
Perl version 5.16.2 documentation - perlpodstyle

Page 1http://perldoc.perl.org

NAME
perlpodstyle - Perl POD style guide

DESCRIPTION
These are general guidelines for how to write POD documentation for Perl
 scripts and modules,
based on general guidelines for writing good Unix man
 pages. All of these guidelines are, of course,
optional, but following
 them will make your documentation more consistent with other documentation

on the system.

Here are some simple guidelines for markup; see perlpod for details.

bold (B<>)

NOTE: Use extremely rarely. Do not use bold for emphasis; that's
 what italics are for.
Restrict bold for notices like NOTE: and WARNING:. However, program arguments and
options--but not their
 names!--are written in bold (using B<>) to distinguish the -f

command-line option from the -f filetest operator.

italic (I<>)

Use italic to emphasize text, like this. Function names are
 traditionally written in italics; if you
write a function as function(),
 Pod::Man will take care of this for you. Names of programs,
including the
 name of the program being documented, are conventionally written in italics

(using I<>) wherever they occur in normal roman text.

code (C<>)

Literal code should be in C<>. However metasyntactic placeholders
 should furthermore be
nested in "italics" (actually, oblique) like
 C<I<>>. That way
 C<accept(I<NEWSOCKET>, <
GENERICSOCKET>)>
 renders as accept(NEWSOCKET, GENERICSOCKET).

files (F<>)

Filenames, whether absolute or relative, are specified with the F<>
 markup. This will render as
italics, but has other semantic connotations.

References to other man pages should be in the form "manpage(section)" or
 "L<
manpage(section)>", and Pod::Man will automatically format
 those appropriately. Both will render
as manpage(section). The second
 form, with L<>, is used to request that a POD formatter make a link
to the man page if possible. As an exception, one normally omits the
 section when referring to module
documentation because not all systems
 place it in section 3, although that is the default. You may use
L<Module::Name> for module references instead, but this is
 optional because the translators are
supposed to recognize module
 references in pod, just as they do variable references like $foo and
such.

References to other programs or functions are normally in the form of man
 page references so that
cross-referencing tools can provide the user with
 links and the like. It's possible to overdo this, though,
so be careful not
 to clutter your documentation with too much markup. References to other
 programs
that are not given as man page references should be enclosed in
 italics via I<>.

Major headers should be set out using a =head1 directive, and are
 historically written in the rather
startling ALL UPPER CASE format; this is
 not mandatory, but it's strongly recommended so that
sections have
 consistent naming across different software packages. The translators are
 supposed to
translate all caps into small caps. Minor headers may be
 included using =head2, and are typically in
mixed case.

The standard sections of a manual page are:

NAME

Mandatory section; should be a comma-separated list of programs or
 functions documented
by this POD page, such as:

Perl version 5.16.2 documentation - perlpodstyle

Page 2http://perldoc.perl.org

 foo, bar - programs to do something

Manual page indexers are often extremely picky about the format of this
 section, so don't put
anything in it except this line. Every program or
 function documented by this POD page should
be listed, separated by a
 comma and a space. For a Perl module, just give the module name.
A
 single dash, and only a single dash, should separate the list of programs
 or functions from
the description. Do not use any markup such as
 C<> or I<> anywhere in this line. Functions
should not be
 qualified with () or the like. The description should ideally fit on a
 single line,
even if a man program replaces the dash with a few tabs.

SYNOPSIS

A short usage summary for programs and functions. This section is
 mandatory for section 3
pages. For Perl module documentation, it's
 usually convenient to have the contents of this
section be a verbatim
 block showing some (brief) examples of typical ways the module is
used.

DESCRIPTION

Extended description and discussion of the program or functions, or the
 body of the
documentation for man pages that document something else. If
 particularly long, it's a good
idea to break this up into subsections =head2 directives like:

 =head2 Normal Usage

 =head2 Advanced Features

 =head2 Writing Configuration Files

or whatever is appropriate for your documentation.

For a module, this is generally where the documentation of the interfaces
 provided by the
module goes, usually in the form of a list with an =item for each interface. Depending on how
many interfaces there are,
 you may want to put that documentation in separate METHODS,
FUNCTIONS,
 CLASS METHODS, or INSTANCE METHODS sections instead and save the

DESCRIPTION section for an overview.

OPTIONS

Detailed description of each of the command-line options taken by the
 program. This should
be separate from the description for the use of
 parsers like Pod::Usage. This is normally
presented as a list, with
 each option as a separate =item. The specific option string should be
enclosed in B<>. Any values that the option takes should be
 enclosed in I<>. For example, the
section for the option --section=manext would be introduced with:

 =item B<--section>=I<manext>

Synonymous options (like both the short and long forms) are separated by a
 comma and a
space on the same =item line, or optionally listed as their
 own item with a reference to the
canonical name. For example, since --section can also be written as -s, the above would be:

 =item B<-s> I<manext>, B<--section>=I<manext>

Writing the short option first is recommended because it's easier to read.
 The long option is
long enough to draw the eye to it anyway and the short
 option can otherwise get lost in visual
noise.

RETURN VALUE

What the program or function returns, if successful. This section can be
 omitted for programs
whose precise exit codes aren't important, provided
 they return 0 on success and non-zero on
failure as is standard. It
 should always be present for functions. For modules, it may be useful
to
 summarize return values from the module interface here, or it may be more
 useful to

Perl version 5.16.2 documentation - perlpodstyle

Page 3http://perldoc.perl.org

discuss return values separately in the documentation of each
 function or method the module
provides.

