
Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 1http://perldoc.perl.org

NAME
ExtUtils::MM_Any - Platform-agnostic MM methods

SYNOPSIS
 FOR INTERNAL USE ONLY!

 package ExtUtils::MM_SomeOS;

 # Temporarily, you have to subclass both. Put MM_Any first.
 require ExtUtils::MM_Any;
 require ExtUtils::MM_Unix;
 @ISA = qw(ExtUtils::MM_Any ExtUtils::Unix);

DESCRIPTION
FOR INTERNAL USE ONLY!

ExtUtils::MM_Any is a superclass for the ExtUtils::MM_* set of
 modules. It contains methods which
are either inherently
 cross-platform or are written in a cross-platform manner.

Subclass off of ExtUtils::MM_Any and ExtUtils::MM_Unix. This is a
 temporary solution.

THIS MAY BE TEMPORARY!

METHODS
Any methods marked Abstract must be implemented by subclasses.

Cross-platform helper methods
These are methods which help writing cross-platform code.

os_flavor Abstract

 my @os_flavor = $mm->os_flavor;

@os_flavor is the style of operating system this is, usually
 corresponding to the MM_*.pm file we're
using.

The first element of @os_flavor is the major family (ie. Unix,
 Windows, VMS, OS/2, etc...) and the rest
are sub families.

Some examples:

 Cygwin98 ('Unix', 'Cygwin', 'Cygwin9x')
 Windows ('Win32')
 Win98 ('Win32', 'Win9x')
 Linux ('Unix', 'Linux')
 MacOS X ('Unix', 'Darwin', 'MacOS', 'MacOS X')
 OS/2 ('OS/2')

This is used to write code for styles of operating system. See os_flavor_is() for use.

os_flavor_is

 my $is_this_flavor = $mm->os_flavor_is($this_flavor);
 my $is_this_flavor = $mm->os_flavor_is(@one_of_these_flavors);

Checks to see if the current operating system is one of the given flavors.

This is useful for code like:

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 2http://perldoc.perl.org

 if($mm->os_flavor_is('Unix')) {
 $out = `foo 2>&1`;
 }
 else {
 $out = `foo`;
 }

can_load_xs

 my $can_load_xs = $self->can_load_xs;

Returns true if we have the ability to load XS.

This is important because miniperl, used to build XS modules in the
 core, can not load XS.

split_command

 my @cmds = $MM->split_command($cmd, @args);

Most OS have a maximum command length they can execute at once. Large
 modules can easily
generate commands well past that limit. Its
 necessary to split long commands up into a series of
shorter commands.

split_command will return a series of @cmds each processing part of
 the args. Collectively they will
process all the arguments. Each
 individual line in @cmds will not be longer than the

$self->max_exec_len being careful to take into account macro expansion.

$cmd should include any switches and repeated initial arguments.

If no @args are given, no @cmds will be returned.

Pairs of arguments will always be preserved in a single command, this
 is a heuristic for things like
pm_to_blib and pod2man which work on
 pairs of arguments. This makes things like this safe:

 $self->split_command($cmd, %pod2man);

echo

 my @commands = $MM->echo($text);
 my @commands = $MM->echo($text, $file);
 my @commands = $MM->echo($text, $file, \%opts);

Generates a set of @commands which print the $text to a $file.

If $file is not given, output goes to STDOUT.

If $opts{append} is true the $file will be appended to rather than
 overwritten. Default is to overwrite.

If $opts{allow_variables} is true, make variables of the form $(...) will not be escaped. Other $ will.
Default is to escape
 all $.

Example of use:

 my $make = map "\t$_\n", $MM->echo($text, $file);

wraplist

 my $args = $mm->wraplist(@list);

Takes an array of items and turns them into a well-formatted list of
 arguments. In most cases this is

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 3http://perldoc.perl.org

simply something like:

 FOO \
 BAR \
 BAZ

maketext_filter

 my $filter_make_text = $mm->maketext_filter($make_text);

The text of the Makefile is run through this method before writing to
 disk. It allows systems a chance
to make portability fixes to the
 Makefile.

By default it does nothing.

This method is protected and not intended to be called outside of
 MakeMaker.

cd Abstract

 my $subdir_cmd = $MM->cd($subdir, @cmds);

This will generate a make fragment which runs the @cmds in the given
 $dir. The rough equivalent to
this, except cross platform.

 cd $subdir && $cmd

Currently $dir can only go down one level. "foo" is fine. "foo/bar" is
 not. "../foo" is right out.

The resulting $subdir_cmd has no leading tab nor trailing newline. This
 makes it easier to embed in a
make string. For example.

 my $make = sprintf <<'CODE', $subdir_cmd;
 foo :
 $(ECHO) what
 %s
 $(ECHO) mouche
 CODE

oneliner Abstract

 my $oneliner = $MM->oneliner($perl_code);
 my $oneliner = $MM->oneliner($perl_code, \@switches);

This will generate a perl one-liner safe for the particular platform
 you're on based on the given
$perl_code and @switches (a -e is
 assumed) suitable for using in a make target. It will use the proper

shell quoting and escapes.

