
Perl version 5.16.2 documentation - perlre

Page 1http://perldoc.perl.org

NAME
perlre - Perl regular expressions

DESCRIPTION
This page describes the syntax of regular expressions in Perl.

If you haven't used regular expressions before, a quick-start
 introduction is available in perlrequick,
and a longer tutorial
 introduction is available in perlretut.

For reference on how regular expressions are used in matching
 operations, plus various examples of
the same, see discussions of m//, s///, qr// and ?? in "Regexp Quote-Like Operators" in perlop.

Modifiers
Matching operations can have various modifiers. Modifiers
 that relate to the interpretation of the
regular expression inside
 are listed below. Modifiers that alter the way a regular expression
 is used by
Perl are detailed in "Regexp Quote-Like Operators" in perlop and "Gory details of parsing quoted
constructs" in perlop.

m

Treat string as multiple lines. That is, change "^" and "$" from matching
 the start or end of the
string to matching the start or end of any
 line anywhere within the string.

s

Treat string as single line. That is, change "." to match any character
 whatsoever, even a
newline, which normally it would not match.

Used together, as /ms, they let the "." match any character whatsoever,
 while still allowing "^"
and "$" to match, respectively, just after
 and just before newlines within the string.

i

Do case-insensitive pattern matching.

If locale matching rules are in effect, the case map is taken from the
 current
 locale for code
points less than 255, and from Unicode rules for larger
 code points. However, matches that
would cross the Unicode
 rules/non-Unicode rules boundary (ords 255/256) will not succeed.
See perllocale.

There are a number of Unicode characters that match multiple characters
 under /i. For
example, LATIN SMALL LIGATURE FI
 should match the sequence fi. Perl is not
 currently
able to do this when the multiple characters are in the pattern and
 are split between
groupings, or when one or more are quantified. Thus

 "\N{LATIN SMALL LIGATURE FI}" =~ /fi/i; # Matches
 "\N{LATIN SMALL LIGATURE FI}" =~ /[fi][fi]/i; # Doesn't match!
 "\N{LATIN SMALL LIGATURE FI}" =~ /fi*/i; # Doesn't match!

 # The below doesn't match, and it isn't clear what $1 and $2 would
 # be even if it did!!
 "\N{LATIN SMALL LIGATURE FI}" =~ /(f)(i)/i; # Doesn't match!

Perl doesn't match multiple characters in an inverted bracketed
 character class, which
otherwise could be highly confusing. See "Negation" in perlrecharclass.

Another bug involves character classes that match both a sequence of
 multiple characters,
and an initial sub-string of that sequence. For
 example,

 /[s\xDF]/i

should match both a single and a double "s", since \xDF (on ASCII
 platforms) matches "ss".
However, this bug
 ([perl #89774])
 causes it to only match a single "s", even if the final larger

Perl version 5.16.2 documentation - perlre

Page 2http://perldoc.perl.org

match
 fails, and matching the double "ss" would have succeeded.

Also, Perl matching doesn't fully conform to the current Unicode /i
 recommendations, which
ask that the matching be made upon the NFD
 (Normalization Form Decomposed) of the text.
However, Unicode is
 in the process of reconsidering and revising their recommendations.

x

Extend your pattern's legibility by permitting whitespace and comments.
 Details in /x

p

Preserve the string matched such that ${^PREMATCH}, ${^MATCH}, and
 ${^POSTMATCH}
are available for use after matching.

g and c

Global matching, and keep the Current position after failed matching.
 Unlike i, m, s and x,
these two flags affect the way the regex is used
 rather than the regex itself. See "Using
regular expressions in Perl" in perlretut for further explanation
 of the g and c modifiers.

a, d, l and u

These modifiers, all new in 5.14, affect which character-set semantics
 (Unicode, etc.) are
used, as described below in Character set modifiers.

Regular expression modifiers are usually written in documentation
 as e.g., "the /x modifier", even
though the delimiter
 in question might not really be a slash. The modifiers /imsxadlup
 may also be
embedded within the regular expression itself using
 the (?...) construct, see Extended Patterns
below.

/x

/x tells
 the regular expression parser to ignore most whitespace that is neither
 backslashed nor
within a character class. You can use this to break up
 your regular expression into (slightly) more
readable parts. The #
 character is also treated as a metacharacter introducing a comment,
 just as in
ordinary Perl code. This also means that if you want real
 whitespace or # characters in the pattern
(outside a character
 class, where they are unaffected by /x), then you'll either have to
 escape them
(using backslashes or \Q...\E) or encode them using octal,
 hex, or \N{} escapes. Taken together,
these features go a long way towards
 making Perl's regular expressions more readable. Note that you
have to
 be careful not to include the pattern delimiter in the comment--perl has
 no way of knowing you
did not intend to close the pattern early. See
 the C-comment deletion code in perlop. Also note that
anything inside
 a \Q...\E stays unaffected by /x. And note that /x doesn't affect
 space
interpretation within a single multi-character construct. For
 example in \x{...}, regardless of the /x
modifier, there can be no
 spaces. Same for a quantifier such as {3} or {5,}. Similarly, (?:...)
can't have a space between the ? and :,
 but can between the (and ?. Within any delimiters for such
a
 construct, allowed spaces are not affected by /x, and depend on the
 construct. For example,
\x{...} can't have spaces because hexadecimal
 numbers don't have spaces in them. But, Unicode
properties can have spaces, so
 in \p{...} there can be spaces that follow the Unicode rules, for
which see "Properties accessible through \p{} and \P{}" in perluniprops.

Character set modifiers

/d, /u, /a, and /l, available starting in 5.14, are called
 the character set modifiers; they affect the
character set semantics
 used for the regular expression.

The /d, /u, and /l modifiers are not likely to be of much use
 to you, and so you need not worry
about them very much. They exist for
 Perl's internal use, so that complex regular expression data
structures
 can be automatically serialized and later exactly reconstituted,
 including all their nuances.
But, since Perl can't keep a secret, and
 there may be rare instances where they are useful, they are
documented
 here.

The /a modifier, on the other hand, may be useful. Its purpose is to
 allow code that is to work mostly
on ASCII data to not have to concern
 itself with Unicode.

Perl version 5.16.2 documentation - perlre

Page 3http://perldoc.perl.org

Briefly, /l sets the character set to that of whatever Locale is in
 effect at the time of the execution of
the pattern match.

/u sets the character set to Unicode.

/a also sets the character set to Unicode, BUT adds several
 restrictions for ASCII-safe matching.

/d is the old, problematic, pre-5.14 Default character set
 behavior. Its only use is to force that old
behavior.

At any given time, exactly one of these modifiers is in effect. Their
 existence allows Perl to keep the
originally compiled behavior of a
 regular expression, regardless of what rules are in effect when it is

actually executed. And if it is interpolated into a larger regex, the
 original's rules continue to apply to it,
and only it.

The /l and /u modifiers are automatically selected for
 regular expressions compiled within the scope
of various pragmas,
 and we recommend that in general, you use those pragmas instead of
 specifying
these modifiers explicitly. For one thing, the modifiers
 affect only pattern matching, and do not extend
to even any replacement
 done, whereas using the pragmas give consistent results for all
 appropriate
operations within their scopes. For example,

 s/foo/\Ubar/il

will match "foo" using the locale's rules for case-insensitive matching,
 but the /l does not affect how
the \U operates. Most likely you
 want both of them to use locale rules. To do this, instead compile the
regular expression within the scope of use locale. This both
 implicitly adds the /l and applies
locale rules to the \U. The
 lesson is to use locale and not /l explicitly.

Similarly, it would be better to use use feature 'unicode_strings'
 instead of,

 s/foo/\Lbar/iu

to get Unicode rules, as the \L in the former (but not necessarily
 the latter) would also use Unicode
rules.

More detail on each of the modifiers follows. Most likely you don't
 need to know this detail for /l, /u,
and /d, and can skip ahead
 to /a.

/l

means to use the current locale's rules (see perllocale) when pattern
 matching. For example, \w will
match the "word" characters of that
 locale, and "/i" case-insensitive matching will match according
to
 the locale's case folding rules. The locale used will be the one in
 effect at the time of execution of
the pattern match. This may not be
 the same as the compilation-time locale, and can differ from one
match
 to another if there is an intervening call of the setlocale() function.

Perl only supports single-byte locales. This means that code points
 above 255 are treated as Unicode
no matter what locale is in effect.
 Under Unicode rules, there are a few case-insensitive matches that
cross
 the 255/256 boundary. These are disallowed under /l. For example,
 0xFF (on ASCII platforms)
does not caselessly match the character at
 0x178, LATIN CAPITAL LETTER Y WITH DIAERESIS,
because 0xFF may not be LATIN SMALL LETTER Y WITH DIAERESIS in the current locale, and
Perl
 has no way of knowing if that character even exists in the locale, much
 less what code point it is.

This modifier may be specified to be the default by use locale, but
 see Which character set
modifier is in effect?.

/u

means to use Unicode rules when pattern matching. On ASCII platforms,
 this means that the code
points between 128 and 255 take on their
 Latin-1 (ISO-8859-1) meanings (which are the same as
Unicode's).
 (Otherwise Perl considers their meanings to be undefined.) Thus,
 under this modifier, the

Perl version 5.16.2 documentation - perlre

Page 4http://perldoc.perl.org

ASCII platform effectively becomes a Unicode
 platform; and hence, for example, \w will match any of
the more than
 100_000 word characters in Unicode.

Unlike most locales, which are specific to a language and country pair,
 Unicode classifies all the
characters that are letters somewhere in
 the world as \w. For example, your locale might not think
that LATIN SMALL
 LETTER ETH is a letter (unless you happen to speak Icelandic), but
 Unicode
does. Similarly, all the characters that are decimal digits
 somewhere in the world will match \d; this is
hundreds, not 10,
 possible matches. And some of those digits look like some of the 10
 ASCII digits,
but mean a different number, so a human could easily think
 a number is a different quantity than it
really is. For example, BENGALI DIGIT FOUR (U+09EA) looks very much like an ASCII DIGIT
EIGHT (U+0038). And, \d+, may match strings of digits
 that are a mixture from different writing
systems, creating a security
 issue. "num()" in Unicode::UCD can be used to sort
 this out. Or the /a
modifier can be used to force \d to match
 just the ASCII 0 through 9.

Also, under this modifier, case-insensitive matching works on the full
 set of Unicode
 characters. The
KELVIN SIGN, for example matches the letters "k" and
 "K"; and LATIN SMALL LIGATURE FF
matches the sequence "ff", which,
 if you're not prepared, might make it look like a hexadecimal
constant,
 presenting another potential security issue. See http://unicode.org/reports/tr36 for a detailed
discussion of Unicode
 security issues.

On the EBCDIC platforms that Perl handles, the native character set is
 equivalent to Latin-1. Thus this
modifier changes behavior only when
 the "/i" modifier is also specified, and it turns out it affects
only
 two characters, giving them full Unicode semantics: the MICRO SIGN
 will match the Greek
capital and small letters MU, otherwise not; and
 the LATIN CAPITAL LETTER SHARP S will match
any of SS, Ss, sS, and ss, otherwise not.

This modifier may be specified to be the default by use feature
 'unicode_strings, use
locale ':not_characters', or use 5.012 (or higher),
 but see Which character set modifier is
in effect?.

