
Perl version 5.16.2 documentation - perlwin32

Page 1http://perldoc.perl.org

NAME
perlwin32 - Perl under Windows

SYNOPSIS
These are instructions for building Perl under Windows 2000 and later.

DESCRIPTION
Before you start, you should glance through the README file
 found in the top-level directory to which
the Perl distribution
 was extracted. Make sure you read and understand the terms under
 which this
software is being distributed.

Also make sure you read BUGS AND CAVEATS below for the
 known limitations of this port.

The INSTALL file in the perl top-level has much information that is
 only relevant to people building
Perl on Unix-like systems. In
 particular, you can safely ignore any information that talks about

"Configure".

You may also want to look at one other option for building a perl that
 will work on Windows: the
README.cygwin file, which give a different
 set of rules to build a perl for Windows. This method will
probably
 enable you to build a more Unix-compatible perl, but you will also
 need to download and use
various other build-time and run-time support
 software described in that file.

This set of instructions is meant to describe a so-called "native"
 port of Perl to the Windows platform.
This includes both 32-bit and
 64-bit Windows operating systems. The resulting Perl requires no

additional software to run (other than what came with your operating
 system). Currently, this port is
capable of using one of the
 following compilers on the Intel x86 architecture:

 Microsoft Visual C++ version 6.0 or later
 Gcc by mingw.org gcc version 3.2 or later
 Gcc by mingw-w64.sf.net gcc version 4.4.3 or later

Note that the last two of these are actually competing projects both
 delivering complete gcc toolchain
for MS Windows:

http://mingw.org

Delivers gcc toolchain targeting 32-bit Windows platform.

http://mingw-w64.sf.net

Delivers gcc toolchain targeting both 64-bit Windows and 32-bit Windows
 platforms (despite
the project name "mingw-w64" they are not only 64-bit
 oriented). They deliver the native gcc
compilers and cross-compilers
 that are also supported by perl's makefile.

The Microsoft Visual C++ compilers are also now being given away free. They are
 available as
"Visual C++ Toolkit 2003" or "Visual C++ 2005/2008/2010 Express
 Edition" (and also as part of the
".NET Framework SDK") and are the same
 compilers that ship with "Visual C++ .NET 2003
Professional" or "Visual C++
 2005/2008/2010 Professional" respectively.

This port can also be built on IA64/AMD64 using:

 Microsoft Platform SDK	 Nov 2001 (64-bit compiler and tools)
 MinGW64 compiler (gcc version 4.4.3 or later)

The Windows SDK can be downloaded from http://www.microsoft.com/.
 The MinGW64 compiler is
available at http://sourceforge.net/projects/mingw-w64.
 The latter is actually a cross-compiler
targeting Win64. There's also a trimmed
 down compiler (no java, or gfortran) suitable for building perl
available at: http://strawberryperl.com/package/kmx/64_gcctoolchain/

NOTE: If you're using a 32-bit compiler to build perl on a 64-bit Windows
 operating system, then you

Perl version 5.16.2 documentation - perlwin32

Page 2http://perldoc.perl.org

should set the WIN64 environment variable to "undef".
 Also, the trimmed down compiler only passes
tests when USE_ITHREADS *= define
 (as opposed to undef) and when the CFG *= Debug line is
commented out.

This port fully supports MakeMaker (the set of modules that
 is used to build extensions to perl).
Therefore, you should be
 able to build and install most extensions found in the CPAN sites.
 See
Usage Hints for Perl on Windows below for general hints about this.

Setting Up Perl on Windows
Make

You need a "make" program to build the sources. If you are using
 Visual C++ or the Windows
SDK tools, nmake will work. Builds using
 the gcc need dmake.

dmake is a freely available make that has very nice macro features
 and parallelability.

A port of dmake for Windows is available from:

http://search.cpan.org/dist/dmake/

Fetch and install dmake somewhere on your path.

Command Shell

Use the default "cmd" shell that comes with Windows. Some versions of the
 popular 4DOS/NT
shell have incompatibilities that may cause you trouble.
 If the build fails under that shell, try
building again with the cmd
 shell.

Make sure the path to the build directory does not contain spaces. The
 build usually works in
this circumstance, but some tests will fail.

