
Perl version 5.16.2 documentation - perlmod

Page 1http://perldoc.perl.org

NAME
perlmod - Perl modules (packages and symbol tables)

DESCRIPTION
Packages

Perl provides a mechanism for alternative namespaces to protect
 packages from stomping on each
other's variables. In fact, there's
 really no such thing as a global variable in Perl. The package

statement declares the compilation unit as being in the given
 namespace. The scope of the package
declaration is from the
 declaration itself through the end of the enclosing block, eval,
 or file,
whichever comes first (the same scope as the my() and
 local() operators). Unqualified dynamic
identifiers will be in
 this namespace, except for those few identifiers that if unqualified,
 default to the
main package instead of the current one as described
 below. A package statement affects only
dynamic variables--including
 those you've used local() on--but not lexical variables created
 with my().
Typically it would be the first declaration in a file
 included by the do, require, or use operators. You
can
 switch into a package in more than one place; it merely influences
 which symbol table is used by
the compiler for the rest of that
 block. You can refer to variables and filehandles in other packages
 by
prefixing the identifier with the package name and a double
 colon: $Package::Variable. If the
package name is null, the main package is assumed. That is, $::sail is equivalent to
$main::sail.

The old package delimiter was a single quote, but double colon is now the
 preferred delimiter, in part
because it's more readable to humans, and
 in part because it's more readable to emacs macros. It
also makes C++
 programmers feel like they know what's going on--as opposed to using the
 single
quote as separator, which was there to make Ada programmers feel
 like they knew what was going
on. Because the old-fashioned syntax is still
 supported for backwards compatibility, if you try to use a
string like "This is $owner's house", you'll be accessing $owner::s; that is,
 the $s variable in
package owner, which is probably not what you meant.
 Use braces to disambiguate, as in "This is
 ${owner}'s house".

Packages may themselves contain package separators, as in $OUTER::INNER::var. This implies
nothing about the order of
 name lookups, however. There are no relative packages: all symbols
 are
either local to the current package, or must be fully qualified
 from the outer package name down. For
instance, there is nowhere
 within package OUTER that $INNER::var refers to
$OUTER::INNER::var. INNER refers to a totally
 separate global package.

Only identifiers starting with letters (or underscore) are stored
 in a package's symbol table. All other
symbols are kept in package main, including all punctuation variables, like $_. In addition,
 when
unqualified, the identifiers STDIN, STDOUT, STDERR, ARGV,
 ARGVOUT, ENV, INC, and SIG are
forced to be in package main,
 even when used for other purposes than their built-in ones. If you
 have
a package called m, s, or y, then you can't use the
 qualified form of an identifier because it would be
instead interpreted
 as a pattern match, a substitution, or a transliteration.

Variables beginning with underscore used to be forced into package
 main, but we decided it was
more useful for package writers to be able
 to use leading underscore to indicate private variables and
method names.
 However, variables and functions named with a single _, such as
 $_ and sub _, are
still forced into the package main. See also "The Syntax of Variable Names" in perlvar.

evaled strings are compiled in the package in which the eval() was
 compiled. (Assignments to
$SIG{}, however, assume the signal
 handler specified is in the main package. Qualify the signal
handler
 name if you wish to have a signal handler in a package.) For an
 example, examine perldb.pl
in the Perl library. It initially switches
 to the DB package so that the debugger doesn't interfere with
variables
 in the program you are trying to debug. At various points, however, it
 temporarily switches
back to the main package to evaluate various
 expressions in the context of the main package (or
wherever you came
 from). See perldebug.

The special symbol __PACKAGE__ contains the current package, but cannot
 (easily) be used to
construct variable names.

Perl version 5.16.2 documentation - perlmod

Page 2http://perldoc.perl.org

See perlsub for other scoping issues related to my() and local(),
 and perlref regarding closures.

Symbol Tables
The symbol table for a package happens to be stored in the hash of that
 name with two colons
appended. The main symbol table's name is thus %main::, or %:: for short. Likewise the symbol
table for the nested
 package mentioned earlier is named %OUTER::INNER::.

The value in each entry of the hash is what you are referring to when you
 use the *name typeglob
notation.

 local *main::foo = *main::bar;

You can use this to print out all the variables in a package, for
 instance. The standard but antiquated
dumpvar.pl library and
 the CPAN module Devel::Symdump make use of this.

