
Perl version 5.16.2 documentation - perlpragma

Page 1http://perldoc.perl.org

NAME
perlpragma - how to write a user pragma

DESCRIPTION
A pragma is a module which influences some aspect of the compile time or run
 time behaviour of
Perl, such as strict or warnings. With Perl 5.10 you
 are no longer limited to the built in pragmata;
you can now create user
 pragmata that modify the behaviour of user functions within a lexical scope.

A basic example
For example, say you need to create a class implementing overloaded
 mathematical operators, and
would like to provide your own pragma that
 functions much like use integer; You'd like this code

 use MyMaths;

 my $l = MyMaths->new(1.2);
 my $r = MyMaths->new(3.4);

 print "A: ", $l + $r, "\n";

 use myint;
 print "B: ", $l + $r, "\n";

 {
 no myint;
 print "C: ", $l + $r, "\n";
 }

 print "D: ", $l + $r, "\n";

 no myint;
 print "E: ", $l + $r, "\n";

to give the output

 A: 4.6
 B: 4
 C: 4.6
 D: 4
 E: 4.6

i.e., where use myint; is in effect, addition operations are forced
 to integer, whereas by default they
are not, with the default behaviour being
 restored via no myint;

The minimal implementation of the package MyMaths would be something like
 this:

 package MyMaths;
 use warnings;
 use strict;
 use myint();
 use overload '+' => sub {
 my ($l, $r) = @_;
	 # Pass 1 to check up one call level from here
 if (myint::in_effect(1)) {
 int($$l) + int($$r);

Perl version 5.16.2 documentation - perlpragma

Page 2http://perldoc.perl.org

 } else {
 $$l + $$r;
 }
 };

 sub new {
 my ($class, $value) = @_;
 bless \$value, $class;
 }

 1;

Note how we load the user pragma myint with an empty list () to
 prevent its import being called.

The interaction with the Perl compilation happens inside package myint:

 package myint;

 use strict;
 use warnings;

 sub import {
 $^H{"myint/in_effect"} = 1;
 }

 sub unimport {
 $^H{"myint/in_effect"} = 0;
 }

 sub in_effect {
 my $level = shift // 0;
 my $hinthash = (caller($level))[10];
 return $hinthash->{"myint/in_effect"};
 }

 1;

As pragmata are implemented as modules, like any other module, use myint;
 becomes

 BEGIN {
 require myint;
 myint->import();
 }

and no myint; is

 BEGIN {
 require myint;
 myint->unimport();
 }

Hence the import and unimport routines are called at compile time
 for the user's code.

User pragmata store their state by writing to the magical hash %^H,
 hence these two routines

Perl version 5.16.2 documentation - perlpragma

Page 3http://perldoc.perl.org

manipulate it. The state information in %^H is
 stored in the optree, and can be retrieved read-only at
runtime with caller(),
 at index 10 of the list of returned results. In the example pragma, retrieval
 is
encapsulated into the routine in_effect(), which takes as parameter
 the number of call frames to
go up to find the value of the pragma in the
 user's script. This uses caller() to determine the value
of $^H{"myint/in_effect"} when each line of the user's script was called, and
 therefore provide
the correct semantics in the subroutine implementing the
 overloaded addition.

Key naming
There is only a single %^H, but arbitrarily many modules that want
 to use its scoping semantics. To
avoid stepping on each other's toes,
 they need to be sure to use different keys in the hash. It is
therefore
 conventional for a module to use only keys that begin with the module's
 name (the name of
its main package) and a "/" character. After this
 module-identifying prefix, the rest of the key is entirely
up to the
 module: it may include any characters whatsoever. For example, a module Foo::Bar
should use keys such as Foo::Bar/baz and Foo::Bar/$%/_!.
 Modules following this convention
all play nicely with each other.

The Perl core uses a handful of keys in %^H which do not follow this
 convention, because they
predate it. Keys that follow the convention
 won't conflict with the core's historical keys.

Implementation details
The optree is shared between threads. This means there is a possibility that
 the optree will outlive the
particular thread (and therefore the interpreter
 instance) that created it, so true Perl scalars cannot be
stored in the
 optree. Instead a compact form is used, which can only store values that are
 integers
(signed and unsigned), strings or undef - references and
 floating point values are stringified. If you
need to store multiple values
 or complex structures, you should serialise them, for example with pack
.
 The deletion of a hash key from %^H is recorded, and as ever can be
 distinguished from the
existence of a key with value undef with exists.

Don't attempt to store references to data structures as integers which
 are retrieved via caller and
converted back, as this will not be threadsafe.
 Accesses would be to the structure without locking
(which is not safe for
 Perl's scalars), and either the structure has to leak, or it has to be
 freed when its
creating thread terminates, which may be before the optree
 referencing it is deleted, if other threads
outlive it.