/d

This modifier means to use the "Default" native rules of the platform
 except when there is cause to
use Unicode rules instead, as follows:

1 the target string is encoded in UTF-8; or

2 the pattern is encoded in UTF-8; or

3 the pattern explicitly mentions a code point that is above 255 (say by \x{100}); or

4 the pattern uses a Unicode name (\N{...}); or

5 the pattern uses a Unicode property (\p{...})

Another mnemonic for this modifier is "Depends", as the rules actually
 used depend on various things,
and as a result you can get unexpected
 results. See "The "Unicode Bug"" in perlunicode. The
Unicode Bug has
 become rather infamous, leading to yet another (printable) name for this
 modifier,
"Dodgy".

On ASCII platforms, the native rules are ASCII, and on EBCDIC platforms
 (at least the ones that Perl
handles), they are Latin-1.

Here are some examples of how that works on an ASCII platform:

 $str = "\xDF"; # $str is not in UTF-8 format.
 $str =~ /^\w/; # No match, as $str isn't in UTF-8 format.
 $str .= "\x{0e0b}"; # Now $str is in UTF-8 format.
 $str =~ /^\w/; # Match! $str is now in UTF-8 format.
 chop $str;
 $str =~ /^\w/; # Still a match! $str remains in UTF-8 format.

Perl version 5.16.2 documentation - perlre

Page 5http://perldoc.perl.org

This modifier is automatically selected by default when none of the
 others are, so yet another name
for it is "Default".

Because of the unexpected behaviors associated with this modifier, you
 probably should only use it to
maintain weird backward compatibilities.

/a (and /aa)

This modifier stands for ASCII-restrict (or ASCII-safe). This modifier,
 unlike the others, may be
doubled-up to increase its effect.

When it appears singly, it causes the sequences \d, \s, \w, and
 the Posix character classes to
match only in the ASCII range. They thus
 revert to their pre-5.6, pre-Unicode meanings. Under /a, \d
always means precisely the digits "0" to "9"; \s means the five
 characters [\f\n\r\t]; \w
means the 63 characters [A-Za-z0-9_]; and likewise, all the Posix classes such as [[:print:]]
match only the appropriate ASCII-range characters.

This modifier is useful for people who only incidentally use Unicode,
 and who do not wish to be
burdened with its complexities and security
 concerns.

With /a, one can write \d with confidence that it will only match
 ASCII characters, and should the
need arise to match beyond ASCII, you
 can instead use \p{Digit} (or \p{Word} for \w). There are
similar \p{...} constructs that can match beyond ASCII both white
 space (see "Whitespace" in
perlrecharclass), and Posix classes (see "POSIX Character Classes" in perlrecharclass). Thus, this
modifier
 doesn't mean you can't use Unicode, it means that to get Unicode
 matching you must
explicitly use a construct (\p{}, \P{}) that
 signals Unicode.

As you would expect, this modifier causes, for example, \D to mean
 the same thing as [^0-9]; in
fact, all non-ASCII characters match \D, \S, and \W. \b still means to match at the boundary
 between
\w and \W, using the /a definitions of them (similarly
 for \B).

Otherwise, /a behaves like the /u modifier, in that
 case-insensitive matching uses Unicode
semantics; for example, "k" will
 match the Unicode \N{KELVIN SIGN} under /i matching, and code
points in the Latin1 range, above ASCII will have Unicode rules when it
 comes to case-insensitive
matching.

To forbid ASCII/non-ASCII matches (like "k" with \N{KELVIN SIGN}),
 specify the "a" twice, for
example /aai or /aia. (The first
 occurrence of "a" restricts the \d, etc., and the second occurrence

adds the /i restrictions.) But, note that code points outside the
 ASCII range will use Unicode rules for
/i matching, so the modifier
 doesn't really restrict things to just ASCII; it just forbids the
 intermixing of
ASCII and non-ASCII.

To summarize, this modifier provides protection for applications that
 don't wish to be exposed to all of
Unicode. Specifying it twice
 gives added protection.

This modifier may be specified to be the default by use re '/a'
 or use re '/aa'. If you do so,
you may actually have occasion to use
 the /u modifier explictly if there are a few regular expressions

where you do want full Unicode rules (but even here, it's best if
 everything were under feature
"unicode_strings", along with the use re '/aa'). Also see Which character set modifier is in
effect?.

Which character set modifier is in effect?

Which of these modifiers is in effect at any given point in a regular
 expression depends on a fairly
complex set of interactions. These have
 been designed so that in general you don't have to worry
about it, but
 this section gives the gory details. As
 explained below in Extended Patterns it is possible
to explicitly
 specify modifiers that apply only to portions of a regular expression.
 The innermost always
has priority over any outer ones, and one applying
 to the whole expression has priority over any of the
default settings that are
 described in the remainder of this section.

The use re '/foo' pragma can be used to set
 default modifiers (including these) for regular

Perl version 5.16.2 documentation - perlre

Page 6http://perldoc.perl.org

expressions compiled
 within its scope. This pragma has precedence over the other pragmas
 listed
below that also change the defaults.

Otherwise, use locale sets the default modifier to /l;
 and use feature 'unicode_strings,
or use 5.012 (or higher) set the default to /u when not in the same scope as either use locale
 or
use bytes.
 (use locale ':not_characters' also
 sets the default to /u, overriding any plain
use locale.)
 Unlike the mechanisms mentioned above, these
 affect operations besides regular
expressions pattern matching, and so
 give more consistent results with other operators, including
using \U, \l, etc. in substitution replacements.

If none of the above apply, for backwards compatibility reasons, the /d modifier is the one in effect by
default. As this can lead to
 unexpected results, it is best to specify which other rule set should be

used.

Character set modifier behavior prior to Perl 5.14

Prior to 5.14, there were no explicit modifiers, but /l was implied
 for regexes compiled within the
scope of use locale, and /d was
 implied otherwise. However, interpolating a regex into a larger
regex
 would ignore the original compilation in favor of whatever was in effect
 at the time of the second
compilation. There were a number of
 inconsistencies (bugs) with the /d modifier, where Unicode
rules
 would be used when inappropriate, and vice versa. \p{} did not imply
 Unicode rules, and
neither did all occurrences of \N{}, until 5.12.

Regular Expressions
Metacharacters

The patterns used in Perl pattern matching evolved from those supplied in
 the Version 8 regex
routines. (The routines are derived
 (distantly) from Henry Spencer's freely redistributable
reimplementation
 of the V8 routines.) See Version 8 Regular Expressions for
 details.

In particular the following metacharacters have their standard egrep-ish
 meanings:

 \ Quote the next metacharacter
 ^ Match the beginning of the line
 . Match any character (except newline)
 $ Match the end of the line (or before newline at the end)
 | Alternation
 () Grouping
 [] Bracketed Character class

By default, the "^" character is guaranteed to match only the
 beginning of the string, the "$" character
only the end (or before the
 newline at the end), and Perl does certain optimizations with the

assumption that the string contains only one line. Embedded newlines
 will not be matched by "^" or
"$". You may, however, wish to treat a
 string as a multi-line buffer, such that the "^" will match after
any
 newline within the string (except if the newline is the last character in
 the string), and "$" will
match before any newline. At the
 cost of a little more overhead, you can do this by using the /m
modifier
 on the pattern match operator. (Older programs did this by setting $*,
 but this option was
removed in perl 5.9.)

To simplify multi-line substitutions, the "." character never matches a
 newline unless you use the /s
modifier, which in effect tells Perl to pretend
 the string is a single line--even if it isn't.

Quantifiers

The following standard quantifiers are recognized:

 * Match 0 or more times
 + Match 1 or more times
 ? Match 1 or 0 times
 {n} Match exactly n times

Perl version 5.16.2 documentation - perlre

Page 7http://perldoc.perl.org

 {n,} Match at least n times
 {n,m} Match at least n but not more than m times

(If a curly bracket occurs in any other context and does not form part of
 a backslashed sequence like
\x{...}, it is treated
 as a regular character. In particular, the lower quantifier bound
 is not optional.
However, in Perl v5.18, it is planned to issue a
 deprecation warning for all such occurrences, and in
Perl v5.20 to
 require literal uses of a curly bracket to be escaped, say by preceding
 them with a
backslash or enclosing them within square brackets, ("\{"
 or "[{]"). This change will allow for
future syntax extensions (like
 making the lower bound of a quantifier optional), and better error

checking of quantifiers. Now, a typo in a quantifier silently causes
 it to be treated as the literal
characters. For example,

 /o{4,3}/

looks like a quantifier that matches 0 times, since 4 is greater than 3,
 but it really means to match the
sequence of six characters "o { 4 , 3 }".)

The "*" quantifier is equivalent to {0,}, the "+"
 quantifier to {1,}, and the "?" quantifier to {0,1}. n
and m are limited
 to non-negative integral values less than a preset limit defined when perl is built.

This is usually 32766 on the most common platforms. The actual limit can
 be seen in the error
message generated by code such as this:

 $_ **= $_ , / {$_} / for 2 .. 42;

By default, a quantified subpattern is "greedy", that is, it will match as
 many times as possible (given a
particular starting location) while still
 allowing the rest of the pattern to match. If you want it to match
the
 minimum number of times possible, follow the quantifier with a "?". Note
 that the meanings don't
change, just the "greediness":

 *? Match 0 or more times, not greedily
 +? Match 1 or more times, not greedily
 ?? Match 0 or 1 time, not greedily
 {n}? Match exactly n times, not greedily (redundant)
 {n,}? Match at least n times, not greedily
 {n,m}? Match at least n but not more than m times, not greedily

By default, when a quantified subpattern does not allow the rest of the
 overall pattern to match, Perl
will backtrack. However, this behaviour is
 sometimes undesirable. Thus Perl provides the
"possessive" quantifier form
 as well.

 *+ Match 0 or more times and give nothing back
 ++ Match 1 or more times and give nothing back
 ?+ Match 0 or 1 time and give nothing back
 {n}+ Match exactly n times and give nothing back (redundant)
 {n,}+ Match at least n times and give nothing back
 {n,m}+ Match at least n but not more than m times and give nothing back

For instance,

 'aaaa' =~ /a++a/

will never match, as the a++ will gobble up all the a's in the
 string and won't leave any for the
remaining part of the pattern. This
 feature can be extremely useful to give perl hints about where it

shouldn't backtrack. For instance, the typical "match a double-quoted
 string" problem can be most
efficiently performed when written as:

Perl version 5.16.2 documentation - perlre

Page 8http://perldoc.perl.org

 /"(?:[^"\\]++|\\.)*+"/

as we know that if the final quote does not match, backtracking will not
 help. See the independent
subexpression (?>pattern) for more details;
 possessive quantifiers are just syntactic sugar for that
construct. For
 instance the above example could also be written as follows:

 /"(?>(?:(?>[^"\\]+)|\\.)*)"/

Escape sequences

Because patterns are processed as double-quoted strings, the following
 also work:

 \t tab (HT, TAB)
 \n newline (LF, NL)
 \r return (CR)
 \f form feed (FF)
 \a alarm (bell) (BEL)
 \e escape (think troff) (ESC)
 \cK control char (example: VT)
 \x{}, \x00 character whose ordinal is the given hexadecimal number
 \N{name} named Unicode character or character sequence
 \N{U+263D} Unicode character (example: FIRST QUARTER MOON)
 \o{}, \000 character whose ordinal is the given octal number
 \l lowercase next char (think vi)
 \u uppercase next char (think vi)
 \L lowercase till \E (think vi)
 \U uppercase till \E (think vi)
 \Q quote (disable) pattern metacharacters till \E
 \E end either case modification or quoted section, think vi

Details are in "Quote and Quote-like Operators" in perlop.