ERRORS

Exceptions, error return codes, exit statuses, and errno settings.
 Typically used for function or
module documentation; program documentation
 uses DIAGNOSTICS instead. The general
rule of thumb is that errors
 printed to STDOUT or STDERR and intended for the end user are

documented in DIAGNOSTICS while errors passed internal to the calling
 program and
intended for other programmers are documented in ERRORS. When
 documenting a function
that sets errno, a full list of the possible errno
 values should be given here.

DIAGNOSTICS

All possible messages the program can print out and what they mean. You
 may wish to follow
the same documentation style as the Perl documentation;
 see perldiag(1) for more details
(and look at the POD source as well).

If applicable, please include details on what the user should do to
 correct the error;
documenting an error as indicating "the input buffer is
 too small" without telling the user how to
increase the size of the input
 buffer (or at least telling them that it isn't possible) aren't very

useful.

EXAMPLES

Give some example uses of the program or function. Don't skimp; users
 often find this the
most useful part of the documentation. The examples
 are generally given as verbatim
paragraphs.

Don't just present an example without explaining what it does. Adding a
 short paragraph
saying what the example will do can increase the value of
 the example immensely.

ENVIRONMENT

Environment variables that the program cares about, normally presented as
 a list using =over
, =item, and =back. For example:

 =over 6

 =item HOME

 Used to determine the user's home directory. F<.foorc> in this
 directory is read for configuration details, if it exists.

 =back

Since environment variables are normally in all uppercase, no additional
 special formatting is
generally needed; they're glaring enough as it is.

FILES

All files used by the program or function, normally presented as a list,
 and what it uses them
for. File names should be enclosed in F<>.
 It's particularly important to document files that will
be potentially
 modified.

CAVEATS

Things to take special care with, sometimes called WARNINGS.

BUGS

Things that are broken or just don't work quite right.

RESTRICTIONS

Bugs you don't plan to fix. :-)

Perl version 5.16.2 documentation - perlpodstyle

Page 4http://perldoc.perl.org

NOTES

Miscellaneous commentary.

AUTHOR

Who wrote it (use AUTHORS for multiple people). It's a good idea to
 include your current
email address (or some email address to which bug
 reports should be sent) or some other
contact information so that users
 have a way of contacting you. Remember that program
documentation tends
 to roam the wild for far longer than you expect and pick a contact
method
 that's likely to last.

HISTORY

Programs derived from other sources sometimes have this. Some people keep
 a modification
log here, but that usually gets long and is normally better
 maintained in a separate file.

COPYRIGHT AND LICENSE

For copyright

 Copyright YEAR(s) YOUR NAME(s)

(No, (C) is not needed. No, "all rights reserved" is not needed.)

For licensing the easiest way is to use the same licensing as Perl itself:

 This library is free software; you may redistribute it and/or
modify
 it under the same terms as Perl itself.

This makes it easy for people to use your module with Perl. Note that
 this licensing example is
neither an endorsement or a requirement, you are
 of course free to choose any licensing.

SEE ALSO

Other man pages to check out, like man(1), man(7), makewhatis(8), or
 catman(8). Normally a
simple list of man pages separated by commas, or a
 paragraph giving the name of a reference
work. Man page references, if
 they use the standard name(section) form, don't have to be
enclosed in
 L<> (although it's recommended), but other things in this section
 probably should
be when appropriate.

If the package has a mailing list, include a URL or subscription
 instructions here.

If the package has a web site, include a URL here.

Documentation of object-oriented libraries or modules may want to use
 CONSTRUCTORS and
METHODS sections, or CLASS METHODS and INSTANCE METHODS
 sections, for detailed
documentation of the parts of the library and save
 the DESCRIPTION section for an overview. Large
modules with a function
 interface may want to use FUNCTIONS for similar reasons. Some people use
OVERVIEW to summarize the description if it's quite long.

Section ordering varies, although NAME must always be the first section
 (you'll break some man page
systems otherwise), and NAME, SYNOPSIS,
 DESCRIPTION, and OPTIONS generally always occur
first and in that order if
 present. In general, SEE ALSO, AUTHOR, and similar material should be
 left
for last. Some systems also move WARNINGS and NOTES to last. The
 order given above should be
reasonable for most purposes.

Some systems use CONFORMING TO to note conformance to relevant standards
 and MT-LEVEL to
note safeness for use in threaded programs or signal
 handlers. These headings are primarily useful
when documenting parts of a
 C library.

Finally, as a general note, try not to use an excessive amount of markup.
 As documented here and in
Pod::Man, you can safely leave Perl variables,
 module names, function names, man page references,
and the like unadorned
 by markup, and the POD translators will figure it all out for you. This
 makes it

Perl version 5.16.2 documentation - perlpodstyle

Page 5http://perldoc.perl.org

much easier to later edit the documentation. Note that many
 existing translators will do the wrong
thing with email addresses when
 wrapped in L<>, so don't do that.

You can check whether your documentation looks right by running

 % pod2text -o something.pod | less

If you have groff installed, you can get an even better look this way:

 % pod2man something.pod | groff -Tps -mandoc > something.ps

Now view the resulting Postscript file to see whether everything checks out.

SEE ALSO
For additional information that may be more accurate for your specific
 system, see either man(5) or
man(7) depending on your system manual
 section numbering conventions.

This documentation is maintained as part of the podlators distribution.
 The current version is always
available from its web site at
 <http://www.eyrie.org/~eagle/software/podlators/>.

AUTHOR
Russ Allbery <rra@stanford.edu>, with large portions of this documentation
 taken from the
documentation of the original pod2man implementation by
 Larry Wall and Tom Christiansen.

COPYRIGHT AND LICENSE
Copyright 1999, 2000, 2001, 2004, 2006, 2008, 2010 Russ Allbery
 <rra@stanford.edu>.

This documentation is free software; you may redistribute it and/or modify
 it under the same terms as
Perl itself.

