regarded as CJK unified ideographs (cf. overrideCJK) depend on UCA_Version.

* Many hangul jamo are assigned at UCA_Version 20, that will affect hangul_terminator.

alternate

```
-- see 3.2.2 Alternate Weighting, version 8 of UTS #10
```

For backward compatibility, alternate (old name) can be used as an alias for variable.

backwards

-- see 3.1.2 French Accents, UTS #10.

backwards => \$levelNumber or \@levelNumbers

Weights in reverse order; ex. level 2 (diacritic ordering) in French. If omitted (or \$levelNumber is undef or \@levelNumbers is []), forwards at all the levels.

entry

-- see 3.1 Linguistic Features; 3.2.1 File Format, UTS #10.

If the same character (or a sequence of characters) exists in the collation element table through table, mapping to collation elements is overridden. If it does not exist, the mapping is defined additionally.

```
entry => <<'ENTRY', # for DUCET v4.0.0 (allkeys-4.0.0.txt)
0063 0068 ; [.0E6A.0020.0002.0063] # ch
0043 0068 ; [.0E6A.0020.0007.0043] # Ch
0043 0048 ; [.0E6A.0020.0008.0043] # CH
006C 006C ; [.0F4C.0020.0002.006C] # 11
004C 006C ; [.0F4C.0020.0007.004C] # L1
004C 004C ; [.0F4C.0020.0008.004C] # LL
00F1 ; [.0F7B.0020.0002.00F1] # n-tilde
006E 0303 ; [.0F7B.0020.0002.00F1] # n-tilde
00D1 ; [.0F7B.0020.0008.00D1] # N-tilde
004E 0303 ; [.0F7B.0020.0008.00D1] # N-tilde
ENTRY
```


entry => <<'ENTRY', # for DUCET v4.0.0 (allkeys-4.0.0.txt)
00E6 ; [.0E33.0020.0002.00E6][.0E8B.0020.0002.00E6] # ae ligature as
<a><e>
00C6 ; [.0E33.0020.0008.00C6][.0E8B.0020.0008.00C6] # AE ligature as
<a><E>
ENTRY

NOTE: The code point in the UCA file format (before '; ') **must** be a Unicode code point (defined as hexadecimal), but not a native code point. So 0063 must always denote U+0063, but not a character of "\x63".

Weighting may vary depending on collation element table. So ensure the weights defined in entry will be consistent with those in the collation element table loaded via table.

In DUCET v4.0.0, primary weight of C is 0E60 and that of D is 0E6D. So setting primary weight of CH to 0E6A (as a value between 0E60 and 0E6D) makes ordering as C < CH < D. Exactly speaking DUCET already has some characters between C and D: small capital C (U+1D04) with primary weight 0E64, c-hook/C-hook (U+0188/U+0187) with 0E65, and c-curl (U+0255) with 0E69. Then primary weight 0E6A for CH makes CH ordered between c-curl and D.

hangul_terminator

-- see 7.1.4 Trailing Weights, UTS #10.

If a true value is given (non-zero but should be positive), it will be added as a terminator primary weight to the end of every standard Hangul syllable. Secondary and any higher weights for terminator are set to zero. If the value is false or hangul_terminator key does not exist, insertion of terminator weights will not be performed.

Boundaries of Hangul syllables are determined according to conjoining Jamo behavior in *the Unicode Standard* and *HangulSyllableType.txt*.

Implementation Note: (1) For expansion mapping (Unicode character mapped to a sequence of collation elements), a terminator will not be added between collation elements, even if Hangul syllable boundary exists there. Addition of terminator is restricted to the next position to the last collation element.

(2) Non-conjoining Hangul letters (Compatibility Jamo, halfwidth Jamo, and enclosed letters) are not automatically terminated with a terminator primary weight. These characters may need terminator included in a collation element table beforehand.

ignoreChar

ignoreName

-- see 3.2.2 Variable Weighting, UTS #10.

Makes the entry in the table completely ignorable; i.e. as if the weights were zero at all level.

Through ignoreChar, any character matching qr/\$ignoreChar/ will be ignored. Through ignoreName, any character whose name (given in the table file as a comment) matches qr/\$ignoreName/ will be ignored.