Character Classes and other Special Escapes

In addition, Perl defines the following:

 Sequence Note Description
 [...] [1] Match a character according to the rules of the
 bracketed character class defined by the "...".
 Example: [a-z] matches "a" or "b" or "c" ... or "z"
 [[:...:]] [2] Match a character according to the rules of the POSIX
 character class "..." within the outer bracketed
 character class. Example: [[:upper:]] matches any
 uppercase character.
 \w [3] Match a "word" character (alphanumeric plus "_", plus
 other connector punctuation chars plus Unicode
 marks)
 \W [3] Match a non-"word" character
 \s [3] Match a whitespace character
 \S [3] Match a non-whitespace character
 \d [3] Match a decimal digit character
 \D [3] Match a non-digit character
 \pP [3] Match P, named property. Use \p{Prop} for longer names
 \PP [3] Match non-P
 \X [4] Match Unicode "eXtended grapheme cluster"
 \C Match a single C-language char (octet) even if that is
 part of a larger UTF-8 character. Thus it breaks up
 characters into their UTF-8 bytes, so you may end up

Perl version 5.16.2 documentation - perlre

Page 9http://perldoc.perl.org

 with malformed pieces of UTF-8. Unsupported in
 lookbehind.
 \1 [5] Backreference to a specific capture group or buffer.
 '1' may actually be any positive integer.
 \g1 [5] Backreference to a specific or previous group,
 \g{-1} [5] The number may be negative indicating a relative
 previous group and may optionally be wrapped in
 curly brackets for safer parsing.
 \g{name} [5] Named backreference
 \k<name> [5] Named backreference
 \K [6] Keep the stuff left of the \K, don't include it in $&
 \N [7] Any character but \n (experimental). Not affected by
 /s modifier
 \v [3] Vertical whitespace
 \V [3] Not vertical whitespace
 \h [3] Horizontal whitespace
 \H [3] Not horizontal whitespace
 \R [4] Linebreak

[1]

See "Bracketed Character Classes" in perlrecharclass for details.

[2]

See "POSIX Character Classes" in perlrecharclass for details.

[3]

See "Backslash sequences" in perlrecharclass for details.

[4]

See "Misc" in perlrebackslash for details.

[5]

See Capture groups below for details.

[6]

See Extended Patterns below for details.

[7]

Note that \N has two meanings. When of the form \N{NAME}, it matches the
 character or
character sequence whose name is NAME; and similarly
 when of the form \N{U+hex}, it
matches the character whose Unicode
 code point is hex. Otherwise it matches any character
but \n.

Assertions

Perl defines the following zero-width assertions:

 \b Match a word boundary
 \B Match except at a word boundary
 \A Match only at beginning of string
 \Z Match only at end of string, or before newline at the end
 \z Match only at end of string
 \G Match only at pos() (e.g. at the end-of-match position
 of prior m//g)

A word boundary (\b) is a spot between two characters
 that has a \w on one side of it and a \W on

Perl version 5.16.2 documentation - perlre

Page 10http://perldoc.perl.org

the other side
 of it (in either order), counting the imaginary characters off the
 beginning and end of the
string as matching a \W. (Within
 character classes \b represents backspace rather than a word

boundary, just as it normally does in any double-quoted string.)
 The \A and \Z are just like "^" and
"$", except that they
 won't match multiple times when the /m modifier is used, while
 "^" and "$" will
match at every internal line boundary. To match
 the actual end of the string and not ignore an optional
trailing
 newline, use \z.

The \G assertion can be used to chain global matches (using m//g), as described in "Regexp
Quote-Like Operators" in perlop.
 It is also useful when writing lex-like scanners, when you have

several patterns that you want to match against consequent substrings
 of your string; see the
previous reference. The actual location
 where \G will match can also be influenced by using pos()
as
 an lvalue: see "pos" in perlfunc. Note that the rule for zero-length
 matches (see Repeated Patterns
Matching a Zero-length Substring)
 is modified somewhat, in that contents to the left of \G are
 not
counted when determining the length of the match. Thus the following
 will not match forever:

 my $string = 'ABC';
 pos($string) = 1;
 while ($string =~ /(.\G)/g) {
 print $1;
 }

It will print 'A' and then terminate, as it considers the match to
 be zero-width, and thus will not match
at the same position twice in a
 row.

It is worth noting that \G improperly used can result in an infinite
 loop. Take care when using patterns
that include \G in an alternation.

Capture groups

The bracketing construct (...) creates capture groups (also referred to as
 capture buffers). To
refer to the current contents of a group later on, within
 the same pattern, use \g1 (or \g{1}) for the
first, \g2 (or \g{2})
 for the second, and so on.
 This is called a backreference.
 There is
no limit to the number of captured substrings that you may use.
 Groups are numbered with the
leftmost open parenthesis being number 1, etc. If
 a group did not match, the associated
backreference won't match either. (This
 can happen if the group is optional, or in a different branch of
an
 alternation.)
 You can omit the "g", and write "\1", etc, but there are some issues with
 this form,
described below.

You can also refer to capture groups relatively, by using a negative number, so
 that \g-1 and
\g{-1} both refer to the immediately preceding capture
 group, and \g-2 and \g{-2} both refer to
the group before it. For
 example:

 /
 (Y) # group 1
 (# group 2
 (X) # group 3
 \g{-1} # backref to group 3
 \g{-3} # backref to group 1
)
 /x

would match the same as /(Y) ((X) \g3 \g1)/x. This allows you to
 interpolate regexes into
larger regexes and not have to worry about the
 capture groups being renumbered.

You can dispense with numbers altogether and create named capture groups.
 The notation is (?<
name>...) to declare and \g{name} to
 reference. (To be compatible with .Net regular expressions,
\g{name} may
 also be written as \k{name}, \k<name> or \k'name'.) name must not begin with a
number, nor contain hyphens.
 When different groups within the same pattern have the same name,

Perl version 5.16.2 documentation - perlre

Page 11http://perldoc.perl.org

any reference
 to that name assumes the leftmost defined group. Named groups count in
 absolute and
relative numbering, and so can also be referred to by those
 numbers.
 (It's possible to do things with
named capture groups that would otherwise
 require (??{}).)

Capture group contents are dynamically scoped and available to you outside the
 pattern until the end
of the enclosing block or until the next successful
 match, whichever comes first. (See "Compound
Statements" in perlsyn.)
 You can refer to them by absolute number (using "$1" instead of "\g1",

etc); or by name via the %+ hash, using "$+{name}".

Braces are required in referring to named capture groups, but are optional for
 absolute or relative
numbered ones. Braces are safer when creating a regex by
 concatenating smaller strings. For
example if you have qr/ab/, and $a
 contained "\g1", and $b contained "37", you would get
/\g137/ which
 is probably not what you intended.

The \g and \k notations were introduced in Perl 5.10.0. Prior to that
 there were no named nor
relative numbered capture groups. Absolute numbered
 groups were referred to using \1, \2, etc.,
and this notation is still
 accepted (and likely always will be). But it leads to some ambiguities if
 there
are more than 9 capture groups, as \10 could mean either the tenth
 capture group, or the character
whose ordinal in octal is 010 (a backspace in
 ASCII). Perl resolves this ambiguity by interpreting \10
as a backreference
 only if at least 10 left parentheses have opened before it. Likewise \11 is
 a
backreference only if at least 11 left parentheses have opened before it.
 And so on. \1 through \9
are always interpreted as backreferences.
 There are several examples below that illustrate these
perils. You can avoid
 the ambiguity by always using \g{} or \g if you mean capturing groups;
 and for
octal constants always using \o{}, or for \077 and below, using 3
 digits padded with leading zeros,
since a leading zero implies an octal
 constant.

The \digit notation also works in certain circumstances outside
 the pattern. See Warning on \1
Instead of $1 below for details.

Examples:

 s/^([^]*) *([^]*)/$2 $1/; # swap first two words

 /(.)\g1/ # find first doubled char
 and print "'$1' is the first doubled character\n";

 /(?<char>.)\k<char>/ # ... a different way
 and print "'$+{char}' is the first doubled character\n";

 /(?'char'.)\g1/ # ... mix and match
 and print "'$1' is the first doubled character\n";

 if (/Time: (..):(..):(..)/) { # parse out values
 $hours = $1;
 $minutes = $2;
 $seconds = $3;
 }

 /(.)(.)(.)(.)(.)(.)(.)(.)(.)\g10/ # \g10 is a backreference
 /(.)(.)(.)(.)(.)(.)(.)(.)(.)\10/ # \10 is octal
 /((.)(.)(.)(.)(.)(.)(.)(.)(.))\10/ # \10 is a backreference
 /((.)(.)(.)(.)(.)(.)(.)(.)(.))\010/ # \010 is octal

 $a = '(.)\1'; # Creates problems when concatenated.
 $b = '(.)\g{1}'; # Avoids the problems.
 "aa" =~ /${a}/; # True

Perl version 5.16.2 documentation - perlre

Page 12http://perldoc.perl.org

 "aa" =~ /${b}/; # True
 "aa0" =~ /${a}0/; # False!
 "aa0" =~ /${b}0/; # True
 "aa\x08" =~ /${a}0/; # True!
 "aa\x08" =~ /${b}0/; # False

Several special variables also refer back to portions of the previous
 match. $+ returns whatever the
last bracket match matched. $& returns the entire matched string. (At one point $0 did
 also, but now it
returns the name of the program.) $` returns
 everything before the matched string. $' returns
everything
 after the matched string. And $^N contains whatever was matched by
 the most-recently
closed group (submatch). $^N can be used in
 extended patterns (see below), for example to assign a
submatch to a
 variable.

These special variables, like the %+ hash and the numbered match variables
 ($1, $2, $3, etc.) are
dynamically scoped
 until the end of the enclosing block or until the next successful
 match, whichever
comes first. (See "Compound Statements" in perlsyn.)

NOTE: Failed matches in Perl do not reset the match variables,
 which makes it easier to write code
that tests for a series of more
 specific cases and remembers the best match.

WARNING: Once Perl sees that you need one of $&, $`, or $' anywhere in the program, it has to
provide them for every
 pattern match. This may substantially slow your program. Perl
 uses the same
mechanism to produce $1, $2, etc, so you also pay a
 price for each pattern that contains capturing
parentheses. (To
 avoid this cost while retaining the grouping behaviour, use the
 extended regular
expression (?: ...) instead.) But if you never
 use $&, $` or $', then patterns without capturing

parentheses will not be penalized. So avoid $&, $', and $`
 if you can, but if you can't (and some
algorithms really appreciate
 them), once you've used them once, use them at will, because you've

already paid the price. As of 5.005, $& is not so costly as the
 other two.

As a workaround for this problem, Perl 5.10.0 introduces ${^PREMATCH}, ${^MATCH} and
${^POSTMATCH}, which are equivalent to $`, $&
 and $', except that they are only guaranteed to be
defined after a
 successful match that was executed with the /p (preserve) modifier.
 The use of these
variables incurs no global performance penalty, unlike
 their punctuation char equivalents, however at
the trade-off that you
 have to tell perl when you want to use them.