The results of creating new symbol table entries directly or modifying any
 entries that are not already
typeglobs are undefined and subject to change
 between releases of perl.

Assignment to a typeglob performs an aliasing operation, i.e.,

 *dick = *richard;

causes variables, subroutines, formats, and file and directory handles
 accessible via the identifier
richard also to be accessible via the
 identifier dick. If you want to alias only a particular variable or
subroutine, assign a reference instead:

 *dick = \$richard;

Which makes $richard and $dick the same variable, but leaves
 @richard and @dick as separate
arrays. Tricky, eh?

There is one subtle difference between the following statements:

 *foo = *bar;
 *foo = \$bar;

*foo = *bar makes the typeglobs themselves synonymous while *foo = \$bar makes the
SCALAR portions of two distinct typeglobs
 refer to the same scalar value. This means that the
following code:

 $bar = 1;
 *foo = \$bar; # Make $foo an alias for $bar

 {
 local $bar = 2; # Restrict changes to block
 print $foo; # Prints '1'!
 }

Would print '1', because $foo holds a reference to the original $bar. The one that was stuffed away
by local() and which will be
 restored when the block ends. Because variables are accessed
through the
 typeglob, you can use *foo = *bar to create an alias which can be
 localized. (But be
aware that this means you can't have a separate @foo and @bar, etc.)

What makes all of this important is that the Exporter module uses glob
 aliasing as the import/export
mechanism. Whether or not you can properly
 localize a variable that has been exported from a
module depends on how
 it was exported:

 @EXPORT = qw($FOO); # Usual form, can't be localized

Perl version 5.16.2 documentation - perlmod

Page 3http://perldoc.perl.org

 @EXPORT = qw(*FOO); # Can be localized

You can work around the first case by using the fully qualified name
 ($Package::FOO) where you
need a local value, or by overriding it
 by saying *FOO = *Package::FOO in your script.

The *x = \$y mechanism may be used to pass and return cheap references
 into or from
subroutines if you don't want to copy the whole
 thing. It only works when assigning to dynamic
variables, not
 lexicals.

 %some_hash = ();			 # can't be my()
 *some_hash = fn(\%another_hash);
 sub fn {
	 local *hashsym = shift;
	 # now use %hashsym normally, and you
	 # will affect the caller's %another_hash
	 my %nhash = (); # do what you want
	 return \%nhash;
 }

On return, the reference will overwrite the hash slot in the
 symbol table specified by the *some_hash
typeglob. This
 is a somewhat tricky way of passing around references cheaply
 when you don't want to
have to remember to dereference variables
 explicitly.

Another use of symbol tables is for making "constant" scalars.

 *PI = \3.14159265358979;

Now you cannot alter $PI, which is probably a good thing all in all.
 This isn't the same as a constant
subroutine, which is subject to
 optimization at compile-time. A constant subroutine is one prototyped

to take no arguments and to return a constant expression. See perlsub for details on these. The use
constant pragma is a
 convenient shorthand for these.

You can say *foo{PACKAGE} and *foo{NAME} to find out what name and
 package the *foo symbol
table entry comes from. This may be useful
 in a subroutine that gets passed typeglobs as arguments:

 sub identify_typeglob {
 my $glob = shift;
 print 'You gave me ', *{$glob}{PACKAGE}, '::', *{$glob}{NAME},
"\n";
 }
 identify_typeglob *foo;
 identify_typeglob *bar::baz;

This prints

 You gave me main::foo
 You gave me bar::baz

The *foo{THING} notation can also be used to obtain references to the
 individual elements of *foo.
See perlref.

Subroutine definitions (and declarations, for that matter) need
 not necessarily be situated in the
package whose symbol table they
 occupy. You can define a subroutine outside its package by

explicitly qualifying the name of the subroutine:

 package main;
 sub Some_package::foo { ... } # &foo defined in Some_package

Perl version 5.16.2 documentation - perlmod

Page 4http://perldoc.perl.org

This is just a shorthand for a typeglob assignment at compile time:

 BEGIN { *Some_package::foo = sub { ... } }

and is not the same as writing:

 {
	 package Some_package;
	 sub foo { ... }
 }

In the first two versions, the body of the subroutine is
 lexically in the main package, not in
Some_package. So
 something like this:

 package main;

 $Some_package::name = "fred";
 $main::name = "barney";

 sub Some_package::foo {
	 print "in ", __PACKAGE__, ": \$name is '$name'\n";
 }

 Some_package::foo();

prints:

 in main: $name is 'barney'

rather than:

 in Some_package: $name is 'fred'

This also has implications for the use of the SUPER:: qualifier
 (see perlobj).