$(PERLRUN) will be used as perl.

Any newlines in $perl_code will be escaped. Leading and trailing
 newlines will be stripped. Makes this
idiom much easier:

 my $code = $MM->oneliner(<<'CODE', [...switches...]);
some code here
another line here
CODE

Usage might be something like:

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 4http://perldoc.perl.org

 # an echo emulation
 $oneliner = $MM->oneliner('print "Foo\n"');
 $make = '$oneliner > somefile';

All dollar signs must be doubled in the $perl_code if you expect them
 to be interpreted normally,
otherwise it will be considered a make
 macro. Also remember to quote make macros else it might be
used as a
 bareword. For example:

 # Assign the value of the $(VERSION_FROM) make macro to $vf.
 $oneliner = $MM->oneliner('$$vf = "$(VERSION_FROM)"');

Its currently very simple and may be expanded sometime in the figure
 to include more flexible code
and switches.

quote_literal Abstract

 my $safe_text = $MM->quote_literal($text);
 my $safe_text = $MM->quote_literal($text, \%options);

This will quote $text so it is interpreted literally in the shell.

For example, on Unix this would escape any single-quotes in $text and
 put single-quotes around the
whole thing.

If $options{allow_variables} is true it will leave '$(FOO)' make
 variables untouched. If false they will
be escaped like any other $. Defaults to true.

escape_dollarsigns

 my $escaped_text = $MM->escape_dollarsigns($text);

Escapes stray $ so they are not interpreted as make variables.

It lets by $(...).

escape_all_dollarsigns

 my $escaped_text = $MM->escape_all_dollarsigns($text);

Escapes all $ so they are not interpreted as make variables.

escape_newlines Abstract

 my $escaped_text = $MM->escape_newlines($text);

Shell escapes newlines in $text.

max_exec_len Abstract

 my $max_exec_len = $MM->max_exec_len;

Calculates the maximum command size the OS can exec. Effectively,
 this is the max size of a shell
command line.

make

 my $make = $MM->make;

Returns the make variant we're generating the Makefile for. This attempts
 to do some normalization
on the information from %Config or the user.

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 5http://perldoc.perl.org

Targets
These are methods which produce make targets.

all_target

Generate the default target 'all'.

blibdirs_target

 my $make_frag = $mm->blibdirs_target;

Creates the blibdirs target which creates all the directories we use
 in blib/.

The blibdirs.ts target is deprecated. Depend on blibdirs instead.

clean (o)

Defines the clean target.

clean_subdirs_target

 my $make_frag = $MM->clean_subdirs_target;

Returns the clean_subdirs target. This is used by the clean target to
 call clean on any subdirectories
which contain Makefiles.

dir_target

 my $make_frag = $mm->dir_target(@directories);

Generates targets to create the specified directories and set its
 permission to PERM_DIR.

Because depending on a directory to just ensure it exists doesn't work
 too well (the modified time
changes too often) dir_target() creates a
 .exists file in the created directory. It is this you should
depend on.
 For portability purposes you should use the $(DIRFILESEP) macro rather
 than a '/' to
seperate the directory from the file.

 yourdirectory$(DIRFILESEP).exists

distdir

Defines the scratch directory target that will hold the distribution
 before tar-ing (or shar-ing).

dist_test

Defines a target that produces the distribution in the
 scratchdirectory, and runs 'perl Makefile.PL;
make ;make test' in that
 subdirectory.

dynamic (o)

Defines the dynamic target.

makemakerdflt_target

 my $make_frag = $mm->makemakerdflt_target

Returns a make fragment with the makemakerdeflt_target specified.
 This target is the first target in
the Makefile, is the default target
 and simply points off to 'all' just in case any make variant gets

confused or something gets snuck in before the real 'all' target.

manifypods_target

 my $manifypods_target = $self->manifypods_target;

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 6http://perldoc.perl.org

Generates the manifypods target. This target generates man pages from
 all POD files in MAN1PODS
and MAN3PODS.

metafile_target

 my $target = $mm->metafile_target;

Generate the metafile target.

Writes the file META.yml YAML encoded meta-data about the module in
 the distdir. The format
follows Module::Build's as closely as
 possible.

_fix_metadata_before_conversion

 _fix_metadata_before_conversion(\%metadata);

Fixes errors in the metadata before it's handed off to CPAN::Meta for
 conversion. This hopefully
results in something that can be used further
 on, no guarantee is made though.