Microsoft Visual C++

The nmake that comes with Visual C++ will suffice for building.
 You will need to run the
VCVARS32.BAT file, usually found somewhere
 like C:\Program Files\Microsoft Visual
Studio\VC98\Bin.
 This will set your build environment.

You can also use dmake to build using Visual C++; provided, however,
 you set OSRELEASE
to "microsft" (or whatever the directory name
 under which the Visual C dmake configuration
lives) in your environment
 and edit win32/config.vc to change "make=nmake" into
"make=dmake". The
 latter step is only essential if you want to use dmake as your default

make for building extensions using MakeMaker.

Microsoft Visual C++ 2008/2010 Express Edition

These free versions of Visual C++ 2008/2010 Professional contain the same
 compilers and
linkers that ship with the full versions, and also contain
 everything necessary to build Perl,
rather than requiring a separate download
 of the Windows SDK like previous versions did.

These packages can be downloaded by searching in the Download Center at
http://www.microsoft.com/downloads/search.aspx?displaylang=en. (Providing exact
 links to
these packages has proven a pointless task because the links keep on
 changing so often.)

Install Visual C++ 2008/2010 Express, then setup your environment using, e.g.

	 C:\Program Files\Microsoft Visual Studio
10.0\Common7\Tools\vsvars32.bat

(assuming the default installation location was chosen).

Perl should now build using the win32/Makefile. You will need to edit that
 file to set CCTYPE
to MSVC90FREE or MSVC100FREE first.

Microsoft Visual C++ 2005 Express Edition

This free version of Visual C++ 2005 Professional contains the same compiler
 and linker that
ship with the full version, but doesn't contain everything
 necessary to build Perl.

Perl version 5.16.2 documentation - perlwin32

Page 3http://perldoc.perl.org

You will also need to download the "Windows SDK" (the "Core SDK" and "MDAC
 SDK"
components are required) for more header files and libraries.

These packages can both be downloaded by searching in the Download Center at
http://www.microsoft.com/downloads/search.aspx?displaylang=en. (Providing exact
 links to
these packages has proven a pointless task because the links keep on
 changing so often.)

Try to obtain the latest version of the Windows SDK. Sometimes these packages
 contain a
particular Windows OS version in their name, but actually work on
 other OS versions too. For
example, the "Windows Server 2003 R2 Platform SDK"
 also runs on Windows XP SP2 and
Windows 2000.

Install Visual C++ 2005 first, then the Platform SDK. Setup your environment
 as follows
(assuming default installation locations were chosen):

	 SET PlatformSDKDir=C:\Program Files\Microsoft Platform SDK

	 SET PATH=%SystemRoot%\system32;%SystemRoot%;C:\Program
Files\Microsoft Visual Studio 8\Common7\IDE;C:\Program
Files\Microsoft Visual Studio 8\VC\BIN;C:\Program Files\Microsoft
Visual Studio 8\Common7\Tools;C:\Program Files\Microsoft Visual
Studio
8\SDK\v2.0\bin;C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;C:\Progr
am Files\Microsoft Visual Studio 8\VC\VCPackages;%PlatformSDKDir%\Bin

	 SET INCLUDE=C:\Program Files\Microsoft Visual Studio
8\VC\INCLUDE;%PlatformSDKDir%\include

	 SET LIB=C:\Program Files\Microsoft Visual Studio 8\VC\LIB;C:\Program
 Files\Microsoft Visual Studio 8\SDK\v2.0\lib;%PlatformSDKDir%\lib

	 SET LIBPATH=C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727

(The PlatformSDKDir might need to be set differently depending on which version
 you are
using. Earlier versions installed into "C:\Program Files\Microsoft SDK",
 while the latest
versions install into version-specific locations such as
 "C:\Program Files\Microsoft Platform
SDK for Windows Server 2003 R2".)

Perl should now build using the win32/Makefile. You will need to edit that
 file to set

	 CCTYPE = MSVC80FREE

and to set CCHOME, CCINCDIR and CCLIBDIR as per the environment setup above.

Microsoft Visual C++ Toolkit 2003

This free toolkit contains the same compiler and linker that ship with
 Visual C++ .NET 2003
Professional, but doesn't contain everything
 necessary to build Perl.