BEGIN, UNITCHECK, CHECK, INIT and END
Five specially named code blocks are executed at the beginning and at
 the end of a running Perl
program. These are the BEGIN, UNITCHECK, CHECK, INIT, and END blocks.

These code blocks can be prefixed with sub to give the appearance of a
 subroutine (although this is
not considered good style). One should note
 that these code blocks don't really exist as named
subroutines (despite
 their appearance). The thing that gives this away is the fact that you can
 have
more than one of these code blocks in a program, and they will get all executed at the appropriate
moment. So you can't execute any of
 these code blocks by name.

A BEGIN code block is executed as soon as possible, that is, the moment
 it is completely defined,
even before the rest of the containing file (or
 string) is parsed. You may have multiple BEGIN blocks
within a file (or
 eval'ed string); they will execute in order of definition. Because a BEGIN
 code block
executes immediately, it can pull in definitions of subroutines
 and such from other files in time to be
visible to the rest of the compile
 and run time. Once a BEGIN has run, it is immediately undefined and
any
 code it used is returned to Perl's memory pool.

An END code block is executed as late as possible, that is, after
 perl has finished running the program
and just before the interpreter
 is being exited, even if it is exiting as a result of a die() function.
 (But
not if it's morphing into another program via exec, or
 being blown out of the water by a signal--you
have to trap that yourself
 (if you can).) You may have multiple END blocks within a file--they
 will

Perl version 5.16.2 documentation - perlmod

Page 5http://perldoc.perl.org

execute in reverse order of definition; that is: last in, first
 out (LIFO). END blocks are not executed
when you run perl with the -c switch, or if compilation fails.

Note that END code blocks are not executed at the end of a string eval(): if any END code blocks
are created in a string eval(),
 they will be executed just as any other END code block of that
package
 in LIFO order just before the interpreter is being exited.

Inside an END code block, $? contains the value that the program is
 going to pass to exit(). You
can modify $? to change the exit
 value of the program. Beware of changing $? by accident (e.g. by

running something via system).

Inside of a END block, the value of ${^GLOBAL_PHASE} will be "END".

UNITCHECK, CHECK and INIT code blocks are useful to catch the
 transition between the compilation
phase and the execution phase of
 the main program.

UNITCHECK blocks are run just after the unit which defined them has
 been compiled. The main
program file and each module it loads are
 compilation units, as are string evals, code compiled using
the (?{ }) construct in a regex, calls to do FILE, require FILE,
 and code after the -e switch on
the command line.

BEGIN and UNITCHECK blocks are not directly related to the phase of
 the interpreter. They can be
created and executed during any phase.

CHECK code blocks are run just after the initial Perl compile phase ends
 and before the run time
begins, in LIFO order. CHECK code blocks are used
 in the Perl compiler suite to save the compiled
state of the program.

Inside of a CHECK block, the value of ${^GLOBAL_PHASE} will be "CHECK".

INIT blocks are run just before the Perl runtime begins execution, in
 "first in, first out" (FIFO) order.

Inside of an INIT block, the value of ${^GLOBAL_PHASE} will be "INIT".

The CHECK and INIT blocks in code compiled by require, string do,
 or string eval will not be
executed if they occur after the end of the
 main compilation phase; that can be a problem in mod_perl
and other persistent
 environments which use those functions to load code at runtime.

When you use the -n and -p switches to Perl, BEGIN and END work just as they do in awk, as a
degenerate case.
 Both BEGIN and CHECK blocks are run when you use the -c
 switch for a
compile-only syntax check, although your main code
 is not.

