
Perl version 5.18.2 documentation - Digest::MD5

Page 1http://perldoc.perl.org

NAME
Digest::MD5 - Perl interface to the MD5 Algorithm

SYNOPSIS
 # Functional style
 use Digest::MD5 qw(md5 md5_hex md5_base64);

 $digest = md5($data);
 $digest = md5_hex($data);
 $digest = md5_base64($data);

 # OO style
 use Digest::MD5;

 $ctx = Digest::MD5->new;

 $ctx->add($data);
 $ctx->addfile($file_handle);

 $digest = $ctx->digest;
 $digest = $ctx->hexdigest;
 $digest = $ctx->b64digest;

DESCRIPTION
The Digest::MD5 module allows you to use the RSA Data Security
 Inc. MD5 Message Digest
algorithm from within Perl programs. The
 algorithm takes as input a message of arbitrary length and
produces as
 output a 128-bit "fingerprint" or "message digest" of the input.

Note that the MD5 algorithm is not as strong as it used to be. It has
 since 2005 been easy to generate
different messages that produce the
 same MD5 digest. It still seems hard to generate messages that

produce a given digest, but it is probably wise to move to stronger
 algorithms for applications that
depend on the digest to uniquely identify
 a message.

The Digest::MD5 module provide a procedural interface for simple
 use, as well as an object
oriented interface that can handle messages
 of arbitrary length and which can read files directly.

FUNCTIONS
The following functions are provided by the Digest::MD5 module.
 None of these functions are
exported by default.

md5($data,...)

This function will concatenate all arguments, calculate the MD5 digest
 of this "message", and
return it in binary form. The returned string
 will be 16 bytes long.

The result of md5("a", "b", "c") will be exactly the same as the
 result of md5("abc").

md5_hex($data,...)

Same as md5(), but will return the digest in hexadecimal form. The
 length of the returned
string will be 32 and it will only contain
 characters from this set: '0'..'9' and 'a'..'f'.

md5_base64($data,...)

Same as md5(), but will return the digest as a base64 encoded string.
 The length of the
returned string will be 22 and it will only contain
 characters from this set: 'A'..'Z', 'a'..'z', '0'..'9',
'+' and
 '/'.

Perl version 5.18.2 documentation - Digest::MD5

Page 2http://perldoc.perl.org

Note that the base64 encoded string returned is not padded to be a
 multiple of 4 bytes long. If
you want interoperability with other
 base64 encoded md5 digests you might want to append
the redundant
 string "==" to the result.

METHODS
The object oriented interface to Digest::MD5 is described in this
 section. After a Digest::MD5
object has been created, you will add
 data to it and finally ask for the digest in a suitable format. A

single object can be used to calculate multiple digests.

The following methods are provided:

$md5 = Digest::MD5->new

The constructor returns a new Digest::MD5 object which encapsulate
 the state of the MD5
message-digest algorithm.

If called as an instance method (i.e. $md5->new) it will just reset the
 state the object to the
state of a newly created object. No new
 object is created in this case.

$md5->reset

This is just an alias for $md5->new.

$md5->clone

This a copy of the $md5 object. It is useful when you do not want to
 destroy the digests state,
but need an intermediate value of the
 digest, e.g. when calculating digests iteratively on a
continuous data
 stream. Example:

 my $md5 = Digest::MD5->new;
 while (<>) {
	 $md5->add($_);
	 print "Line $.: ", $md5->clone->hexdigest, "\n";
 }

$md5->add($data,...)

The $data provided as argument are appended to the message we
 calculate the digest for.
The return value is the $md5 object itself.

All these lines will have the same effect on the state of the $md5
 object:

 $md5->add("a"); $md5->add("b"); $md5->add("c");
 $md5->add("a")->add("b")->add("c");
 $md5->add("a", "b", "c");
 $md5->add("abc");

$md5->addfile($io_handle)

The $io_handle will be read until EOF and its content appended to the
 message we calculate
the digest for. The return value is the $md5
 object itself.

The addfile() method will croak() if it fails reading data for some
 reason. If it croaks it is
unpredictable what the state of the $md5
 object will be in. The addfile() method might have
been able to read
 the file partially before it failed. It is probably wise to discard
 or reset the
$md5 object if this occurs.

In most cases you want to make sure that the $io_handle is in binmode before you pass it as
argument to the addfile() method.

$md5->add_bits($data, $nbits)

$md5->add_bits($bitstring)

Since the MD5 algorithm is byte oriented you might only add bits as
 multiples of 8, so you
probably want to just use add() instead. The
 add_bits() method is provided for compatibility

Perl version 5.18.2 documentation - Digest::MD5

Page 3http://perldoc.perl.org

with other digest
 implementations. See Digest for description of the arguments
 that add_bits()
take.

$md5->digest

Return the binary digest for the message. The returned string will be
 16 bytes long.