E.g. when 'a' and 'e' are ignorable, 'element' is equal to 'lament' (or 'lmnt').

ignore_level2

-- see 5.1 Parametric Tailoring, UTS #10.

By default, case-sensitive comparison (that is level 3 difference) won't ignore accents (that is level 2 difference).

If the parameter is made true, accents (and other primary ignorable characters) are ignored, even though cases are taken into account.

NOTE: level should be 3 or greater.

katakana_before_hiragana

-- see 7.3.1 Tertiary Weight Table, UTS #10.

By default, hiragana is before katakana. If the parameter is made true, this is reversed.

NOTE: This parameter simplemindedly assumes that any hiragana/katakana distinctions must occur in level 3, and their weights at level 3 must be same as those mentioned in 7.3.1, UTS #10. If you define your collation elements which violate this requirement, this parameter does not work validly.

level

-- see 4.3 Form Sort Key, UTS #10.

Set the maximum level. Any higher levels than the specified one are ignored.

```
Level 1: alphabetic ordering
Level 2: diacritic ordering
Level 3: case ordering
Level 4: tie-breaking (e.g. in the case when variable is 'shifted')
ex.level => 2,
```

If omitted, the maximum is the 4th.

normalization

-- see 4.1 Normalize, UTS #10.

If specified, strings are normalized before preparation of sort keys (the normalization is executed after preprocess).

A form name Unicode::Normalize::normalize() accepts will be applied as \$normalization_form. Acceptable names include 'NFD', 'NFC', 'NFKD', and 'NFKC'.See Unicode::Normalize::normalize() for detail. If omitted, 'NFD' is used.

normalization is performed after preprocess (if defined).

Furthermore, special values, undef and "prenormalized", can be used, though they are not concerned with Unicode::Normalize::normalize().

If undef (not a string "undef") is passed explicitly as the value for this key, any normalization is not carried out (this may make tailoring easier if any normalization is not desired). Under (normalization => undef), only contiguous contractions are resolved; e.g. even if A-ring (and A-ring-cedilla) is ordered after Z, A-cedilla-ring would be primary equal to A. In this point, (normalization => undef, preprocess => sub { NFD(shift) }) is not equivalent to (normalization => 'NFD').

In the case of (normalization => "prenormalized"), any normalization is not
performed, but discontiguous contractions with combining characters are performed.
Therefore (normalization => 'prenormalized', preprocess => sub {
NFD(shift) }) is equivalent to (normalization => 'NFD'). If source strings are finely
prenormalized, (normalization => 'prenormalized') may save time for
normalization.

Except (normalization => undef), Unicode::Normalize is required (see also CAVEAT
).

overrideCJK

-- see 7.1 Derived Collation Elements, UTS #10.

By default, CJK unified ideographs are ordered in Unicode codepoint order, but those in the CJK Unified Ideographs block are lesser than those in the CJK Unified Ideographs Extension A etc.

In the CJK Unified Ideographs block:

```
U+4E00..U+9FA5 if UCA_Version is 8, 9 or 11.
U+4E00..U+9FBB if UCA_Version is 14 or 16.
U+4E00..U+9FC3 if UCA_Version is 18.
U+4E00..U+9FCB if UCA_Version is 20 or 22.
U+4E00..U+9FCC if UCA_Version is 24.
In the CJK Unified Ideographs Extension blocks:
Ext.A (U+3400..U+4DB5) and Ext.B (U+20000..U+2A6D6) in any
UCA_Version.
Ext.C (U+2A700..U+2B734) if UCA_Version is 20 or greater.
Ext.D (U+2B740..U+2B81D) if UCA_Version is 22 or greater.
```

Through overrideCJK, ordering of CJK unified ideographs (including extensions) can be overridden.

ex. CJK unified ideographs in the JIS code point order.

The return value may be an arrayref of 1st to 4th weights as shown above. The return value may be an integer as the primary weight as shown below. If undef is returned, the default derived collation element will be used.

The return value may be a list containing zero or more of an arrayref, an integer, or undef. ex. ignores all CJK unified ideographs.

```
overrideCJK => sub {()}, # CODEREF returning empty list
# where ->eq("Pe\x{4E00}rl", "Perl") is true
# as U+4E00 is a CJK unified ideograph and to be ignorable.
```

If undef is passed explicitly as the value for this key, weights for CJK unified ideographs are treated as undefined. But assignment of weight for CJK unified ideographs in table or entry is still valid.