The begincheck program makes it all clear, eventually:

 #!/usr/bin/perl

 # begincheck

 print "10. Ordinary code runs at runtime.\n";

 END { print "16. So this is the end of the tale.\n" }
 INIT { print " 7. INIT blocks run FIFO just before runtime.\n" }
 UNITCHECK {
 print " 4. And therefore before any CHECK blocks.\n"
 }
 CHECK { print " 6. So this is the sixth line.\n" }

 print "11. It runs in order, of course.\n";

Perl version 5.16.2 documentation - perlmod

Page 6http://perldoc.perl.org

 BEGIN { print " 1. BEGIN blocks run FIFO during compilation.\n" }
 END { print "15. Read perlmod for the rest of the story.\n" }
 CHECK { print " 5. CHECK blocks run LIFO after all compilation.\n" }
 INIT { print " 8. Run this again, using Perl's -c switch.\n" }

 print "12. This is anti-obfuscated code.\n";

 END { print "14. END blocks run LIFO at quitting time.\n" }
 BEGIN { print " 2. So this line comes out second.\n" }
 UNITCHECK {
 print " 3. UNITCHECK blocks run LIFO after each file is compiled.\n"
 }
 INIT { print " 9. You'll see the difference right away.\n" }

 print "13. It merely _looks_ like it should be confusing.\n";

 __END__

Perl Classes
There is no special class syntax in Perl, but a package may act
 as a class if it provides subroutines to
act as methods. Such a
 package may also derive some of its methods from another class (package)

by listing the other package name(s) in its global @ISA array (which
 must be a package global, not a
lexical).

For more on this, see perlootut and perlobj.

Perl Modules
A module is just a set of related functions in a library file, i.e.,
 a Perl package with the same name as
the file. It is specifically
 designed to be reusable by other modules or programs. It may do this
 by
providing a mechanism for exporting some of its symbols into the
 symbol table of any package using
it, or it may function as a class
 definition and make its semantics available implicitly through
 method
calls on the class and its objects, without explicitly
 exporting anything. Or it can do a little of both.

For example, to start a traditional, non-OO module called Some::Module,
 create a file called
Some/Module.pm and start with this template:

 package Some::Module; # assumes Some/Module.pm

 use strict;
 use warnings;

 BEGIN {
 require Exporter;

 # set the version for version checking
 our $VERSION = 1.00;

 # Inherit from Exporter to export functions and variables
 our @ISA = qw(Exporter);

 # Functions and variables which are exported by default
 our @EXPORT = qw(func1 func2);

Perl version 5.16.2 documentation - perlmod

Page 7http://perldoc.perl.org

 # Functions and variables which can be optionally exported
 our @EXPORT_OK = qw($Var1 %Hashit func3);
 }

 # exported package globals go here
 our $Var1 = '';
 our %Hashit = ();

 # non-exported package globals go here
 # (they are still accessible as $Some::Module::stuff)
 our @more = ();
 our $stuff = '';

 # file-private lexicals go here, before any functions which use them
 my $priv_var = '';
 my %secret_hash = ();

 # here's a file-private function as a closure,
 # callable as $priv_func->();
 my $priv_func = sub {
 ...
 };

 # make all your functions, whether exported or not;
 # remember to put something interesting in the {} stubs
 sub func1 { ... }
 sub func2 { ... }

 # this one isn't exported, but could be called directly
 # as Some::Module::func3()
 sub func3 { ... }

 END { ... } # module clean-up code here (global destructor)

 1; # don't forget to return a true value from the file

Then go on to declare and use your variables in functions without
 any qualifications. See Exporter
and the perlmodlib for
 details on mechanics and style issues in module creation.

Perl modules are included into your program by saying

 use Module;

or

 use Module LIST;

This is exactly equivalent to

 BEGIN { require 'Module.pm'; 'Module'->import; }

or

 BEGIN { require 'Module.pm'; 'Module'->import(LIST); }

Perl version 5.16.2 documentation - perlmod

Page 8http://perldoc.perl.org

As a special case

 use Module ();

is exactly equivalent to

 BEGIN { require 'Module.pm'; }

All Perl module files have the extension .pm. The use operator
 assumes this so you don't have to
spell out "Module.pm" in quotes.
 This also helps to differentiate new modules from old .pl and .ph
files. Module names are also capitalized unless they're
 functioning as pragmas; pragmas are in effect
compiler directives,
 and are sometimes called "pragmatic modules" (or even "pragmata"
 if you're a
classicist).

The two statements:

 require SomeModule;
 require "SomeModule.pm";

differ from each other in two ways. In the first case, any double
 colons in the module name, such as
Some::Module, are translated
 into your system's directory separator, usually "/". The second
 case
does not, and would have to be specified literally. The other
 difference is that seeing the first
require clues in the compiler
 that uses of indirect object notation involving "SomeModule", as
 in
$ob = purge SomeModule, are method calls, not function calls.
 (Yes, this really can make a
difference.)