Note that the digest operation is effectively a destructive,
 read-once operation. Once it has
been performed, the Digest::MD5
 object is automatically reset and can be used to
calculate another
 digest value. Call $md5->clone->digest if you want to calculate the
 digest
without resetting the digest state.

$md5->hexdigest

Same as $md5->digest, but will return the digest in hexadecimal
 form. The length of the
returned string will be 32 and it will only
 contain characters from this set: '0'..'9' and 'a'..'f'.

$md5->b64digest

Same as $md5->digest, but will return the digest as a base64 encoded
 string. The length of
the returned string will be 22 and it will only
 contain characters from this set: 'A'..'Z', 'a'..'z',
'0'..'9', '+'
 and '/'.

The base64 encoded string returned is not padded to be a multiple of 4
 bytes long. If you want
interoperability with other base64 encoded
 md5 digests you might want to append the string
"==" to the result.

EXAMPLES
The simplest way to use this library is to import the md5_hex()
 function (or one of its cousins):

 use Digest::MD5 qw(md5_hex);
 print "Digest is ", md5_hex("foobarbaz"), "\n";

The above example would print out the message:

 Digest is 6df23dc03f9b54cc38a0fc1483df6e21

The same checksum can also be calculated in OO style:

 use Digest::MD5;

 $md5 = Digest::MD5->new;
 $md5->add('foo', 'bar');
 $md5->add('baz');
 $digest = $md5->hexdigest;

 print "Digest is $digest\n";

With OO style, you can break the message arbitrarily. This means that we
 are no longer limited to
have space for the whole message in memory, i.e.
 we can handle messages of any size.

This is useful when calculating checksum for files:

 use Digest::MD5;

 my $filename = shift || "/etc/passwd";
 open (my $fh, '<', $filename) or die "Can't open '$filename': $!";
 binmode($fh);

 $md5 = Digest::MD5->new;

Perl version 5.18.2 documentation - Digest::MD5

Page 4http://perldoc.perl.org

 while (<$fh>) {
 $md5->add($_);
 }
 close($fh);
 print $md5->b64digest, " $filename\n";

Or we can use the addfile method for more efficient reading of
 the file:

 use Digest::MD5;

 my $filename = shift || "/etc/passwd";
 open (my $fh, '<', $filename) or die "Can't open '$filename': $!";
 binmode ($fh);

 print Digest::MD5->new->addfile($fh)->hexdigest, " $filename\n";

Perl 5.8 support Unicode characters in strings. Since the MD5
 algorithm is only defined for strings of
bytes, it can not be used on
 strings that contains chars with ordinal number above 255. The MD5

functions and methods will croak if you try to feed them such input
 data:

 use Digest::MD5 qw(md5_hex);

 my $str = "abc\x{300}";
 print md5_hex($str), "\n"; # croaks
 # Wide character in subroutine entry

What you can do is calculate the MD5 checksum of the UTF-8
 representation of such strings. This is
achieved by filtering the
 string through encode_utf8() function:

 use Digest::MD5 qw(md5_hex);
 use Encode qw(encode_utf8);

 my $str = "abc\x{300}";
 print md5_hex(encode_utf8($str)), "\n";
 # 8c2d46911f3f5a326455f0ed7a8ed3b3

SEE ALSO
Digest, Digest::MD2, Digest::SHA, Digest::HMAC

md5sum(1)

RFC 1321

http://en.wikipedia.org/wiki/MD5

The paper "How to Break MD5 and Other Hash Functions" by Xiaoyun Wang
 and Hongbo Yu.

COPYRIGHT
This library is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

 Copyright 1998-2003 Gisle Aas.
 Copyright 1995-1996 Neil Winton.
 Copyright 1991-1992 RSA Data Security, Inc.

Perl version 5.18.2 documentation - Digest::MD5

Page 5http://perldoc.perl.org

The MD5 algorithm is defined in RFC 1321. This implementation is
 derived from the reference C code
in RFC 1321 which is covered by
 the following copyright statement:

Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
 rights reserved.

License to copy and use this software is granted provided that it
 is identified as the "RSA Data
Security, Inc. MD5 Message-Digest
 Algorithm" in all material mentioning or referencing this
software
 or this function.

License is also granted to make and use derivative works provided
 that such works are
identified as "derived from the RSA Data
 Security, Inc. MD5 Message-Digest Algorithm" in all
material
 mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
 the merchantability of
this software or the suitability of this
 software for any particular purpose. It is provided "as is"

without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
 documentation and/or
software.

This copyright does not prohibit distribution of any version of Perl
 containing this extension under the
terms of the GNU or Artistic
 licenses.

AUTHORS
The original MD5 interface was written by Neil Winton
 (N.Winton@axion.bt.co.uk).

The Digest::MD5 module is written by Gisle Aas <gisle@ActiveState.com>.