_sort_pairs

 my @pairs = _sort_pairs($sort_sub, \%hash);

Sorts the pairs of a hash based on keys ordered according to $sort_sub.

metafile_data

 my @metadata_pairs = $mm->metafile_data(\%meta_add, \%meta_merge);

Returns the data which MakeMaker turns into the META.yml file.

Values of %meta_add will overwrite any existing metadata in those
 keys. %meta_merge will be
merged with them.

_dump_hash

 $yaml = _dump_hash(\%options, %hash);

Implements a fake YAML dumper for a hash given
 as a list of pairs. No quoting/escaping is done.
Keys
 are supposed to be strings. Values are undef, strings, hash refs or array refs of strings.

Supported options are:

 delta => STR - indentation delta
 use_header => BOOL - whether to include a YAML header
 indent => STR - a string of spaces
 default: ''

 max_key_length => INT - maximum key length used to align
 keys and values of the same hash
 default: 20
 key_sort => CODE - a sort sub
 It may be undef, which means no sorting by keys
 default: sub { lc $a cmp lc $b }

 customs => HASH - special options for certain keys
 (whose values are hashes themselves)
 may contain: max_key_length, key_sort, customs

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 7http://perldoc.perl.org

metafile_file

 my $meta_yml = $mm->metafile_file(@metadata_pairs);

Turns the @metadata_pairs into YAML.

This method does not implement a complete YAML dumper, being limited
 to dump a hash with values
which are strings, undef's or nested hashes
 and arrays of strings. No quoting/escaping is done.

distmeta_target

 my $make_frag = $mm->distmeta_target;

Generates the distmeta target to add META.yml to the MANIFEST in the
 distdir.

mymeta

 my $mymeta = $mm->mymeta;

Generate MYMETA information as a hash either from an existing META.yml
 or from internal data.

write_mymeta

 $self->write_mymeta($mymeta);

Write MYMETA information to MYMETA.yml.

This will probably be refactored into a more generic YAML dumping method.

realclean (o)

Defines the realclean target.

realclean_subdirs_target

 my $make_frag = $MM->realclean_subdirs_target;

Returns the realclean_subdirs target. This is used by the realclean
 target to call realclean on any
subdirectories which contain Makefiles.

signature_target

 my $target = $mm->signature_target;

Generate the signature target.

Writes the file SIGNATURE with "cpansign -s".

distsignature_target

 my $make_frag = $mm->distsignature_target;

Generates the distsignature target to add SIGNATURE to the MANIFEST in the
 distdir.

special_targets

 my $make_frag = $mm->special_targets

Returns a make fragment containing any targets which have special
 meaning to make. For example,
.SUFFIXES and .PHONY.

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 8http://perldoc.perl.org

Init methods
Methods which help initialize the MakeMaker object and macros.

init_ABSTRACT

 $mm->init_ABSTRACT

init_INST

 $mm->init_INST;

Called by init_main. Sets up all INST_* variables except those related
 to XS code. Those are handled
in init_xs.

init_INSTALL

 $mm->init_INSTALL;

Called by init_main. Sets up all INSTALL_* variables (except
 INSTALLDIRS) and *PREFIX.

init_INSTALL_from_PREFIX

 $mm->init_INSTALL_from_PREFIX;

init_from_INSTALL_BASE

 $mm->init_from_INSTALL_BASE

init_VERSION Abstract

 $mm->init_VERSION

Initialize macros representing versions of MakeMaker and other tools

MAKEMAKER: path to the MakeMaker module.

MM_VERSION: ExtUtils::MakeMaker Version

MM_REVISION: ExtUtils::MakeMaker version control revision (for backwards compat)

VERSION: version of your module

VERSION_MACRO: which macro represents the version (usually 'VERSION')

VERSION_SYM: like version but safe for use as an RCS revision number

DEFINE_VERSION: -D line to set the module version when compiling

XS_VERSION: version in your .xs file. Defaults to $(VERSION)

XS_VERSION_MACRO: which macro represents the XS version.

XS_DEFINE_VERSION: -D line to set the xs version when compiling.

Called by init_main.

init_tools

 $MM->init_tools();

Initializes the simple macro definitions used by tools_other() and
 places them in the $MM object.
These use conservative cross platform
 versions and should be overridden with platform specific
versions for
 performance.

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 9http://perldoc.perl.org

Defines at least these macros.

 Macro Description

 NOOP Do nothing
 NOECHO Tell make not to display the command itself

 SHELL Program used to run shell commands

 ECHO Print text adding a newline on the end
 RM_F Remove a file
 RM_RF Remove a directory
 TOUCH Update a file's timestamp
 TEST_F Test for a file's existence
 CP Copy a file
 MV Move a file
 CHMOD Change permissions on a file
 FALSE Exit with non-zero
 TRUE Exit with zero

 UMASK_NULL Nullify umask
 DEV_NULL Suppress all command output

init_others

 $MM->init_others();

Initializes the macro definitions having to do with compiling and
 linking used by tools_other() and
places them in the $MM object.