You will also need to download the "Platform SDK" (the "Core SDK" and "MDAC
 SDK"
components are required) for header files, libraries and rc.exe, and
 ".NET Framework SDK"
for more libraries and nmake.exe. Note that the latter
 (which also includes the free compiler
and linker) requires the ".NET
 Framework Redistributable" to be installed first. This can be
downloaded and
 installed separately, but is included in the "Visual C++ Toolkit 2003" anyway.

These packages can all be downloaded by searching in the Download Center at
http://www.microsoft.com/downloads/search.aspx?displaylang=en. (Providing exact
 links to
these packages has proven a pointless task because the links keep on
 changing so often.)

Try to obtain the latest version of the Windows SDK. Sometimes these packages
 contain a
particular Windows OS version in their name, but actually work on
 other OS versions too. For
example, the "Windows Server 2003 R2 Platform SDK"
 also runs on Windows XP SP2 and
Windows 2000.

Perl version 5.16.2 documentation - perlwin32

Page 4http://perldoc.perl.org

Install the Toolkit first, then the Platform SDK, then the .NET Framework SDK.
 Setup your
environment as follows (assuming default installation locations
 were chosen):

	 SET PlatformSDKDir=C:\Program Files\Microsoft Platform SDK

	 SET PATH=%SystemRoot%\system32;%SystemRoot%;C:\Program
Files\Microsoft Visual C++ Toolkit
2003\bin;%PlatformSDKDir%\Bin;C:\Program
Files\Microsoft.NET\SDK\v1.1\Bin

	 SET INCLUDE=C:\Program Files\Microsoft Visual C++ Toolkit
2003\include;%PlatformSDKDir%\include;C:\Program Files\Microsoft
Visual Studio .NET 2003\Vc7\include

	 SET LIB=C:\Program Files\Microsoft Visual C++ Toolkit
2003\lib;%PlatformSDKDir%\lib;C:\Program Files\Microsoft Visual
Studio .NET 2003\Vc7\lib

(The PlatformSDKDir might need to be set differently depending on which version
 you are
using. Earlier versions installed into "C:\Program Files\Microsoft SDK",
 while the latest
versions install into version-specific locations such as
 "C:\Program Files\Microsoft Platform
SDK for Windows Server 2003 R2".)

Several required files will still be missing:

cvtres.exe is required by link.exe when using a .res file. It is actually
 installed by the
.NET Framework SDK, but into a location such as the
 following:

	 C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322

Copy it from there to %PlatformSDKDir%\Bin

lib.exe is normally used to build libraries, but link.exe with the /lib
 option also works, so
change win32/config.vc to use it instead:

Change the line reading:

	 ar='lib'

to:

	 ar='link /lib'

It may also be useful to create a batch file called lib.bat in
 C:\Program Files\Microsoft
Visual C++ Toolkit 2003\bin containing:

	 @echo off
	 link /lib %*

for the benefit of any naughty C extension modules that you might want to build
 later
which explicitly reference "lib" rather than taking their value from
 $Config{ar}.

setargv.obj is required to build perlglob.exe (and perl.exe if the USE_SETARGV
 option
is enabled). The Platform SDK supplies this object file in source form
 in
%PlatformSDKDir%\src\crt. Copy setargv.c, cruntime.h and
 internal.h from there to
some temporary location and build setargv.obj using

	 cl.exe /c /I. /D_CRTBLD setargv.c

Then copy setargv.obj to %PlatformSDKDir%\lib

Alternatively, if you don't need perlglob.exe and don't need to enable the

USE_SETARGV option then you can safely just remove all mention of $(GLOBEXE)

Perl version 5.16.2 documentation - perlwin32

Page 5http://perldoc.perl.org

from win32/Makefile and setargv.obj won't be required anyway.

Perl should now build using the win32/Makefile. You will need to edit that
 file to set

	 CCTYPE = MSVC70FREE

and to set CCHOME, CCINCDIR and CCLIBDIR as per the environment setup above.

Microsoft Platform SDK 64-bit Compiler

The nmake that comes with the Platform SDK will suffice for building
 Perl. Make sure you are
building within one of the "Build Environment"
 shells available after you install the Platform
SDK from the Start Menu.

MinGW release 3 with gcc

Perl can be compiled with gcc from MinGW release 3 and later (using gcc 3.2.x
 and later). It
can be downloaded here:

http://www.mingw.org/

You also need dmake. See Make above on how to get it.