Quoting metacharacters
Backslashed metacharacters in Perl are alphanumeric, such as \b, \w, \n. Unlike some other regular
expression languages, there
 are no backslashed symbols that aren't alphanumeric. So anything
 that
looks like \\, \(, \), \<, \>, \{, or \} is always
 interpreted as a literal character, not a metacharacter. This
was
 once used in a common idiom to disable or quote the special meanings
 of regular expression
metacharacters in a string that you want to
 use for a pattern. Simply quote all non-"word" characters:

 $pattern =~ s/(\W)/\\$1/g;

(If use locale is set, then this depends on the current locale.)
 Today it is more common to use the
quotemeta() function or the \Q
 metaquoting escape sequence to disable all metacharacters' special

meanings like this:

 /$unquoted\Q$quoted\E$unquoted/

Beware that if you put literal backslashes (those not inside
 interpolated variables) between \Q and \E,
double-quotish
 backslash interpolation may lead to confusing results. If you need to use literal
backslashes within \Q...\E,
 consult "Gory details of parsing quoted constructs" in perlop.

quotemeta() and \Q are fully described in "quotemeta" in perlfunc.

Perl version 5.16.2 documentation - perlre

Page 13http://perldoc.perl.org

Extended Patterns
Perl also defines a consistent extension syntax for features not
 found in standard tools like awk and
lex. The syntax for most of these is a
 pair of parentheses with a question mark as the first thing within
the parentheses. The character after the question mark indicates
 the extension.

The stability of these extensions varies widely. Some have been
 part of the core language for many
years. Others are experimental
 and may change without warning or be completely removed. Check

the documentation on an individual feature to verify its current
 status.

A question mark was chosen for this and for the minimal-matching
 construct because 1) question
marks are rare in older regular
 expressions, and 2) whenever you see one, you should stop and

"question" exactly what is going on. That's psychology....

(?#text)

A comment. The text is ignored. If the /x modifier enables
 whitespace formatting, a simple #
will suffice. Note that Perl closes
 the comment as soon as it sees a), so there is no way to
put a literal) in the comment.

(?adlupimsx-imsx)

(?^alupimsx)

One or more embedded pattern-match modifiers, to be turned on (or
 turned off, if preceded by
-) for the remainder of the pattern or
 the remainder of the enclosing pattern group (if any).

This is particularly useful for dynamic patterns, such as those read in from a
 configuration file,
taken from an argument, or specified in a table
 somewhere. Consider the case where some
patterns want to be
 case-sensitive and some do not: The case-insensitive ones merely need
to
 include (?i) at the front of the pattern. For example:

 $pattern = "foobar";
 if (/$pattern/i) { }

 # more flexible:

 $pattern = "(?i)foobar";
 if (/$pattern/) { }

These modifiers are restored at the end of the enclosing group. For example,

 ((?i) blah) \s+ \g1

will match blah in any case, some spaces, and an exact (including the case!)
 repetition of the
previous word, assuming the /x modifier, and no /i
 modifier outside this group.

These modifiers do not carry over into named subpatterns called in the
 enclosing group. In
other words, a pattern such as ((?i)(?&NAME)) does not
 change the case-sensitivity of the
"NAME" pattern.

Any of these modifiers can be set to apply globally to all regular
 expressions compiled within
the scope of a use re. See "'/flags' mode" in re.

Starting in Perl 5.14, a "^" (caret or circumflex accent) immediately
 after the "?" is a
shorthand equivalent to d-imsx. Flags (except "d") may follow the caret to override it.
 But a
minus sign is not legal with it.

Note that the a, d, l, p, and u modifiers are special in
 that they can only be enabled, not
disabled, and the a, d, l, and u modifiers are mutually exclusive: specifying one de-specifies
the
 others, and a maximum of one (or two a's) may appear in the
 construct. Thus, for

example, (?-p) will warn when compiled under use warnings; (?-d:...) and
(?dl:...) are fatal errors.

Note also that the p modifier is special in that its presence
 anywhere in a pattern has a global

Perl version 5.16.2 documentation - perlre

Page 14http://perldoc.perl.org

effect.(?:pattern)

(?adluimsx-imsx:pattern)

(?^aluimsx:pattern)

This is for clustering, not capturing; it groups subexpressions like
 "()", but doesn't make
backreferences as "()" does. So

 @fields = split(/\b(?:a|b|c)\b/)

is like

 @fields = split(/\b(a|b|c)\b/)

but doesn't spit out extra fields. It's also cheaper not to capture
 characters if you don't need to.

Any letters between ? and : act as flags modifiers as with (?adluimsx-imsx). For
example,

 /(?s-i:more.*than).*million/i

is equivalent to the more verbose

 /(?:(?s-i)more.*than).*million/i

Starting in Perl 5.14, a "^" (caret or circumflex accent) immediately
 after the "?" is a
shorthand equivalent to d-imsx. Any positive
 flags (except "d") may follow the caret, so

 (?^x:foo)

is equivalent to

 (?x-ims:foo)

The caret tells Perl that this cluster doesn't inherit the flags of any
 surrounding pattern, but
uses the system defaults (d-imsx),
 modified by any flags specified.

The caret allows for simpler stringification of compiled regular
 expressions. These look like

 (?^:pattern)

with any non-default flags appearing between the caret and the colon.
 A test that looks at such
stringification thus doesn't need to have the
 system default flags hard-coded in it, just the
caret. If new flags are
 added to Perl, the meaning of the caret's expansion will change to
include
 the default for those flags, so the test will still work, unchanged.

Specifying a negative flag after the caret is an error, as the flag is
 redundant.

Mnemonic for (?^...): A fresh beginning since the usual use of a caret is
 to match at the
beginning.

(?|pattern)

This is the "branch reset" pattern, which has the special property
 that the capture groups are
numbered from the same starting point
 in each alternation branch. It is available starting from
perl 5.10.0.

Capture groups are numbered from left to right, but inside this
 construct the numbering is
restarted for each branch.

The numbering within each branch will be as normal, and any groups
 following this construct
will be numbered as though the construct
 contained only one branch, that being the one with
the most capture
 groups in it.

This construct is useful when you want to capture one of a
 number of alternative matches.

Consider the following pattern. The numbers underneath show in
 which group the captured
content will be stored.

Perl version 5.16.2 documentation - perlre

Page 15http://perldoc.perl.org

 # before ---------------branch-reset----------- after
 / (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x
 # 1 2 2 3 2 3 4

Be careful when using the branch reset pattern in combination with named captures. Named
captures are implemented as being aliases to numbered groups holding the captures, and that
interferes with the
 implementation of the branch reset pattern. If you are using named

captures in a branch reset pattern, it's best to use the same names,
 in the same order, in each
of the alternations:

 /(?| (?<a> x) (? y)
 | (?<a> z) (? w)) /x

Not doing so may lead to surprises:

 "12" =~ /(?| (?<a> \d+) | (? \D+))/x;
 say $+ {a}; # Prints '12'
 say $+ {b}; # *Also* prints '12'.

The problem here is that both the group named a and the group
 named b are aliases for the
group belonging to $1.

Look-Around Assertions

Look-around assertions are zero-width patterns which match a specific
 pattern without
including it in $&. Positive assertions match when
 their subpattern matches, negative
assertions match when their subpattern
 fails. Look-behind matches text up to the current
match position,
 look-ahead matches text following the current match position.

(?=pattern)

A zero-width positive look-ahead assertion. For example, /\w+(?=\t)/
 matches a
word followed by a tab, without including the tab in $&.

(?!pattern)

A zero-width negative look-ahead assertion. For example /foo(?!bar)/
 matches
any occurrence of "foo" that isn't followed by "bar". Note
 however that look-ahead and
look-behind are NOT the same thing. You cannot
 use this for look-behind.

If you are looking for a "bar" that isn't preceded by a "foo", /(?!foo)bar/
 will not do
what you want. That's because the (?!foo) is just saying that
 the next thing cannot
be "foo"--and it's not, it's a "bar", so "foobar" will
 match. Use look-behind instead (see
below).

(?<=pattern) \K

A zero-width positive look-behind assertion. For example, /(?<=\t)\w+/
 matches a
word that follows a tab, without including the tab in $&.
 Works only for fixed-width
look-behind.

There is a special form of this construct, called \K, which causes the
 regex engine to
"keep" everything it had matched prior to the \K and
 not include it in $&. This
effectively provides variable-length
 look-behind. The use of \K inside of another
look-around assertion
 is allowed, but the behaviour is currently not well defined.

For various reasons \K may be significantly more efficient than the
 equivalent
(?<=...) construct, and it is especially useful in
 situations where you want to
efficiently remove something following
 something else in a string. For instance

 s/(foo)bar/$1/g;

can be rewritten as the much more efficient

 s/foo\Kbar//g;

Perl version 5.16.2 documentation - perlre

Page 16http://perldoc.perl.org

(?<!pattern)

A zero-width negative look-behind assertion. For example /(?<!bar)foo/
 matches
any occurrence of "foo" that does not follow "bar". Works
 only for fixed-width
look-behind.

(?'NAME'pattern)

(?<NAME>pattern)

A named capture group. Identical in every respect to normal capturing
 parentheses () but for
the additional fact that the group
 can be referred to by name in various regular expression

constructs (like \g{NAME}) and can be accessed by name
 after a successful match via %+ or
%-. See perlvar
 for more details on the %+ and %- hashes.

If multiple distinct capture groups have the same name then the
 $+{NAME} will refer to the
leftmost defined group in the match.

The forms (?'NAME'pattern) and (?<NAME>pattern) are equivalent.

NOTE: While the notation of this construct is the same as the similar
 function in .NET regexes,
the behavior is not. In Perl the groups are
 numbered sequentially regardless of being named
or not. Thus in the
 pattern

 /(x)(?<foo>y)(z)/

$+{foo} will be the same as $2, and $3 will contain 'z' instead of
 the opposite which is what a
.NET regex hacker might expect.

Currently NAME is restricted to simple identifiers only.
 In other words, it must match
/^[_A-Za-z][_A-Za-z0-9]*\z/ or
 its Unicode extension (see utf8),
 though it isn't
extended by the locale (see perllocale).

NOTE: In order to make things easier for programmers with experience
 with the Python or
PCRE regex engines, the pattern (?P<NAME>pattern)
 may be used instead of
(?<NAME>pattern); however this form does not
 support the use of single quotes as a
delimiter for the name.

\k<NAME>

\k'NAME'

Named backreference. Similar to numeric backreferences, except that
 the group is designated
by name and not number. If multiple groups
 have the same name then it refers to the leftmost
defined group in
 the current match.

It is an error to refer to a name not defined by a (?<NAME>)
 earlier in the pattern.

Both forms are equivalent.

NOTE: In order to make things easier for programmers with experience
 with the Python or
PCRE regex engines, the pattern (?P=NAME)
 may be used instead of \k<NAME>.

(?{ code })

WARNING: This extended regular expression feature is considered
 experimental, and may be
changed without notice. Code executed that
 has side effects may not perform identically from
version to version
 due to the effect of future optimisations in the regex engine.

This zero-width assertion evaluates any embedded Perl code. It
 always succeeds, and its
code is not interpolated. Currently,
 the rules to determine where the code ends are somewhat
convoluted.