Note: In addition to them, 12 CJK compatibility ideographs (U+FA0E, U+FA0F, U+FA11, U+FA13, U+FA14, U+FA1F, U+FA21, U+FA23, U+FA24, U+FA27, U+FA28, U+FA29) are also treated as CJK unified ideographs. But they can't be overridden via overrideCJK when you use DUCET, as the table includes weights for them. table or entry has priority over overrideCJK.

overrideHangul

-- see 7.1 Derived Collation Elements, UTS #10.

By default, Hangul syllables are decomposed into Hangul Jamo, even if (normalization = > undef). But the mapping of Hangul syllables may be overridden.

This parameter works like overrideCJK, so see there for examples.

If you want to override the mapping of Hangul syllables, NFD and NFKD are not appropriate, since NFD and NFKD will decompose Hangul syllables before overriding. FCD may decompose Hangul syllables as the case may be.

If undef is passed explicitly as the value for this key, weight for Hangul syllables is treated as undefined without decomposition into Hangul Jamo. But definition of weight for Hangul syllables in table or entry is still valid.

preprocess

-- see 5.1 Preprocessing, UTS #10.

If specified, the coderef is used to preprocess each string before the formation of sort keys. ex. dropping English articles, such as "a" or "the". Then, "the pen" is before "a pencil".

```
preprocess => sub {
    my $str = shift;
    $str =~ s/\b(?:an?|the)\s+//gi;
    return $str;
},
```

preprocess is performed before normalization (if defined).

ex. decoding strings in a legacy encoding such as shift-jis:

Note: Strings returned from the coderef will be interpreted according to Perl's Unicode support. See *perlunicode*, *perluniintro*, *perlunitut*, *perlunifaq*, *utf8*.

rearrange

-- see 3.1.3 Rearrangement, UTS #10.

Characters that are not coded in logical order and to be rearranged. If UCA_Version is equal to or lesser than 11, default is:

rearrange => [0x0E40..0x0E44, 0x0EC0..0x0EC4],

If you want to disallow any rearrangement, pass undef or [] (a reference to empty list) as the value for this key.

If UCA_Version is equal to or greater than 14, default is [] (i.e. no rearrangement).

According to the version 9 of UCA, this parameter shall not be used; but it is not warned at present.

rewrite

If specified, the coderef is used to rewrite lines in table or entry. The coderef will get each line, and then should return a rewritten line according to the UCA file format. If the coderef returns an empty line, the line will be skipped.

e.g. any primary ignorable characters into tertiary ignorable:

```
rewrite => sub {
    my $line = shift;
    $line =~ s/\[\.0000\..{4}\\..{4}\\./[.0000.0000.0000./g;
    return $line;
},
```

This example shows rewriting weights. rewrite is allowed to affect code points, weights, and

the name.

NOTE: table is available to use another table file; preparing a modified table once would be more efficient than rewriting lines on reading an unmodified table every time.

suppress

-- see suppress contractions in 5.14.11 Special-Purpose Commands, UTS #35 (LDML).

Contractions beginning with the specified characters are suppressed, even if those contractions are defined in table.

An example for Russian and some languages using the Cyrillic script:

suppress => [0x0400..0x0417, 0x041A..0x0437, 0x043A..0x045F],

where 0x0400 stands for U+0400, CYRILLIC CAPITAL LETTER IE WITH GRAVE.

NOTE: Contractions via entry are not be suppressed.

table

-- see 3.2 Default Unicode Collation Element Table, UTS #10.

You can use another collation element table if desired.

The table file should locate in the *Unicode/Collate* directory on @INC. Say, if the filename is *Foo.txt*, the table file is searched as *Unicode/Collate/Foo.txt* in @INC.

By default, *allkeys.txt* (as the filename of DUCET) is used. If you will prepare your own table file, any name other than *allkeys.txt* may be better to avoid namespace conflict.

NOTE: When XSUB is used, the DUCET is compiled on building this module, and it may save time at the run time. Explicit saying table => 'allkeys.txt' (or using another table), or using ignoreChar, ignoreName, undefChar, undefName or rewrite will prevent this module from using the compiled DUCET.

If undef is passed explicitly as the value for this key, no file is read (but you can define collation elements via entry).