Because the use statement implies a BEGIN block, the importing
 of semantics happens as soon as
the use statement is compiled,
 before the rest of the file is compiled. This is how it is able
 to function
as a pragma mechanism, and also how modules are able to
 declare subroutines that are then visible
as list or unary operators for
 the rest of the current file. This will not work if you use require
 instead
of use. With require you can get into this problem:

 require Cwd;		 # make Cwd:: accessible
 $here = Cwd::getcwd();

 use Cwd;			 # import names from Cwd::
 $here = getcwd();

 require Cwd;	 	 # make Cwd:: accessible
 $here = getcwd(); 		 # oops! no main::getcwd()

In general, use Module () is recommended over require Module,
 because it determines
module availability at compile time, not in the
 middle of your program's execution. An exception would
be if two modules
 each tried to use each other, and each also called a function from
 that other
module. In that case, it's easy to use require instead.

Perl packages may be nested inside other package names, so we can have
 package names
containing ::. But if we used that package name
 directly as a filename it would make for unwieldy or
impossible
 filenames on some systems. Therefore, if a module's name is, say, Text::Soundex,
then its definition is actually found in the library
 file Text/Soundex.pm.

Perl modules always have a .pm file, but there may also be
 dynamically linked executables (often
ending in .so) or autoloaded
 subroutine definitions (often ending in .al) associated with the
 module. If
so, these will be entirely transparent to the user of
 the module. It is the responsibility of the .pm file to
load
 (or arrange to autoload) any additional functionality. For example,
 although the POSIX module
happens to do both dynamic loading and
 autoloading, the user can say just use POSIX to get it all.

Perl version 5.16.2 documentation - perlmod

Page 9http://perldoc.perl.org

Making your module threadsafe
Since 5.6.0, Perl has had support for a new type of threads called
 interpreter threads (ithreads).
These threads can be used explicitly
 and implicitly.

Ithreads work by cloning the data tree so that no data is shared
 between different threads. These
threads can be used by using the threads
 module or by doing fork() on win32 (fake fork() support).
When a
 thread is cloned all Perl data is cloned, however non-Perl data cannot
 be cloned
automatically. Perl after 5.7.2 has support for the CLONE
 special subroutine. In CLONE you can do
whatever
 you need to do,
 like for example handle the cloning of non-Perl data, if necessary. CLONE
will be called once as a class method for every package that has it
 defined (or inherits it). It will be
called in the context of the new thread,
 so all modifications are made in the new area. Currently
CLONE is called with
 no parameters other than the invocant package name, but code should not
assume
 that this will remain unchanged, as it is likely that in future extra parameters
 will be passed in
to give more information about the state of cloning.

If you want to CLONE all objects you will need to keep track of them per
 package. This is simply done
using a hash and Scalar::Util::weaken().

Perl after 5.8.7 has support for the CLONE_SKIP special subroutine.
 Like CLONE, CLONE_SKIP is
called once per package; however, it is
 called just before cloning starts, and in the context of the
parent
 thread. If it returns a true value, then no objects of that class will
 be cloned; or rather, they will
be copied as unblessed, undef values.
 For example: if in the parent there are two references to a
single blessed
 hash, then in the child there will be two references to a single undefined
 scalar value
instead.
 This provides a simple mechanism for making a module threadsafe; just add sub
CLONE_SKIP { 1 } at the top of the class, and DESTROY() will
 now only be called once per object.
Of course, if the child thread needs
 to make use of the objects, then a more sophisticated approach is
needed.

Like CLONE, CLONE_SKIP is currently called with no parameters other
 than the invocant package
name, although that may change. Similarly, to
 allow for future expansion, the return value should be a
single 0 or 1 value.

SEE ALSO
See perlmodlib for general style issues related to building Perl
 modules and classes, as well as
descriptions of the standard library
 and CPAN, Exporter for how Perl's standard import/export
mechanism
 works, perlootut and perlobj for in-depth information on
 creating classes, perlobj for a
hard-core reference document on
 objects, perlsub for an explanation of functions and scoping,
 and
perlxstut and perlguts for more information on writing
 extension modules.