This feature can be used together with the special variable $^N to
 capture the results of
submatches in variables without having to keep
 track of the number of nested parentheses.
For example:

 $_ = "The brown fox jumps over the lazy dog";
 /the (\S+)(?{ $color = $^N }) (\S+)(?{ $animal = $^N })/i;

Perl version 5.16.2 documentation - perlre

Page 17http://perldoc.perl.org

 print "color = $color, animal = $animal\n";

Inside the (?{...}) block, $_ refers to the string the regular
 expression is matching against.
You can also use pos() to know what is
 the current position of matching within this string.

The code is properly scoped in the following sense: If the assertion
 is backtracked (compare
Backtracking), all changes introduced after localization are undone, so that

 $_ = 'a' x 8;
 m<
 (?{ $cnt = 0 }) # Initialize $cnt.
 (
 a
 (?{
 local $cnt = $cnt + 1; # Update $cnt,
 # backtracking-safe.
 })
)*
 aaaa
 (?{ $res = $cnt }) # On success copy to
 # non-localized location.
 >x;

will set $res = 4. Note that after the match, $cnt returns to the globally
 introduced value,
because the scopes that restrict local operators
 are unwound.

This assertion may be used as a (?(condition)yes-pattern|no-pattern)
 switch. If
not used in this way, the result of evaluation of code is put into the special variable $^R. This
happens
 immediately, so $^R can be used from other (?{ code }) assertions
 inside the
same regular expression.

The assignment to $^R above is properly localized, so the old
 value of $^R is restored if the
assertion is backtracked; compare Backtracking.

For reasons of security, this construct is forbidden if the regular
 expression involves run-time
interpolation of variables, unless the
 perilous use re 'eval' pragma has been used (see re
), or the
 variables contain results of the qr// operator (see "qr/STRING/msixpodual" in perlop
).

This restriction is due to the wide-spread and remarkably convenient
 custom of using run-time
determined strings as patterns. For example:

 $re = <>;
 chomp $re;
 $string =~ /$re/;

Before Perl knew how to execute interpolated code within a pattern,
 this operation was
completely safe from a security point of view,
 although it could raise an exception from an
illegal pattern. If
 you turn on the use re 'eval', though, it is no longer secure,
 so you
should only do so if you are also using taint checking.
 Better yet, use the carefully constrained
evaluation within a Safe
 compartment. See perlsec for details about both these mechanisms.

WARNING: Use of lexical (my) variables in these blocks is
 broken. The result is unpredictable
and will make perl unstable. The
 workaround is to use global (our) variables.

WARNING: In perl 5.12.x and earlier, the regex engine
 was not re-entrant, so interpolated
code could not
 safely invoke the regex engine either directly with m// or s///), or indirectly
with functions such as split. Invoking the regex engine in these blocks would make perl

unstable.

(??{ code })

WARNING: This extended regular expression feature is considered
 experimental, and may be

Perl version 5.16.2 documentation - perlre

Page 18http://perldoc.perl.org

changed without notice. Code executed that
 has side effects may not perform identically from
version to version
 due to the effect of future optimisations in the regex engine.

This is a "postponed" regular subexpression. The code is evaluated
 at run time, at the
moment this subexpression may match. The result
 of evaluation is considered a regular
expression and matched as
 if it were inserted instead of this construct. Note that this means

that the contents of capture groups defined inside an eval'ed pattern
 are not available outside
of the pattern, and vice versa, there is no
 way for the inner pattern returned from the code
block to refer to a
 capture group defined outside. (The code block itself can use $1, etc.,
 to
refer to the enclosing pattern's capture groups.) Thus,

 ('a' x 100)=~/(??{'(.)' x 100})/

will match, it will not set $1.

The code is not interpolated. As before, the rules to determine
 where the code ends are
currently somewhat convoluted.

The following pattern matches a parenthesized group:

 $re = qr{
 \(
 (?:
 (?> [^()]+) # Non-parens without backtracking
 |
 (??{ $re }) # Group with matching parens
)*
 \)
 }x;

See also (?PARNO) for a different, more efficient way to accomplish
 the same task.

For reasons of security, this construct is forbidden if the regular
 expression involves run-time
interpolation of variables, unless the
 perilous use re 'eval' pragma has been used (see re
), or the
 variables contain results of the qr// operator (see "qr/STRING/msixpodual" in perlop
).

In perl 5.12.x and earlier, because the regex engine was not re-entrant,
 delayed code could
not safely invoke the regex engine either directly with m// or s///), or indirectly with functions
such as split.

Recursing deeper than 50 times without consuming any input string will
 result in a fatal error.
The maximum depth is compiled into perl, so
 changing it requires a custom build.

(?PARNO) (?-PARNO) (?+PARNO) (?R) (?0)

Similar to (??{ code }) except it does not involve compiling any code,
 instead it treats the
contents of a capture group as an independent
 pattern that must match at the current position.
Capture groups
 contained by the pattern will have the value as determined by the
 outermost
recursion.

PARNO is a sequence of digits (not starting with 0) whose value reflects
 the paren-number of
the capture group to recurse to. (?R) recurses to
 the beginning of the whole pattern. (?0) is
an alternate syntax for (?R). If PARNO is preceded by a plus or minus sign then it is
assumed
 to be relative, with negative numbers indicating preceding capture groups
 and
positive ones following. Thus (?-1) refers to the most recently
 declared group, and (?+1)
indicates the next group to be declared.
 Note that the counting for relative recursion differs
from that of
 relative backreferences, in that with recursion unclosed groups are
 included.

The following pattern matches a function foo() which may contain
 balanced parentheses as
the argument.

 $re = qr{ (# paren group 1 (full function)
 foo

Perl version 5.16.2 documentation - perlre

Page 19http://perldoc.perl.org

 (# paren group 2 (parens)
 \(
 (# paren group 3 (contents of parens)
 (?:
 (?> [^()]+) # Non-parens without backtracking
 |
 (?2) # Recurse to start of paren group 2
)*
)
 \)
)
)
 }x;

If the pattern was used as follows

 'foo(bar(baz)+baz(bop))'=~/$re/
 and print "\$1 = $1\n",
 "\$2 = $2\n",
 "\$3 = $3\n";

the output produced should be the following:

 $1 = foo(bar(baz)+baz(bop))
 $2 = (bar(baz)+baz(bop))
 $3 = bar(baz)+baz(bop)

If there is no corresponding capture group defined, then it is a
 fatal error. Recursing deeper
than 50 times without consuming any input
 string will also result in a fatal error. The maximum
depth is compiled
 into perl, so changing it requires a custom build.

The following shows how using negative indexing can make it
 easier to embed recursive
patterns inside of a qr// construct
 for later use:

 my $parens = qr/(\((?:[^()]++|(?-1))*+\))/;
 if (/foo $parens \s+ + \s+ bar $parens/x) {
 # do something here...
 }

Note that this pattern does not behave the same way as the equivalent
 PCRE or Python
construct of the same form. In Perl you can backtrack into
 a recursed group, in PCRE and
Python the recursed into group is treated
 as atomic. Also, modifiers are resolved at compile
time, so constructs
 like (?i:(?1)) or (?:(?i)(?1)) do not affect how the sub-pattern will
 be
processed.

(?&NAME)

Recurse to a named subpattern. Identical to (?PARNO) except that the
 parenthesis to recurse
to is determined by name. If multiple parentheses have
 the same name, then it recurses to the
leftmost.

It is an error to refer to a name that is not declared somewhere in the
 pattern.

NOTE: In order to make things easier for programmers with experience
 with the Python or
PCRE regex engines the pattern (?P>NAME)
 may be used instead of (?&NAME).

(?(condition)yes-pattern|no-pattern)

(?(condition)yes-pattern)

Conditional expression. Matches yes-pattern if condition yields
 a true value, matches
no-pattern otherwise. A missing pattern always
 matches.

Perl version 5.16.2 documentation - perlre

Page 20http://perldoc.perl.org

(condition) should be either an integer in
 parentheses (which is valid if the corresponding
pair of parentheses
 matched), a look-ahead/look-behind/evaluate zero-width assertion, a

name in angle brackets or single quotes (which is valid if a group
 with the given name
matched), or the special symbol (R) (true when
 evaluated inside of recursion or eval).
Additionally the R may be
 followed by a number, (which will be true when evaluated when
recursing
 inside of the appropriate group), or by &NAME, in which case it will
 be true only when
evaluated during recursion in the named group.

Here's a summary of the possible predicates:

(1) (2) ...

Checks if the numbered capturing group has matched something.

(<NAME>) ('NAME')

Checks if a group with the given name has matched something.

(?=...) (?!...) (?<=...) (?<!...)

Checks whether the pattern matches (or does not match, for the '!'
 variants).

(?{ CODE })

Treats the return value of the code block as the condition.

(R)

Checks if the expression has been evaluated inside of recursion.

(R1) (R2) ...

Checks if the expression has been evaluated while executing directly
 inside of the n-th
capture group. This check is the regex equivalent of

 if ((caller(0))[3] eq 'subname') { ... }

In other words, it does not check the full recursion stack.

(R&NAME)

Similar to (R1), this predicate checks to see if we're executing
 directly inside of the
leftmost group with a given name (this is the same
 logic used by (?&NAME) to
disambiguate). It does not check the full
 stack, but only the name of the innermost
active recursion.

(DEFINE)

In this case, the yes-pattern is never directly executed, and no
 no-pattern is allowed.
Similar in spirit to (?{0}) but more efficient.
 See below for details.

For example:

 m{ (\()?
 [^()]+
 (?(1) \))
 }x

matches a chunk of non-parentheses, possibly included in parentheses
 themselves.

A special form is the (DEFINE) predicate, which never executes its
 yes-pattern directly, and
does not allow a no-pattern. This allows one to
 define subpatterns which will be executed only
by the recursion mechanism.
 This way, you can define a set of regular expression rules that
can be
 bundled into any pattern you choose.

It is recommended that for this usage you put the DEFINE block at the
 end of the pattern, and
that you name any subpatterns defined within it.

Also, it's worth noting that patterns defined this way probably will
 not be as efficient, as the

Perl version 5.16.2 documentation - perlre

Page 21http://perldoc.perl.org

optimiser is not very clever about
 handling them.

An example of how this might be used is as follows:

 /(?<NAME>(?&NAME_PAT))(?<ADDR>(?&ADDRESS_PAT))
 (?(DEFINE)
 (?<NAME_PAT>....)
 (?<ADRESS_PAT>....)
)/x

Note that capture groups matched inside of recursion are not accessible
 after the recursion
returns, so the extra layer of capturing groups is
 necessary. Thus $+{NAME_PAT} would not
be defined even though $+{NAME} would be.

Finally, keep in mind that subpatterns created inside a DEFINE block
 count towards the
absolute and relative number of captures, so this:

 my @captures = "a" =~ /(.) # First capture
 (?(DEFINE)
 (?<EXAMPLE> 1) # Second capture
)/x;
 say scalar @captures;

Will output 2, not 1. This is particularly important if you intend to
 compile the definitions with
the qr// operator, and later
 interpolate them in another pattern.