A typical way to define a collation element table without any file of table:

```
$onlyABC = Unicode::Collate->new(
    table => undef,
    entry => << 'ENTRIES',
0061 ; [.0101.0020.0002.0061] # LATIN SMALL LETTER A
0041 ; [.0101.0020.0008.0041] # LATIN CAPITAL LETTER A
0062 ; [.0102.0020.0002.0062] # LATIN SMALL LETTER B
0042 ; [.0102.0020.0008.0042] # LATIN CAPITAL LETTER B
0063 ; [.0103.0020.0002.0063] # LATIN SMALL LETTER C
0043 ; [.0103.0020.0008.0043] # LATIN CAPITAL LETTER C
ENTRIES
);</pre>
```

If ignoreName or undefName is used, character names should be specified as a comment (following #) on each line.

undefChar

undefName

-- see 6.3.4 Reducing the Repertoire, UTS #10.

Undefines the collation element as if it were unassigned in the table. This reduces the size of the table. If an unassigned character appears in the string to be collated, the sort key is made from its codepoint as a single-character collation element, as it is greater than any other assigned collation elements (in the codepoint order among the unassigned characters). But, it'd be better to ignore characters unfamiliar to you and maybe never used.

Through undefChar, any character matching qr/sundefChar/ will be undefined. Through undefName, any character whose name (given in the table file as a comment) matches qr/sundefName/ will be undefined.

ex. Collation weights for beyond-BMP characters are not stored in object:

undefChar => $qr/[^\0-\x{fffd}]/$,

upper_before_lower

-- see 6.6 Case Comparisons, UTS #10.

By default, lowercase is before uppercase. If the parameter is made true, this is reversed.

NOTE: This parameter simplemindedly assumes that any lowercase/uppercase distinctions must occur in level 3, and their weights at level 3 must be same as those mentioned in 7.3.1, UTS #10. If you define your collation elements which differs from this requirement, this parameter doesn't work validly.

variable

-- see 3.2.2 Variable Weighting, UTS #10.

This key allows for variable weighting of variable collation elements, which are marked with an ASTERISK in the table (NOTE: Many punctuation marks and symbols are variable in *allkeys.txt*).

```
variable => 'blanked', 'non-ignorable', 'shifted', or
'shift-trimmed'.
```

These names are case-insensitive. By default (if specification is omitted), 'shifted' is adopted.

'Blanked' through 3;	Variable elements are made ignorable at levels 1
	considered at the 4th level.
'Non-Ignorable'	Variable elements are not reset to ignorable.
'Shifted' through 3	Variable elements are made ignorable at levels 1
1 weight.	their level 4 weight is replaced by the old level
0xFFFF.	Level 4 weight for Non-Variable elements is
OXFFFF.	
'Shift-Trimmed' level	Same as 'shifted', but all FFFF's at the 4th
	are trimmed.

Methods for Collation

@sorted = \$Collator->sort(@not_sorted)
Sorts a list of strings.

```
$result = $Collator->cmp($a, $b)
Returns 1 (when $a is greater than $b) or 0 (when $a is equal to $b) or -1 (when $a is lesser
than $b).
$result = $Collator->eq($a, $b)
$result = $Collator->ne($a, $b)
$result = $Collator->nt($a, $b)
```

```
$result = $Collator->le($a, $b)
$result = $Collator->gt($a, $b)
$result = $Collator->ge($a, $b)
     They works like the same name operators as theirs.
        eq : whether $a is equal to $b.
        ne : whether $a is not equal to $b.
        lt : whether $a is lesser than $b.
        le : whether $a is lesser than $b or equal to $b.
        qt : whether $a is greater than $b.
        ge : whether $a is greater than $b or equal to $b.
$sortKey = $Collator->getSortKey($string)
     -- see 4.3 Form Sort Key, UTS #10.
     Returns a sort key.
     You compare the sort keys using a binary comparison and get the result of the comparison of
     the strings using UCA.
        $Collator->getSortKey($a) cmp $Collator->getSortKey($b)
           is equivalent to
        $Collator->cmp($a, $b)
$sortKeyForm = $Collator->viewSortKey($string)
     Converts a sorting key into its representation form. If UCA_Version is 8, the output is slightly
     different.
        use Unicode::Collate;
        my $c = Unicode::Collate->new();
        print $c->viewSortKey("Perl"),"\n";
        # output:
        | FFFF FFFF FFFF FFFF]
        # Level 1
                                  Level 2
                                                         Level 3
                     Level 4
```

Methods for Searching

The match, gmatch, subst, gsubst methods work like m//, m//g, s///, s///g, respectively, but they are not aware of any pattern, but only a literal substring.