Building
Make sure you are in the "win32" subdirectory under the perl toplevel.
 This directory contains
a "Makefile" that will work with
 versions of nmake that come with Visual C++ or the Windows
SDK, and
 a dmake "makefile.mk" that will work for all supported compilers. The
 defaults in the
dmake makefile are setup to build using MinGW/gcc.

Edit the makefile.mk (or Makefile, if you're using nmake) and change
 the values of INST_DRV
and INST_TOP. You can also enable various
 build flags. These are explained in the
makefiles.

Note that it is generally not a good idea to try to build a perl with
 INST_DRV and INST_TOP
set to a path that already exists from a previous
 build. In particular, this may cause problems
with the
 lib/ExtUtils/t/Embed.t test, which attempts to build a test program and
 may end up
building against the installed perl's lib/CORE directory rather
 than the one being tested.

You will have to make sure that CCTYPE is set correctly and that
 CCHOME points to
wherever you installed your compiler.

If building with the cross-compiler provided by
 mingw-w64.sourceforge.net you'll need to
uncomment the line that sets
 GCCCROSS in the makefile.mk. Do this only if it's the
cross-compiler - ie
 only if the bin folder doesn't contain a gcc.exe. (The cross-compiler
 does
not provide a gcc.exe, g++.exe, ar.exe, etc. Instead, all of these
 executables are prefixed with
'x86_64-w64-mingw32-'.)

The default value for CCHOME in the makefiles for Visual C++
 may not be correct for some
versions. Make sure the default exists
 and is valid.

You may also need to comment out the DELAYLOAD = ... line in the
 Makefile if you're using
VC++ 6.0 without the latest service pack and
 the linker reports an internal error.

If you want build some core extensions statically into perl's dll, specify
 them in the
STATIC_EXT macro.

Be sure to read the instructions near the top of the makefiles carefully.

Type "dmake" (or "nmake" if you are using that make).

This should build everything. Specifically, it will create perl.exe,
 perl516.dll at the perl toplevel,
and various other extension dll's
 under the lib\auto directory. If the build fails for any reason,
make
 sure you have done the previous steps correctly.

Perl version 5.16.2 documentation - perlwin32

Page 6http://perldoc.perl.org

Testing Perl on Windows
Type "dmake test" (or "nmake test"). This will run most of the tests from
 the testsuite (many tests will
be skipped).

There should be no test failures.

Some test failures may occur if you use a command shell other than the
 native "cmd.exe", or if you
are building from a path that contains
 spaces. So don't do that.

If you are running the tests from a emacs shell window, you may see
 failures in op/stat.t. Run "dmake
test-notty" in that case.

If you run the tests on a FAT partition, you may see some failures for link() related tests (op/write.t,
op/stat.t ...). Testing on
 NTFS avoids these errors.

Furthermore, you should make sure that during make test you do not
 have any GNU tool packages
in your path: some toolkits like Unixutils
 include some tools (type for instance) which override the
Windows
 ones and makes tests fail. Remove them from your path while testing to
 avoid these errors.

Please report any other failures as described under BUGS AND CAVEATS.

Installation of Perl on Windows
Type "dmake install" (or "nmake install"). This will put the newly
 built perl and the libraries under
whatever INST_TOP points to in the
 Makefile. It will also install the pod documentation under
$INST_TOP\$INST_VER\lib\pod and HTML versions of the same under
$INST_TOP\$INST_VER\lib\pod\html.

To use the Perl you just installed you will need to add a new entry to
 your PATH environment
variable: $INST_TOP\bin, e.g.

 set PATH=c:\perl\bin;%PATH%

If you opted to uncomment INST_VER and INST_ARCH in the makefile
 then the installation structure
is a little more complicated and you will
 need to add two new PATH components instead:
$INST_TOP\$INST_VER\bin and $INST_TOP\$INST_VER\bin\$ARCHNAME, e.g.

 set PATH=c:\perl\5.6.0\bin;c:\perl\5.6.0\bin\MSWin32-x86;%PATH%

Usage Hints for Perl on Windows
Environment Variables

The installation paths that you set during the build get compiled
 into perl, so you don't have to
do anything additional to start
 using that perl (except add its location to your PATH variable).