(?>pattern)

An "independent" subexpression, one which matches the substring
 that a standalone
pattern would match if anchored at the given
 position, and it matches nothing other than this
substring. This
 construct is useful for optimizations of what would otherwise be
 "eternal"
matches, because it will not backtrack (see Backtracking).
 It may also be useful in places
where the "grab all you can, and do not
 give anything back" semantic is desirable.

For example: ^(?>a*)ab will never match, since (?>a*)
 (anchored at the beginning of
string, as above) will match all
 characters a at the beginning of string, leaving no a for ab to
match. In contrast, a*ab will match the same as a+b,
 since the match of the subgroup a* is
influenced by the following
 group ab (see Backtracking). In particular, a* inside a*ab will
match fewer characters than a standalone a*, since
 this makes the tail match.

(?>pattern) does not disable backtracking altogether once it has
 matched. It is still
possible to backtrack past the construct, but not
 into it. So ((?>a*)|(?>b*))ar will still
match "bar".

An effect similar to (?>pattern) may be achieved by writing (?=(pattern))\g{-1}. This
matches the same substring as a standalone a+, and the following \g{-1} eats the matched
string; it therefore
 makes a zero-length assertion into an analogue of (?>...).
 (The
difference between these two constructs is that the second one
 uses a capturing group, thus
shifting ordinals of backreferences
 in the rest of a regular expression.)

Consider this pattern:

 m{ \(
 (
 [^()]+ # x+
 |
 \([^()]* \)
)+
 \)
 }x

That will efficiently match a nonempty group with matching parentheses
 two levels deep or
less. However, if there is no such group, it
 will take virtually forever on a long string. That's

Perl version 5.16.2 documentation - perlre

Page 22http://perldoc.perl.org

because there
 are so many different ways to split a long string into several
 substrings. This is
what (.+)+ is doing, and (.+)+ is similar
 to a subpattern of the above pattern. Consider how
the pattern
 above detects no-match on ((()aaaaaaaaaaaaaaaaaa in several
 seconds, but
that each extra letter doubles this time. This
 exponential performance will make it appear that
your program has
 hung. However, a tiny change to this pattern

 m{ \(
 (
 (?> [^()]+) # change x+ above to (?> x+)
 |
 \([^()]* \)
)+
 \)
 }x

which uses (?>...) matches exactly when the one above does (verifying
 this yourself would
be a productive exercise), but finishes in a fourth
 the time when used on a similar string with
1000000 as. Be aware,
 however, that, when this construct is followed by a
 quantifier, it
currently triggers a warning message under
 the use warnings pragma or -w switch saying it
"matches null string many times in regex".

On simple groups, such as the pattern (?> [^()]+), a comparable
 effect may be achieved
by negative look-ahead, as in [^()]+ (?! [^()]).
 This was only 4 times slower on a
string with 1000000 as.

The "grab all you can, and do not give anything back" semantic is desirable
 in many situations
where on the first sight a simple ()* looks like
 the correct solution. Suppose we parse text
with comments being delimited
 by # followed by some optional (horizontal) whitespace.
Contrary to
 its appearance, #[\t]* is not the correct subexpression to match
 the comment
delimiter, because it may "give up" some whitespace if
 the remainder of the pattern can be
made to match that way. The correct
 answer is either one of these:

 (?>#[\t]*)
 #[\t]*(?![\t])

For example, to grab non-empty comments into $1, one should use either
 one of these:

 / (?> \# [\t]*) (.+) /x;
 / \# [\t]* ([^ \t] .*) /x;

Which one you pick depends on which of these expressions better reflects
 the above
specification of comments.

In some literature this construct is called "atomic matching" or
 "possessive matching".

Possessive quantifiers are equivalent to putting the item they are applied
 to inside of one of
these constructs. The following equivalences apply:

 Quantifier Form Bracketing Form
 --------------- ---------------
 PAT*+ (?>PAT*)
 PAT++ (?>PAT+)
 PAT?+ (?>PAT?)
 PAT{min,max}+ (?>PAT{min,max})

Special Backtracking Control Verbs
WARNING: These patterns are experimental and subject to change or
 removal in a future version of
Perl. Their usage in production code should
 be noted to avoid problems during upgrades.

These special patterns are generally of the form (*VERB:ARG). Unless
 otherwise stated the ARG
argument is optional; in some cases, it is
 forbidden.

Perl version 5.16.2 documentation - perlre

Page 23http://perldoc.perl.org

Any pattern containing a special backtracking verb that allows an argument
 has the special behaviour
that when executed it sets the current package's $REGERROR and $REGMARK variables. When doing
so the following
 rules apply:

On failure, the $REGERROR variable will be set to the ARG value of the
 verb pattern, if the verb was
involved in the failure of the match. If the
 ARG part of the pattern was omitted, then $REGERROR will
be set to the
 name of the last (*MARK:NAME) pattern executed, or to TRUE if there was
 none. Also,
the $REGMARK variable will be set to FALSE.

On a successful match, the $REGERROR variable will be set to FALSE, and
 the $REGMARK variable
will be set to the name of the last (*MARK:NAME) pattern executed. See the explanation for the
(*MARK:NAME) verb below for more details.

NOTE: $REGERROR and $REGMARK are not magic variables like $1
 and most other regex-related
variables. They are not local to a scope, nor
 readonly, but instead are volatile package variables
similar to $AUTOLOAD.
 Use local to localize changes to them to a specific scope if necessary.

If a pattern does not contain a special backtracking verb that allows an
 argument, then $REGERROR
and $REGMARK are not touched at all.

Verbs that take an argument

(*PRUNE) (*PRUNE:NAME)

This zero-width pattern prunes the backtracking tree at the current point
 when
backtracked into on failure. Consider the pattern A (*PRUNE) B,
 where A and B are
complex patterns. Until the (*PRUNE) verb is reached,
 A may backtrack as necessary to
match. Once it is reached, matching
 continues in B, which may also backtrack as
necessary; however, should B
 not match, then no further backtracking will take place,
and the pattern
 will fail outright at the current starting position.

The following example counts all the possible matching strings in a
 pattern (without
actually matching any of them).

 'aaab' =~ /a+b?(?{print "$&\n"; $count++})(*FAIL)/;
 print "Count=$count\n";

which produces:

 aaab
 aaa
 aa
 a
 aab
 aa
 a
 ab
 a
 Count=9

If we add a (*PRUNE) before the count like the following

 'aaab' =~ /a+b?(*PRUNE)(?{print "$&\n"; $count++})(*FAIL)/;
 print "Count=$count\n";

we prevent backtracking and find the count of the longest matching string
 at each
matching starting point like so:

 aaab
 aab
 ab
 Count=3

Perl version 5.16.2 documentation - perlre

Page 24http://perldoc.perl.org

Any number of (*PRUNE) assertions may be used in a pattern.

See also (?>pattern) and possessive quantifiers for other ways to
 control
backtracking. In some cases, the use of (*PRUNE) can be
 replaced with a
(?>pattern) with no functional difference; however, (*PRUNE) can be used to handle
cases that cannot be expressed using a (?>pattern) alone.

(*SKIP) (*SKIP:NAME)

This zero-width pattern is similar to (*PRUNE), except that on
 failure it also signifies that
whatever text that was matched leading up
 to the (*SKIP) pattern being executed
cannot be part of any match
 of this pattern. This effectively means that the regex engine
"skips" forward
 to this position on failure and tries to match again, (assuming that
 there
is sufficient room to match).

The name of the (*SKIP:NAME) pattern has special significance. If a (*MARK:NAME)
was encountered while matching, then it is that position
 which is used as the "skip point".
If no (*MARK) of that name was
 encountered, then the (*SKIP) operator has no effect.
When used
 without a name the "skip point" is where the match point was when

executing the (*SKIP) pattern.

Compare the following to the examples in (*PRUNE); note the string
 is twice as long:

 'aaabaaab' =~ /a+b?(*SKIP)(?{print "$&\n"; $count++})(*FAIL)/;
 print "Count=$count\n";

outputs

 aaab
 aaab
 Count=2

Once the 'aaab' at the start of the string has matched, and the (*SKIP)
 executed, the
next starting point will be where the cursor was when the (*SKIP) was executed.

(*MARK:NAME) (*:NAME)

This zero-width pattern can be used to mark the point reached in a string
 when a certain
part of the pattern has been successfully matched. This
 mark may be given a name. A
later (*SKIP) pattern will then skip
 forward to that point if backtracked into on failure.
Any number of (*MARK) patterns are allowed, and the NAME portion may be
duplicated.

In addition to interacting with the (*SKIP) pattern, (*MARK:NAME)
 can be used to
"label" a pattern branch, so that after matching, the
 program can determine which
branches of the pattern were involved in the
 match.

When a match is successful, the $REGMARK variable will be set to the
 name of the most
recently executed (*MARK:NAME) that was involved
 in the match.

This can be used to determine which branch of a pattern was matched
 without using a
separate capture group for each branch, which in turn
 can result in a performance
improvement, as perl cannot optimize /(?:(x)|(y)|(z))/ as efficiently as something
like /(?:x(*MARK:x)|y(*MARK:y)|z(*MARK:z))/.

When a match has failed, and unless another verb has been involved in
 failing the match
and has provided its own name to use, the $REGERROR
 variable will be set to the name
of the most recently executed (*MARK:NAME).

See (*SKIP) for more details.

As a shortcut (*MARK:NAME) can be written (*:NAME).

(*THEN) (*THEN:NAME)

This is similar to the "cut group" operator :: from Perl 6. Like (*PRUNE), this verb

Perl version 5.16.2 documentation - perlre

Page 25http://perldoc.perl.org

always matches, and when backtracked into on
 failure, it causes the regex engine to try
the next alternation in the
 innermost enclosing group (capturing or otherwise) that has
alternations.
 The two branches of a (?(condition)yes-pattern|no-pattern) do
not
 count as an alternation, as far as (*THEN) is concerned.

Its name comes from the observation that this operation combined with the
 alternation
operator (|) can be used to create what is essentially a
 pattern-based if/then/else block:

 (COND (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ)

Note that if this operator is used and NOT inside of an alternation then
 it acts exactly like
the (*PRUNE) operator.

 / A (*PRUNE) B /

is the same as

 / A (*THEN) B /

but

 / (A (*THEN) B | C (*THEN) D) /

is not the same as

 / (A (*PRUNE) B | C (*PRUNE) D) /

as after matching the A but failing on the B the (*THEN) verb will
 backtrack and try C;
but the (*PRUNE) verb will simply fail.

Verbs without an argument

(*COMMIT)

This is the Perl 6 "commit pattern" <commit> or :::. It's a
 zero-width pattern similar to
(*SKIP), except that when backtracked
 into on failure it causes the match to fail
outright. No further attempts
 to find a valid match by advancing the start pointer will
occur again.
 For example,

 'aaabaaab' =~ /a+b?(*COMMIT)(?{print "$&\n"; $count++})(*FAIL)/;
 print "Count=$count\n";

outputs

 aaab
 Count=1

In other words, once the (*COMMIT) has been entered, and if the pattern
 does not
match, the regex engine will not try any further matching on the
 rest of the string.

(*FAIL) (*F)

This pattern matches nothing and always fails. It can be used to force the
 engine to
backtrack. It is equivalent to (?!), but easier to read. In
 fact, (?!) gets optimised into
(*FAIL) internally.

It is probably useful only when combined with (?{}) or (??{}).

(*ACCEPT)

WARNING: This feature is highly experimental. It is not recommended
 for production
code.