DISCLAIMER: If preprocess or normalization parameter is true for \$Collator, calling these methods (index, match, gmatch, subst, gsubst) is croaked, as the position and the length might differ from those on the specified string.

rearrange and hangul_terminator parameters are neglected. katakana_before_hiragana and upper_before_lower don't affect matching and searching, as it doesn't matter whether greater or lesser.

```
$position = $Collator->index($string, $substring[, $position])
```

(\$position, \$length) = \$Collator->index(\$string, \$substring[, \$position])

If \$substring matches a part of \$string, returns the position of the first occurrence of the matching part in scalar context; in list context, returns a two-element list of the position and the length of the matching part.

If \$substring does not match any part of \$string, returns -1 in scalar context and an empty list in list context.

e.g. you say

and get "muß" in \$match since "muß" is primary equal to "MÜSS".

```
$match_ref = $Collator->match($string, $substring)
($match) = $Collator->match($string, $substring)
```

If \$substring matches a part of \$string, in scalar context, returns a reference to the first occurrence of the matching part (\$match_ref is always true if matches, since every reference is **true**); in list context, returns the first occurrence of the matching part.

If <code>\$substring</code> does not match any part of <code>\$string</code>, returns undef in scalar context and an empty list in list context.

```
e.g.
    if ($match_ref = $Collator->match($str, $sub)) { # scalar context
    print "matches [$$match_ref].\n";
    } else {
    print "doesn't match.\n";
    }
    or
    if (($match) = $Collator->match($str, $sub)) { # list context
    print "matches [$match].\n";
    } else {
    print "doesn't match.\n";
    }
@match = $Collator->gmatch($string, $substring)
```

If \$substring matches a part of \$string, returns all the matching parts (or matching count in scalar context).

If \$substring does not match any part of \$string, returns an empty list.

\$count = \$Collator->subst(\$string, \$substring, \$replacement)

If <code>\$substring</code> matches a part of <code>\$string</code>, the first occurrence of the matching part is replaced by <code>\$replacement</code> (<code>\$string</code> is modified) and <code>\$count</code> (always equals to 1) is returned.

replacement can be a CODEREF, taking the matching part as an argument, and returning a string to replace the matching part (a bit similar to s/(..)/coderef->(\$1)/e).

\$count = \$Collator->gsubst(\$string, \$substring, \$replacement)

If \$substring matches a part of \$string, all the occurrences of the matching part are replaced by \$replacement (\$string is modified) and \$count is returned.

Perl version 5.16.2 documentation - Unicode::Collate

```
Sreplacement can be a CODEREF, taking the matching part as an argument, and returning a
string to replace the matching part (a bit similar to s/(..)/scoderef->($1)/eg).
e.g.
 my $Collator = Unicode::Collate->new( normalization => undef, level
=> 1 );
                            # (normalization => undef) is
REOUIRED.
 my $str = "Camel donkey zebra came\x{301}1 CAMEL horse
cam\0e\01...";
 $Collator->gsubst($str, "camel", sub { "<b>$_[0]</b>" });
 # now $str is "<b>Camel</b> donkey zebra <b>came\x{301}l</b>
<b>CAMEL</b> horse <b>cam\0e\01</b>...";
 # i.e., all the camels are made bold-faced.
  Examples: levels and ignore_level2 - what does camel match?
_____
  level ignore_level2 | camel Camel came\x{301}1 c-a-m-e-1
cam\0e\01
_____
         false
                  yes
   1
                          yes
                                 yes
                                            yes
yes
   2
          false
                  yes
                          yes
                                 no
                                            yes
yes
                  yes
   3
          false
                          no
                                no
                                            yes
ves
    4
          false
                  yes
                          no
                                  no
                                            no
yes
yes yes
   1
          true
                                yes
                                            yes
yes
                  yes
   2
          true
                          yes
                                 yes
                                            yes
yes
                  yes
   3
          true
                          no
                                 yes
                                            yes
yes
                  yes
   4
          true
                          no
                                  yes
                                            no
yes
_____
_____
  note: if variable => non-ignorable, camel doesn't match c-a-m-e-l
      at any level.
```