If you put extensions in unusual places, you can set PERL5LIB
 to a list of paths separated by
semicolons where you want perl
 to look for libraries. Look for descriptions of other
environment
 variables you can set in perlrun.

You can also control the shell that perl uses to run system() and
 backtick commands via
PERL5SHELL. See perlrun.

Perl does not depend on the registry, but it can look up certain default
 values if you choose to
put them there. Perl attempts to read entries from HKEY_CURRENT_USER\Software\Perl
and HKEY_LOCAL_MACHINE\Software\Perl.
 Entries in the former override entries in the
latter. One or more of the
 following entries (of type REG_SZ or REG_EXPAND_SZ) may be
set:

 lib-$]		 version-specific standard library path to add to @INC
 lib			 standard library path to add to @INC
 sitelib-$]		 version-specific site library path to add to @INC
 sitelib		 site library path to add to @INC

Perl version 5.16.2 documentation - perlwin32

Page 7http://perldoc.perl.org

 vendorlib-$]	 version-specific vendor library path to add to @INC
 vendorlib		 vendor library path to add to @INC
 PERL*		 fallback for all %ENV lookups that begin with "PERL"

Note the $] in the above is not literal. Substitute whatever version
 of perl you want to honor
that entry, e.g. 5.6.0. Paths must be
 separated with semicolons, as usual on Windows.

File Globbing

By default, perl handles file globbing using the File::Glob extension,
 which provides portable
globbing.

If you want perl to use globbing that emulates the quirks of DOS
 filename conventions, you
might want to consider using File::DosGlob
 to override the internal glob() implementation. See
File::DosGlob for
 details.

Using perl from the command line

If you are accustomed to using perl from various command-line
 shells found in UNIX
environments, you will be less than pleased
 with what Windows offers by way of a command
shell.

The crucial thing to understand about the Windows environment is that
 the command line you
type in is processed twice before Perl sees it.
 First, your command shell (usually CMD.EXE)
preprocesses the command
 line, to handle redirection, environment variable expansion, and

location of the executable to run. Then, the perl executable splits
 the remaining command line
into individual arguments, using the
 C runtime library upon which Perl was built.

It is particularly important to note that neither the shell nor the C
 runtime do any wildcard
expansions of command-line arguments (so
 wildcards need not be quoted). Also, the quoting
behaviours of the
 shell and the C runtime are rudimentary at best (and may, if you are
 using a
non-standard shell, be inconsistent). The only (useful) quote
 character is the double quote (").
It can be used to protect spaces
 and other special characters in arguments.

The Windows documentation describes the shell parsing rules here:
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en
-us/cmd.mspx?mfr=true
 and the C runtime parsing rules here:
http://msdn.microsoft.com/en-us/library/17w5ykft%28v=VS.100%29.aspx.

Here are some further observations based on experiments: The C runtime
 breaks arguments
at spaces and passes them to programs in argc/argv.
 Double quotes can be used to prevent
arguments with spaces in them from
 being split up. You can put a double quote in an
argument by escaping
 it with a backslash and enclosing the whole argument within double
quotes.
 The backslash and the pair of double quotes surrounding the argument will
 be
stripped by the C runtime.

The file redirection characters "<", ">", and "|" can be quoted by
 double quotes (although there
are suggestions that this may not always
 be true). Single quotes are not treated as quotes by
the shell or
 the C runtime, they don't get stripped by the shell (just to make
 this type of quoting
completely useless). The caret "^" has also
 been observed to behave as a quoting character,
but this appears
 to be a shell feature, and the caret is not stripped from the command
 line, so
Perl still sees it (and the C runtime phase does not treat
 the caret as a quote character).