This pattern matches nothing and causes the end of successful matching at
 the point at
which the (*ACCEPT) pattern was encountered, regardless of
 whether there is actually
more to match in the string. When inside of a
 nested pattern, such as recursion, or in a

Perl version 5.16.2 documentation - perlre

Page 26http://perldoc.perl.org

subpattern dynamically generated
 via (??{}), only the innermost pattern is ended
immediately.

If the (*ACCEPT) is inside of capturing groups then the groups are
 marked as ended at
the point at which the (*ACCEPT) was encountered.
 For instance:

 'AB' =~ /(A (A|B(*ACCEPT)|C) D)(E)/x;

will match, and $1 will be AB and $2 will be B, $3 will not
 be set. If another branch in the
inner parentheses was matched, such as in the
 string 'ACDE', then the D and E would
have to be matched as well.

Backtracking
NOTE: This section presents an abstract approximation of regular
 expression behavior. For a more
rigorous (and complicated) view of
 the rules involved in selecting a match among possible
alternatives,
 see Combining RE Pieces.

A fundamental feature of regular expression matching involves the
 notion called backtracking, which
is currently used (when needed)
 by all regular non-possessive expression quantifiers, namely *, *?, +
, +?, {n,m}, and {n,m}?. Backtracking is often optimized
 internally, but the general principle outlined
here is valid.

For a regular expression to match, the entire regular expression must
 match, not just part of it. So if
the beginning of a pattern containing a
 quantifier succeeds in a way that causes later parts in the
pattern to
 fail, the matching engine backs up and recalculates the beginning
 part--that's why it's called
backtracking.

Here is an example of backtracking: Let's say you want to find the
 word following "foo" in the string
"Food is on the foo table.":

 $_ = "Food is on the foo table.";
 if (/\b(foo)\s+(\w+)/i) {
 print "$2 follows $1.\n";
 }

When the match runs, the first part of the regular expression (\b(foo))
 finds a possible match right
at the beginning of the string, and loads up
 $1 with "Foo". However, as soon as the matching engine
sees that there's
 no whitespace following the "Foo" that it had saved in $1, it realizes its
 mistake and
starts over again one character after where it had the
 tentative match. This time it goes all the way
until the next occurrence
 of "foo". The complete regular expression matches this time, and you get
 the
expected output of "table follows foo."

Sometimes minimal matching can help a lot. Imagine you'd like to match
 everything between "foo"
and "bar". Initially, you write something
 like this:

 $_ = "The food is under the bar in the barn.";
 if (/foo(.*)bar/) {
 print "got <$1>\n";
 }

Which perhaps unexpectedly yields:

 got <d is under the bar in the >

That's because .* was greedy, so you get everything between the first "foo" and the last "bar". Here
it's more effective
 to use minimal matching to make sure you get the text between a "foo"
 and the first
"bar" thereafter.

 if (/foo(.*?)bar/) { print "got <$1>\n" }

Perl version 5.16.2 documentation - perlre

Page 27http://perldoc.perl.org

 got <d is under the >

Here's another example. Let's say you'd like to match a number at the end
 of a string, and you also
want to keep the preceding part of the match.
 So you write this:

 $_ = "I have 2 numbers: 53147";
 if (/(.*)(\d*)/) { # Wrong!
 print "Beginning is <$1>, number is <$2>.\n";
 }

That won't work at all, because .* was greedy and gobbled up the
 whole string. As \d* can match
on an empty string the complete
 regular expression matched successfully.

 Beginning is <I have 2 numbers: 53147>, number is <>.

Here are some variants, most of which don't work:

 $_ = "I have 2 numbers: 53147";
 @pats = qw{
 (.*)(\d*)
 (.*)(\d+)
 (.*?)(\d*)
 (.*?)(\d+)
 (.*)(\d+)$
 (.*?)(\d+)$
 (.*)\b(\d+)$
 (.*\D)(\d+)$
 };

 for $pat (@pats) {
 printf "%-12s ", $pat;
 if (/$pat/) {
 print "<$1> <$2>\n";
 } else {
 print "FAIL\n";
 }
 }

That will print out:

 (.*)(\d*) <I have 2 numbers: 53147> <>
 (.*)(\d+) <I have 2 numbers: 5314> <7>
 (.*?)(\d*) <> <>
 (.*?)(\d+) <I have > <2>
 (.*)(\d+)$ <I have 2 numbers: 5314> <7>
 (.*?)(\d+)$ <I have 2 numbers: > <53147>
 (.*)\b(\d+)$ <I have 2 numbers: > <53147>
 (.*\D)(\d+)$ <I have 2 numbers: > <53147>

As you see, this can be a bit tricky. It's important to realize that a
 regular expression is merely a set of
assertions that gives a definition
 of success. There may be 0, 1, or several different ways that the

definition might succeed against a particular string. And if there are
 multiple ways it might succeed,
you need to understand backtracking to
 know which variety of success you will achieve.

When using look-ahead assertions and negations, this can all get even
 trickier. Imagine you'd like to
find a sequence of non-digits not
 followed by "123". You might try to write that as

Perl version 5.16.2 documentation - perlre

Page 28http://perldoc.perl.org

 $_ = "ABC123";
 if (/^\D*(?!123)/) { # Wrong!
 print "Yup, no 123 in $_\n";
 }

But that isn't going to match; at least, not the way you're hoping. It
 claims that there is no 123 in the
string. Here's a clearer picture of
 why that pattern matches, contrary to popular expectations:

 $x = 'ABC123';
 $y = 'ABC445';

 print "1: got $1\n" if $x =~ /^(ABC)(?!123)/;
 print "2: got $1\n" if $y =~ /^(ABC)(?!123)/;

 print "3: got $1\n" if $x =~ /^(\D*)(?!123)/;
 print "4: got $1\n" if $y =~ /^(\D*)(?!123)/;

This prints

 2: got ABC
 3: got AB
 4: got ABC

You might have expected test 3 to fail because it seems to a more
 general purpose version of test 1.
The important difference between
 them is that test 3 contains a quantifier (\D*) and so can use

backtracking, whereas test 1 will not. What's happening is
 that you've asked "Is it true that at the start
of $x, following 0 or more
 non-digits, you have something that's not 123?" If the pattern matcher had

let \D* expand to "ABC", this would have caused the whole pattern to
 fail.

The search engine will initially match \D* with "ABC". Then it will
 try to match (?!123) with "123",
which fails. But because
 a quantifier (\D*) has been used in the regular expression, the
 search
engine can backtrack and retry the match differently
 in the hope of matching the complete regular
expression.

The pattern really, really wants to succeed, so it uses the
 standard pattern back-off-and-retry and lets
\D* expand to just "AB" this
 time. Now there's indeed something following "AB" that is not
 "123". It's
"C123", which suffices.

We can deal with this by using both an assertion and a negation.
 We'll say that the first part in $1
must be followed both by a digit
 and by something that's not "123". Remember that the look-aheads

are zero-width expressions--they only look, but don't consume any
 of the string in their match. So
rewriting this way produces what
 you'd expect; that is, case 5 will fail, but case 6 succeeds:

 print "5: got $1\n" if $x =~ /^(\D*)(?=\d)(?!123)/;
 print "6: got $1\n" if $y =~ /^(\D*)(?=\d)(?!123)/;

 6: got ABC

In other words, the two zero-width assertions next to each other work as though
 they're ANDed
together, just as you'd use any built-in assertions: /^$/
 matches only if you're at the beginning of the
line AND the end of the
 line simultaneously. The deeper underlying truth is that juxtaposition in

regular expressions always means AND, except when you write an explicit OR
 using the vertical bar.
/ab/ means match "a" AND (then) match "b",
 although the attempted matches are made at different
positions because "a"
 is not a zero-width assertion, but a one-width assertion.

WARNING: Particularly complicated regular expressions can take
 exponential time to solve because

Perl version 5.16.2 documentation - perlre

Page 29http://perldoc.perl.org

of the immense number of possible
 ways they can use backtracking to try for a match. For example,
without
 internal optimizations done by the regular expression engine, this will
 take a painfully long
time to run:

 'aaaaaaaaaaaa' =~ /((a{0,5}){0,5})*[c]/

And if you used *'s in the internal groups instead of limiting them
 to 0 through 5 matches, then it
would take forever--or until you ran
 out of stack space. Moreover, these internal optimizations are not

always applicable. For example, if you put {0,5} instead of *
 on the external group, no current
optimization is applicable, and the
 match takes a long time to finish.

A powerful tool for optimizing such beasts is what is known as an
 "independent group",
 which does
not backtrack (see (?>pattern)). Note also that
 zero-length look-ahead/look-behind assertions will
not backtrack to make
 the tail match, since they are in "logical" context: only
 whether they match is
considered relevant. For an example
 where side-effects of look-ahead might have influenced the

following match, see (?>pattern).

Version 8 Regular Expressions
In case you're not familiar with the "regular" Version 8 regex
 routines, here are the pattern-matching
rules not described above.

Any single character matches itself, unless it is a metacharacter
 with a special meaning described
here or above. You can cause
 characters that normally function as metacharacters to be interpreted

literally by prefixing them with a "\" (e.g., "\." matches a ".", not any
 character; "\\" matches a "\"). This
escape mechanism is also required
 for the character used as the pattern delimiter.

A series of characters matches that series of characters in the target
 string, so the pattern blurfl
would match "blurfl" in the target
 string.

You can specify a character class, by enclosing a list of characters
 in [], which will match any
character from the list. If the
 first character after the "[" is "^", the class matches any character not
 in
the list. Within a list, the "-" character specifies a
 range, so that a-z represents all characters between
"a" and "z",
 inclusive. If you want either "-" or "]" itself to be a member of a
 class, put it at the start of
the list (possibly after a "^"), or
 escape it with a backslash. "-" is also taken literally when it is
 at the
end of the list, just before the closing "]". (The
 following all specify the same class of three characters:
[-az], [az-], and [a\-z]. All are different from [a-z], which
 specifies a class containing
twenty-six characters, even on EBCDIC-based
 character sets.) Also, if you try to use the character

classes \w, \W, \s, \S, \d, or \D as endpoints of
 a range, the "-" is understood literally.

Note also that the whole range idea is rather unportable between
 character sets--and even within
character sets they may cause results
 you probably didn't expect. A sound principle is to use only
ranges
 that begin from and end at either alphabetics of equal case ([a-e],
 [A-E]), or digits ([0-9]).
Anything else is unsafe. If in doubt,
 spell out the character sets in full.

Characters may be specified using a metacharacter syntax much like that
 used in C: "\n" matches a
newline, "\t" a tab, "\r" a carriage return,
 "\f" a form feed, etc. More generally, \nnn, where nnn is a
string
 of three octal digits, matches the character whose coded character set value
 is nnn. Similarly, \x
nn, where nn are hexadecimal digits,
 matches the character whose ordinal is nn. The expression \cx

matches the character control-x. Finally, the "." metacharacter
 matches any character except "\n"
(unless you use /s).

You can specify a series of alternatives for a pattern using "|" to
 separate them, so that
fee|fie|foe will match any of "fee", "fie",
 or "foe" in the target string (as would f(e|i|o)e). The

first alternative includes everything from the last pattern delimiter
 ("(", "(?:", etc. or the beginning of the
pattern) up to the first "|", and
 the last alternative contains everything from the last "|" to the next

closing pattern delimiter. That's why it's common practice to include
 alternatives in parentheses: to
minimize confusion about where they
 start and end.

