
Perl version 5.16.2 documentation - a2p

Page 1http://perldoc.perl.org

NAME
a2p - Awk to Perl translator

SYNOPSIS
a2p [options] [filename]

DESCRIPTION
A2p takes an awk script specified on the command line (or from
 standard input) and produces a
comparable perl script on the
 standard output.

OPTIONS
Options include:

-D<number>

sets debugging flags.

-F<character>

tells a2p that this awk script is always invoked with this -F
 switch.

-n<fieldlist>

specifies the names of the input fields if input does not have to be
 split into an array. If you
were translating an awk script that
 processes the password file, you might say:

	 a2p -7 -nlogin.password.uid.gid.gcos.shell.home

Any delimiter can be used to separate the field names.

-<number>

causes a2p to assume that input will always have that many fields.

-o

tells a2p to use old awk behavior. The only current differences are:

Old awk always has a line loop, even if there are no line
 actions, whereas new awk
does not.

In old awk, sprintf is extremely greedy about its arguments.
 For example, given the
statement

	 print sprintf(some_args), extra_args;

old awk considers extra_args to be arguments to sprintf; new awk
 considers
them arguments to print.

"Considerations"
A2p cannot do as good a job translating as a human would, but it
 usually does pretty well. There are
some areas where you may want to
 examine the perl script produced and tweak it some. Here are
some of
 them, in no particular order.

There is an awk idiom of putting int() around a string expression to
 force numeric interpretation, even
though the argument is always
 integer anyway. This is generally unneeded in perl, but a2p can't
 tell if
the argument is always going to be integer, so it leaves it
 in. You may wish to remove it.

Perl differentiates numeric comparison from string comparison. Awk
 has one operator for both that
decides at run time which comparison to
 do. A2p does not try to do a complete job of awk emulation
at this
 point. Instead it guesses which one you want. It's almost always
 right, but it can be spoofed. All
such guesses are marked with the
 comment "#???". You should go through and check them. You
might
 want to run at least once with the -w switch to perl, which will
 warn you if you use == where you

Perl version 5.16.2 documentation - a2p

Page 2http://perldoc.perl.org

should have used eq.

Perl does not attempt to emulate the behavior of awk in which
 nonexistent array elements spring into
existence simply by being
 referenced. If somehow you are relying on this mechanism to create
 null
entries for a subsequent for...in, they won't be there in perl.

If a2p makes a split line that assigns to a list of variables that
 looks like (Fld1, Fld2, Fld3...) you may
want to rerun a2p using the -n option mentioned above. This will let you name the fields
 throughout
the script. If it splits to an array instead, the script
 is probably referring to the number of fields
somewhere.

The exit statement in awk doesn't necessarily exit; it goes to the END
 block if there is one. Awk scripts
that do contortions within the END
 block to bypass the block under such circumstances can be
simplified
 by removing the conditional in the END block and just exiting directly
 from the perl script.

Perl has two kinds of array, numerically-indexed and associative.
 Perl associative arrays are called
"hashes". Awk arrays are usually
 translated to hashes, but if you happen to know that the index is

always going to be numeric you could change the {...} to [...].
 Iteration over a hash is done using the
keys() function, but iteration
 over an array is NOT. You might need to modify any loop that iterates

over such an array.

Awk starts by assuming OFMT has the value %.6g. Perl starts by
 assuming its equivalent, $#, to have
the value %.20g. You'll want to
 set $# explicitly if you use the default value of OFMT.

Near the top of the line loop will be the split operation that is
 implicit in the awk script. There are times
when you can move this
 down past some conditionals that test the entire record so that the
 split is not
done as often.

For aesthetic reasons you may wish to change index variables from being
 1-based (awk style) to
0-based (Perl style). Be sure to change all
 operations the variable is involved in to match.

Cute comments that say "# Here is a workaround because awk is dumb"
 are passed through
unmodified.

Awk scripts are often embedded in a shell script that pipes stuff into
 and out of awk. Often the shell
script wrapper can be incorporated
 into the perl script, since perl can start up pipes into and out of

itself, and can do other things that awk can't do by itself.

Scripts that refer to the special variables RSTART and RLENGTH can
 often be simplified by referring
to the variables $`, $& and $', as
 long as they are within the scope of the pattern match that sets
them.

The produced perl script may have subroutines defined to deal with
 awk's semantics regarding getline
and print. Since a2p usually picks
 correctness over efficiency. it is almost always possible to rewrite

such code to be more efficient by discarding the semantic sugar.

For efficiency, you may wish to remove the keyword from any return
 statement that is the last
statement executed in a subroutine. A2p
 catches the most common case, but doesn't analyze
embedded blocks for
 subtler cases.

ARGV[0] translates to $ARGV0, but ARGV[n] translates to $ARGV[$n-1]. A
 loop that tries to iterate
over ARGV[0] won't find it.

ENVIRONMENT
A2p uses no environment variables.

AUTHOR
Larry Wall <larry@wall.org>

Perl version 5.16.2 documentation - a2p

Page 3http://perldoc.perl.org

FILES
SEE ALSO

 perl	 The perl compiler/interpreter

 s2p	 sed to perl translator

DIAGNOSTICS
BUGS

It would be possible to emulate awk's behavior in selecting string
 versus numeric operations at run
time by inspection of the operands,
 but it would be gross and inefficient. Besides, a2p almost always

guesses right.

Storage for the awk syntax tree is currently static, and can run out.