Here are some examples of usage of the "cmd" shell:

This prints two doublequotes:

 perl -e "print '\"\"' "

This does the same:

 perl -e "print \"\\\"\\\"\" "

This prints "bar" and writes "foo" to the file "blurch":

Perl version 5.16.2 documentation - perlwin32

Page 8http://perldoc.perl.org

 perl -e "print 'foo'; print STDERR 'bar'" > blurch

This prints "foo" ("bar" disappears into nowhereland):

 perl -e "print 'foo'; print STDERR 'bar'" 2> nul

This prints "bar" and writes "foo" into the file "blurch":

 perl -e "print 'foo'; print STDERR 'bar'" 1> blurch

This pipes "foo" to the "less" pager and prints "bar" on the console:

 perl -e "print 'foo'; print STDERR 'bar'" | less

This pipes "foo\nbar\n" to the less pager:

 perl -le "print 'foo'; print STDERR 'bar'" 2>&1 | less

This pipes "foo" to the pager and writes "bar" in the file "blurch":

 perl -e "print 'foo'; print STDERR 'bar'" 2> blurch | less

Discovering the usefulness of the "command.com" shell on Windows 9x
 is left as an exercise
to the reader :)

One particularly pernicious problem with the 4NT command shell for
 Windows is that it
(nearly) always treats a % character as indicating
 that environment variable expansion is
needed. Under this shell, it is
 therefore important to always double any % characters which
you want
 Perl to see (for example, for hash variables), even when they are
 quoted.

Building Extensions

The Comprehensive Perl Archive Network (CPAN) offers a wealth
 of extensions, some of
which require a C compiler to build.
 Look in http://www.cpan.org/ for more information on
CPAN.

Note that not all of the extensions available from CPAN may work
 in the Windows
environment; you should check the information at http://testers.cpan.org/ before investing too
much effort into
 porting modules that don't readily build.

Most extensions (whether they require a C compiler or not) can
 be built, tested and installed
with the standard mantra:

 perl Makefile.PL
 $MAKE
 $MAKE test
 $MAKE install

where $MAKE is whatever 'make' program you have configured perl to
 use. Use "perl
-V:make" to find out what this is. Some extensions
 may not provide a testsuite (so "$MAKE
test" may not do anything or
 fail), but most serious ones do.

It is important that you use a supported 'make' program, and
 ensure Config.pm knows about it.
If you don't have nmake, you can
 either get dmake from the location mentioned earlier or get
an
 old version of nmake reportedly available from:

http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/nmake15.exe

Another option is to use the make written in Perl, available from
 CPAN.

http://www.cpan.org/modules/by-module/Make/

You may also use dmake. See Make above on how to get it.

Note that MakeMaker actually emits makefiles with different syntax
 depending on what 'make'
it thinks you are using. Therefore, it is
 important that one of the following values appears in
Config.pm:

Perl version 5.16.2 documentation - perlwin32

Page 9http://perldoc.perl.org

 make='nmake'	 # MakeMaker emits nmake syntax
 make='dmake'	 # MakeMaker emits dmake syntax
 any other value	 # MakeMaker emits generic make syntax
 			 (e.g GNU make, or Perl make)

If the value doesn't match the 'make' program you want to use,
 edit Config.pm to fix it.

If a module implements XSUBs, you will need one of the supported
 C compilers. You must
make sure you have set up the environment for
 the compiler for command-line compilation.

If a module does not build for some reason, look carefully for
 why it failed, and report
problems to the module author. If
 it looks like the extension building support is at fault, report

that with full details of how the build failed using the perlbug
 utility.

Command-line Wildcard Expansion

The default command shells on DOS descendant operating systems (such
 as they are)
usually do not expand wildcard arguments supplied to
 programs. They consider it the
application's job to handle that.
 This is commonly achieved by linking the application (in our
case,
 perl) with startup code that the C runtime libraries usually provide.
 However, doing that
results in incompatible perl versions (since the
 behavior of the argv expansion code differs
depending on the
 compiler, and it is even buggy on some compilers). Besides, it may
 be a
source of frustration if you use such a perl binary with an
 alternate shell that *does* expand
wildcards.

Instead, the following solution works rather well. The nice things
 about it are 1) you can start
using it right away; 2) it is more
 powerful, because it will do the right thing with a pattern like

//*.c; 3) you can decide whether you do/don't want to use it; and
 4) you can extend the
method to add any customizations (or even
 entirely different kinds of wildcard expansion).