Alternatives are tried from left to right, so the first
 alternative found for which the entire expression

Perl version 5.16.2 documentation - perlre

Page 30http://perldoc.perl.org

matches, is the one that
 is chosen. This means that alternatives are not necessarily greedy. For

example: when matching foo|foot against "barefoot", only the "foo"
 part will match, as that is the
first alternative tried, and it successfully
 matches the target string. (This might not seem important, but
it is
 important when you are capturing matched text using parentheses.)

Also remember that "|" is interpreted as a literal within square brackets,
 so if you write
[fee|fie|foe] you're really only matching [feio|].

Within a pattern, you may designate subpatterns for later reference
 by enclosing them in parentheses,
and you may refer back to the nth subpattern later in the pattern using the metacharacter
 \n or \gn.
Subpatterns are numbered based on the left to right order
 of their opening parenthesis. A
backreference matches whatever
 actually matched the subpattern in the string being examined, not

the rules for that subpattern. Therefore, (0|0x)\d*\s\g1\d* will
 match "0x1234 0x4321", but not
"0x1234 01234", because subpattern
 1 matched "0x", even though the rule 0|0x could potentially
match
 the leading 0 in the second number.

Warning on \1 Instead of $1
Some people get too used to writing things like:

 $pattern =~ s/(\W)/\\\1/g;

This is grandfathered (for \1 to \9) for the RHS of a substitute to avoid
 shocking the sed addicts, but
it's a dirty habit to get into. That's because in
 PerlThink, the righthand side of an s/// is a
double-quoted string. \1 in
 the usual double-quoted string means a control-A. The customary Unix

meaning of \1 is kludged in for s///. However, if you get into the habit
 of doing that, you get yourself
into trouble if you then add an /e
 modifier.

 s/(\d+)/ \1 + 1 /eg; # causes warning under -w

Or if you try to do

 s/(\d+)/\1000/;

You can't disambiguate that by saying \{1}000, whereas you can fix it with ${1}000. The operation
of interpolation should not be confused
 with the operation of matching a backreference. Certainly they
mean two
 different things on the left side of the s///.

Repeated Patterns Matching a Zero-length Substring
WARNING: Difficult material (and prose) ahead. This section needs a rewrite.

Regular expressions provide a terse and powerful programming language. As
 with most other power
tools, power comes together with the ability
 to wreak havoc.

A common abuse of this power stems from the ability to make infinite
 loops using regular expressions,
with something as innocuous as:

 'foo' =~ m{ (o?)* }x;

The o? matches at the beginning of 'foo', and since the position
 in the string is not moved by the
match, o? would match again and again
 because of the * quantifier. Another common way to create a
similar cycle
 is with the looping modifier //g:

 @matches = ('foo' =~ m{ o? }xg);

or

 print "match: <$&>\n" while 'foo' =~ m{ o? }xg;

Perl version 5.16.2 documentation - perlre

Page 31http://perldoc.perl.org

or the loop implied by split().

However, long experience has shown that many programming tasks may
 be significantly simplified by
using repeated subexpressions that
 may match zero-length substrings. Here's a simple example
being:

 @chars = split //, $string; # // is not magic in split
 ($whitewashed = $string) =~ s/()/ /g; # parens avoid magic s// /

Thus Perl allows such constructs, by forcefully breaking
 the infinite loop. The rules for this are
different for lower-level
 loops given by the greedy quantifiers *+{}, and for higher-level
 ones like the
/g modifier or split() operator.

The lower-level loops are interrupted (that is, the loop is
 broken) when Perl detects that a repeated
expression matched a
 zero-length substring. Thus

 m{ (?: NON_ZERO_LENGTH | ZERO_LENGTH)* }x;

is made equivalent to

 m{ (?: NON_ZERO_LENGTH)* (?: ZERO_LENGTH)? }x;

For example, this program

 #!perl -l
 "aaaaab" =~ /
 (?:
 a # non-zero
 | # or
 (?{print "hello"}) # print hello whenever this
 # branch is tried
 (?=(b)) # zero-width assertion
)* # any number of times
 /x;
 print $&;
 print $1;

prints

 hello
 aaaaa
 b

Notice that "hello" is only printed once, as when Perl sees that the sixth
 iteration of the outermost
(?:)* matches a zero-length string, it stops
 the *.

The higher-level loops preserve an additional state between iterations:
 whether the last match was
zero-length. To break the loop, the following
 match after a zero-length match is prohibited to have a
length of zero.
 This prohibition interacts with backtracking (see Backtracking),
 and so the second best
match is chosen if the best match is of
 zero length.

For example:

 $_ = 'bar';
 s/\w??/<$&>/g;

results in <><><a><><r><>. At each position of the string the best
 match given by non-greedy

Perl version 5.16.2 documentation - perlre

Page 32http://perldoc.perl.org

?? is the zero-length match, and the second
 best match is what is matched by \w. Thus zero-length
matches
 alternate with one-character-long matches.

Similarly, for repeated m/()/g the second-best match is the match at the
 position one notch further in
the string.

The additional state of being matched with zero-length is associated with
 the matched string, and is
reset by each assignment to pos().
 Zero-length matches at the end of the previous match are ignored

during split.

Combining RE Pieces
Each of the elementary pieces of regular expressions which were described
 before (such as ab or \Z)
could match at most one substring
 at the given position of the input string. However, in a typical
regular
 expression these elementary pieces are combined into more complicated
 patterns using
combining operators ST, S|T, S* etc.
 (in these examples S and T are regular subexpressions).

Such combinations can include alternatives, leading to a problem of choice:
 if we match a regular
expression a|ab against "abc", will it match
 substring "a" or "ab"? One way to describe which
substring is
 actually matched is the concept of backtracking (see Backtracking).
 However, this
description is too low-level and makes you think
 in terms of a particular implementation.

Another description starts with notions of "better"/"worse". All the
 substrings which may be matched
by the given regular expression can be
 sorted from the "best" match to the "worst" match, and it is the
"best"
 match which is chosen. This substitutes the question of "what is chosen?"
 by the question of
"which matches are better, and which are worse?".

Again, for elementary pieces there is no such question, since at most
 one match at a given position is
possible. This section describes the
 notion of better/worse for combining operators. In the description

below S and T are regular subexpressions.

ST

Consider two possible matches, AB and A'B', A and A' are
 substrings which can be matched
by S, B and B' are substrings
 which can be matched by T.

If A is a better match for S than A', AB is a better
 match than A'B'.

If A and A' coincide: AB is a better match than AB' if B is a better match for T than B'.

S|T

When S can match, it is a better match than when only T can match.

Ordering of two matches for S is the same as for S. Similar for
 two matches for T.

S{REPEAT_COUNT}

Matches as SSS...S (repeated as many times as necessary).

S{min,max}

Matches as S{max}|S{max-1}|...|S{min+1}|S{min}.

S{min,max}?

Matches as S{min}|S{min+1}|...|S{max-1}|S{max}.

S?, S*, S+

Same as S{0,1}, S{0,BIG_NUMBER}, S{1,BIG_NUMBER} respectively.

S??, S*?, S+?

Same as S{0,1}?, S{0,BIG_NUMBER}?, S{1,BIG_NUMBER}? respectively.

(?>S)

Matches the best match for S and only that.

Perl version 5.16.2 documentation - perlre

Page 33http://perldoc.perl.org

(?=S), (?<=S)

Only the best match for S is considered. (This is important only if S has capturing parentheses,
and backreferences are used somewhere
 else in the whole regular expression.)

(?!S), (?<!S)

For this grouping operator there is no need to describe the ordering, since
 only whether or not
S can match is important.

(??{ EXPR }), (?PARNO)

The ordering is the same as for the regular expression which is
 the result of EXPR, or the
pattern contained by capture group PARNO.

(?(condition)yes-pattern|no-pattern)

Recall that which of yes-pattern or no-pattern actually matches is
 already determined.
The ordering of the matches is the same as for the
 chosen subexpression.

The above recipes describe the ordering of matches at a given position.
 One more rule is needed to
understand how a match is determined for the
 whole regular expression: a match at an earlier
position is always better
 than a match at a later position.

Creating Custom RE Engines
As of Perl 5.10.0, one can create custom regular expression engines. This
 is not for the faint of heart,
as they have to plug in at the C level. See perlreapi for more details.

As an alternative, overloaded constants (see overload) provide a simple
 way to extend the
functionality of the RE engine, by substituting one
 pattern for another.

Suppose that we want to enable a new RE escape-sequence \Y| which
 matches at a boundary
between whitespace characters and non-whitespace
 characters. Note that
(?=\S)(?<!\S)|(?!\S)(?<=\S) matches exactly
 at these positions, so we want to have each
\Y| in the place of the
 more complicated version. We can create a module customre to do
 this:

 package customre;
 use overload;

 sub import {
 shift;
 die "No argument to customre::import allowed" if @_;
 overload::constant 'qr' => \&convert;
 }

 sub invalid { die "/$_[0]/: invalid escape '\\$_[1]'"}

 # We must also take care of not escaping the legitimate \\Y|
 # sequence, hence the presence of '\\' in the conversion rules.
 my %rules = ('\\' => '\\\\',
 'Y|' => qr/(?=\S)(?<!\S)|(?!\S)(?<=\S)/);
 sub convert {
 my $re = shift;
 $re =~ s{
 \\ (\\ | Y .)
 }
 { $rules{$1} or invalid($re,$1) }sgex;
 return $re;
 }

Perl version 5.16.2 documentation - perlre

Page 34http://perldoc.perl.org

Now use customre enables the new escape in constant regular
 expressions, i.e., those without any
runtime variable interpolations.
 As documented in overload, this conversion will work only over
 literal
parts of regular expressions. For \Y|$re\Y| the variable
 part of this regular expression needs to be
converted explicitly
 (but only if the special meaning of \Y| should be enabled inside $re):

 use customre;
 $re = <>;
 chomp $re;
 $re = customre::convert $re;
 /\Y|$re\Y|/;

PCRE/Python Support
As of Perl 5.10.0, Perl supports several Python/PCRE-specific extensions
 to the regex syntax. While
Perl programmers are encouraged to use the
 Perl-specific syntax, the following are also accepted:

(?P<NAME>pattern)

Define a named capture group. Equivalent to (?<NAME>pattern).

(?P=NAME)

Backreference to a named capture group. Equivalent to \g{NAME}.

(?P>NAME)

Subroutine call to a named capture group. Equivalent to (?&NAME).

BUGS
Many regular expression constructs don't work on EBCDIC platforms.

There are a number of issues with regard to case-insensitive matching
 in Unicode rules. See i under
Modifiers above.

This document varies from difficult to understand to completely
 and utterly opaque. The wandering
prose riddled with jargon is
 hard to fathom in several places.

This document needs a rewrite that separates the tutorial content
 from the reference content.

SEE ALSO
perlrequick.

perlretut.

"Regexp Quote-Like Operators" in perlop.

"Gory details of parsing quoted constructs" in perlop.

perlfaq6.

"pos" in perlfunc.

perllocale.

perlebcdic.

Mastering Regular Expressions by Jeffrey Friedl, published
 by O'Reilly and Associates.