Other Methods

```
%old_tailoring = $Collator->change(%new_tailoring)
$modified_collator = $Collator->change(%new_tailoring)
Changes the value of specified keys and returns the changed part.
$Collator = Unicode::Collate->new(level => 4);
```



```
$Collator->eq("perl", "PERL"); # false
%old = $Collator->change(level => 2); # returns (level => 4).
$Collator->eq("perl", "PERL"); # true
$Collator->change(%old); # returns (level => 2).
$Collator->eq("perl", "PERL"); # false
```

Not all (key,value)s are allowed to be changed. See also @Unicode::Collate::ChangeOK and @Unicode::Collate::ChangeNG.

In the scalar context, returns the modified collator (but it is **not** a clone from the original).

\$Collator->change(level => 2)->eq("perl", "PERL"); # true

\$Collator->eq("perl", "PERL"); # true; now max level is 2nd.

\$Collator->change(level => 4)->eq("perl", "PERL"); # false

\$version = \$Collator->version()

Returns the version number (a string) of the Unicode Standard which the table file used by the collator object is based on. If the table does not include a version line (starting with @version), returns "unknown".

UCA_Version()

Returns the revision number of UTS #10 this module consults, that should correspond with the DUCET incorporated.

```
Base_Unicode_Version()
```

Returns the version number of UTS #10 this module consults, that should correspond with the DUCET incorporated.

EXPORT

No method will be exported.

INSTALL

Though this module can be used without any table file, to use this module easily, it is recommended to install a table file in the UCA format, by copying it under the directory <a place in @INC>/Unicode/Collate.

The most preferable one is "The Default Unicode Collation Element Table" (aka DUCET), available from the Unicode Consortium's website:

```
http://www.unicode.org/Public/UCA/
```

http://www.unicode.org/Public/UCA/latest/allkeys.txt (latest version)

If DUCET is not installed, it is recommended to copy the file from http://www.unicode.org/Public/UCA/latest/allkeys.txt to <a place in @INC>/Unicode/Collate/allkeys.txt manually.

CAVEATS

Normalization

Use of the normalization parameter requires the Unicode::Normalize module (see

Unicode::Normalize).

If you need not it (say, in the case when you need not handle any combining characters), assign normalization => undef explicitly.

-- see 6.5 Avoiding Normalization, UTS #10.

Conformance Test

The Conformance Test for the UCA is available under http://www.unicode.org/Public/UCA/.

For CollationTest_SHIFTED.txt, a collator via Unicode::Collate->new() should be
used; for CollationTest_NON_IGNORABLE.txt, a collator via Unicode::Collate->
new(variable => "non-ignorable", level => 3).

Unicode::Normalize is required to try The Conformance Test.

AUTHOR, COPYRIGHT AND LICENSE

The Unicode::Collate module for perl was written by SADAHIRO Tomoyuki, <SADAHIRO@cpan.org>. This module is Copyright(C) 2001-2012, SADAHIRO Tomoyuki. Japan. All rights reserved.

This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

The file Unicode/Collate/allkeys.txt was copied verbatim from *http://www.unicode.org/Public/UCA/6.1.0/allkeys.txt*. For this file, Copyright (c) 2001-2011 Unicode, Inc. Distributed under the Terms of Use in *http://www.unicode.org/copyright.html*.

SEE ALSO

Unicode Collation Algorithm - UTS #10

http://www.unicode.org/reports/tr10/

The Default Unicode Collation Element Table (DUCET)

http://www.unicode.org/Public/UCA/latest/allkeys.txt

The conformance test for the UCA

http://www.unicode.org/Public/UCA/latest/CollationTest.html http://www.unicode.org/Public/UCA/latest/CollationTest.zip

Hangul Syllable Type

http://www.unicode.org/Public/UNIDATA/HangulSyllableType.txt

Unicode Normalization Forms - UAX #15

http://www.unicode.org/reports/tr15/

Unicode Locale Data Markup Language (LDML) - UTS #35 http://www.unicode.org/reports/tr35/