	 C:\> copy con c:\perl\lib\Wild.pm
	 # Wild.pm - emulate shell @ARGV expansion on shells that don't
	 use File::DosGlob;
	 @ARGV = map {
		 my @g = File::DosGlob::glob($_) if /[*?]/;
		 @g ? @g : $_;
		 } @ARGV;
	 1;
	 ^Z
	 C:\> set PERL5OPT=-MWild
	 C:\> perl -le "for (@ARGV) { print }" */*/perl*.c
	 p4view/perl/perl.c
	 p4view/perl/perlio.c
	 p4view/perl/perly.c
	 perl5.005/win32/perlglob.c
	 perl5.005/win32/perllib.c
	 perl5.005/win32/perlglob.c
	 perl5.005/win32/perllib.c
	 perl5.005/win32/perlglob.c
	 perl5.005/win32/perllib.c

Note there are two distinct steps there: 1) You'll have to create
 Wild.pm and put it in your perl
lib directory. 2) You'll need to
 set the PERL5OPT environment variable. If you want argv
expansion
 to be the default, just set PERL5OPT in your default startup
 environment.

If you are using the Visual C compiler, you can get the C runtime's
 command line wildcard
expansion built into perl binary. The resulting
 binary will always expand unquoted command
lines, which may not be
 what you want if you use a shell that does that for you. The expansion
done is also somewhat less powerful than the approach suggested above.

Notes on 64-bit Windows

Perl version 5.16.2 documentation - perlwin32

Page 10http://perldoc.perl.org

Windows .NET Server supports the LLP64 data model on the Intel Itanium
 architecture.

The LLP64 data model is different from the LP64 data model that is the
 norm on 64-bit Unix
platforms. In the former, int and long are
 both 32-bit data types, while pointers are 64 bits
wide. In addition,
 there is a separate 64-bit wide integral type, __int64. In contrast,
 the LP64
data model that is pervasive on Unix platforms provides int
 as the 32-bit type, while both the
long type and pointers are of
 64-bit precision. Note that both models provide for 64-bits of

addressability.

64-bit Windows running on Itanium is capable of running 32-bit x86
 binaries transparently.
This means that you could use a 32-bit build
 of Perl on a 64-bit system. Given this, why would
one want to build
 a 64-bit build of Perl? Here are some reasons why you would bother:

A 64-bit native application will run much more efficiently on
 Itanium hardware.

There is no 2GB limit on process size.

Perl automatically provides large file support when built under
 64-bit Windows.

Embedding Perl inside a 64-bit application.

Running Perl Scripts
Perl scripts on UNIX use the "#!" (a.k.a "shebang") line to
 indicate to the OS that it should execute the
file using perl.
 Windows has no comparable means to indicate arbitrary files are
 executables.

Instead, all available methods to execute plain text files on
 Windows rely on the file "extension". There
are three methods
 to use this to execute perl scripts:

1 There is a facility called "file extension associations". This can be
 manipulated via the
two commands "assoc" and "ftype" that come
 standard with Windows. Type "ftype /?"
for a complete example of how
 to set this up for perl scripts (Say what? You thought
Windows
 wasn't perl-ready? :).

2 Since file associations don't work everywhere, and there are
 reportedly bugs with file
associations where it does work, the
 old method of wrapping the perl script to make it
look like a
 regular batch file to the OS, may be used. The install process
 makes
available the "pl2bat.bat" script which can be used to wrap
 perl scripts into batch files.
For example:

	 pl2bat foo.pl

will create the file "FOO.BAT". Note "pl2bat" strips any
 .pl suffix and adds a .bat suffix
to the generated file.

If you use the 4DOS/NT or similar command shell, note that
 "pl2bat" uses the "%*"
variable in the generated batch file to
 refer to all the command line arguments, so you
may need to make
 sure that construct works in batch files. As of this writing,
 4DOS/NT
users will need a "ParameterChar = *" statement in their
 4NT.INI file or will need to
execute "setdos /p*" in the 4DOS/NT
 startup file to enable this to work.

3 Using "pl2bat" has a few problems: the file name gets changed,
 so scripts that rely on
$0 to find what they must do may not
 run properly; running "pl2bat" replicates the
contents of the
 original script, and so this process can be maintenance intensive
 if the
originals get updated often. A different approach that
 avoids both problems is possible.

A script called "runperl.bat" is available that can be copied
 to any filename (along with
the .bat suffix). For example,
 if you call it "foo.bat", it will run the file "foo" when it is

executed. Since you can run batch files on Windows platforms simply
 by typing the
name (without the extension), this effectively
 runs the file "foo", when you type either
"foo" or "foo.bat".
 With this method, "foo.bat" can even be in a different location
 than
the file "foo", as long as "foo" is available somewhere on
 the PATH. If your scripts are
on a filesystem that allows symbolic
 links, you can even avoid copying "runperl.bat".

Perl version 5.16.2 documentation - perlwin32

Page 11http://perldoc.perl.org

Here's a diversion: copy "runperl.bat" to "runperl", and type
 "runperl". Explain the
observed behavior, or lack thereof. :)
 Hint: .gnidnats llits er'uoy fi ,"lrepnur" eteled :tniH

Miscellaneous Things
A full set of HTML documentation is installed, so you should be
 able to use it if you have a web
browser installed on your
 system.

perldoc is also a useful tool for browsing information contained
 in the documentation, especially in
conjunction with a pager
 like less (recent versions of which have Windows support). You may
 have
to set the PAGER environment variable to use a specific pager.
 "perldoc -f foo" will print information
about the perl operator
 "foo".

One common mistake when using this port with a GUI library like Tk
 is assuming that Perl's normal
behavior of opening a command-line
 window will go away. This isn't the case. If you want to start a
copy
 of perl without opening a command-line window, use the wperl
 executable built during the
installation process. Usage is exactly
 the same as normal perl on Windows, except that options like
-h
 don't work (since they need a command-line window to print to).

If you find bugs in perl, you can run perlbug to create a
 bug report (you may have to send it
manually if perlbug cannot
 find a mailer on your system).

BUGS AND CAVEATS
Norton AntiVirus interferes with the build process, particularly if
 set to "AutoProtect, All Files, when
Opened". Unlike large applications
 the perl build process opens and modifies a lot of files. Having the

the AntiVirus scan each and every one slows build the process significantly.
 Worse, with
PERLIO=stdio the build process fails with peculiar messages
 as the virus checker interacts badly with
miniperl.exe writing configure
 files (it seems to either catch file part written and treat it as suspicious,

or virus checker may have it "locked" in a way which inhibits miniperl
 updating it). The build does
complete with

 set PERLIO=perlio

but that may be just luck. Other AntiVirus software may have similar issues.

Some of the built-in functions do not act exactly as documented in perlfunc, and a few are not
implemented at all. To avoid
 surprises, particularly if you have had prior exposure to Perl
 in other
operating environments or if you intend to write code
 that will be portable to other environments, see
perlport
 for a reasonably definitive list of these differences.

Not all extensions available from CPAN may build or work properly
 in the Windows environment. See
Building Extensions.

Most socket() related calls are supported, but they may not
 behave as on Unix platforms. See
perlport for the full list.

Signal handling may not behave as on Unix platforms (where it
 doesn't exactly "behave", either :). For
instance, calling die()
 or exit() from signal handlers will cause an exception, since most

implementations of signal() on Windows are severely crippled.
 Thus, signals may work only for
simple things like setting a flag
 variable in the handler. Using signals under this port should
 currently
be considered unsupported.

Please send detailed descriptions of any problems and solutions that
 you may find to <
perlbug@perl.org>, along with the output
 produced by perl -V.

ACKNOWLEDGEMENTS
The use of a camel with the topic of Perl is a trademark
 of O'Reilly and Associates, Inc. Used with
permission.

Perl version 5.16.2 documentation - perlwin32

Page 12http://perldoc.perl.org

AUTHORS
Gary Ng <71564.1743@CompuServe.COM>

Gurusamy Sarathy <gsar@activestate.com>

Nick Ing-Simmons <nick@ing-simmons.net>

Jan Dubois <jand@activestate.com>

Steve Hay <steve.m.hay@googlemail.com>

This document is maintained by Jan Dubois.

SEE ALSO
perl

HISTORY
This port was originally contributed by Gary Ng around 5.003_24,
 and borrowed from the Hip
Communications port that was available
 at the time. Various people have made numerous and sundry
hacks
 since then.

GCC/mingw32 support was added in 5.005 (Nick Ing-Simmons).

Support for PERL_OBJECT was added in 5.005 (ActiveState Tool Corp).

Support for fork() emulation was added in 5.6 (ActiveState Tool Corp).

Win9x support was added in 5.6 (Benjamin Stuhl).

Support for 64-bit Windows added in 5.8 (ActiveState Corp).

Last updated: 10 September 2011