If there is no description, its the same as the parameter to
 WriteMakefile() documented in
ExtUtils::MakeMaker.

tools_other

 my $make_frag = $MM->tools_other;

Returns a make fragment containing definitions for the macros init_others() initializes.

init_DIRFILESEP Abstract

 $MM->init_DIRFILESEP;
 my $dirfilesep = $MM->{DIRFILESEP};

Initializes the DIRFILESEP macro which is the seperator between the
 directory and filename in a
filepath. ie. / on Unix, \ on Win32 and
 nothing on VMS.

For example:

 # instead of $(INST_ARCHAUTODIR)/extralibs.ld
 $(INST_ARCHAUTODIR)$(DIRFILESEP)extralibs.ld

Something of a hack but it prevents a lot of code duplication between
 MM_* variants.

Do not use this as a seperator between directories. Some operating
 systems use different seperators
between subdirectories as between
 directories and filenames (for example: VOLUME:[dir1.dir2]file on
VMS).

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 10http://perldoc.perl.org

init_linker Abstract

 $mm->init_linker;

Initialize macros which have to do with linking.

PERL_ARCHIVE: path to libperl.a equivalent to be linked to dynamic
 extensions.

PERL_ARCHIVE_AFTER: path to a library which should be put on the
 linker command line after the
external libraries to be linked to
 dynamic extensions. This may be needed if the linker is one-pass,
and
 Perl includes some overrides for C RTL functions, such as malloc().

EXPORT_LIST: name of a file that is passed to linker to define symbols
 to be exported.

Some OSes do not need these in which case leave it blank.

init_platform

 $mm->init_platform

Initialize any macros which are for platform specific use only.

A typical one is the version number of your OS specific mocule.
 (ie. MM_Unix_VERSION or
MM_VMS_VERSION).

init_MAKE

 $mm->init_MAKE

Initialize MAKE from either a MAKE environment variable or $Config{make}.

Tools
A grab bag of methods to generate specific macros and commands.

manifypods

Defines targets and routines to translate the pods into manpages and
 put them into the INST_*
directories.

POD2MAN_macro

 my $pod2man_macro = $self->POD2MAN_macro

Returns a definition for the POD2MAN macro. This is a program
 which emulates the pod2man utility.
You can add more switches to the
 command by simply appending them on the macro.

Typical usage:

 $(POD2MAN) --section=3 --perm_rw=$(PERM_RW) podfile1 man_page1 ...

test_via_harness

 my $command = $mm->test_via_harness($perl, $tests);

Returns a $command line which runs the given set of $tests with
 Test::Harness and the given $perl.

Used on the t/*.t files.

test_via_script

 my $command = $mm->test_via_script($perl, $script);

Returns a $command line which just runs a single test without
 Test::Harness. No checks are done on

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 11http://perldoc.perl.org

the results, they're just
 printed.

Used for test.pl, since they don't always follow Test::Harness
 formatting.

tool_autosplit

Defines a simple perl call that runs autosplit. May be deprecated by
 pm_to_blib soon.

arch_check

 my $arch_ok = $mm->arch_check(
 $INC{"Config.pm"},
 File::Spec->catfile($Config{archlibexp}, "Config.pm")
);

A sanity check that what Perl thinks the architecture is and what
 Config thinks the architecture is are
the same. If they're not it
 will return false and show a diagnostic message.

When building Perl it will always return true, as nothing is installed
 yet.

The interface is a bit odd because this is the result of a
 quick refactoring. Don't rely on it.

File::Spec wrappers
ExtUtils::MM_Any is a subclass of File::Spec. The methods noted here
 override File::Spec.

catfile

File::Spec <= 0.83 has a bug where the file part of catfile is not
 canonicalized. This override fixes that
bug.

Misc
Methods I can't really figure out where they should go yet.

find_tests

 my $test = $mm->find_tests;

Returns a string suitable for feeding to the shell to return all
 tests in t/*.t.

extra_clean_files

 my @files_to_clean = $MM->extra_clean_files;

Returns a list of OS specific files to be removed in the clean target in
 addition to the usual set.

installvars

 my @installvars = $mm->installvars;

A list of all the INSTALL* variables without the INSTALL prefix. Useful
 for iteration or building related
variable sets.

libscan

 my $wanted = $self->libscan($path);

Takes a path to a file or dir and returns an empty string if we don't
 want to include this file in the
library. Otherwise it returns the
 the $path unchanged.

Mainly used to exclude version control administrative directories from
 installation.

Perl version 5.18.2 documentation - ExtUtils::MM_Any

Page 12http://perldoc.perl.org

platform_constants

 my $make_frag = $mm->platform_constants

Returns a make fragment defining all the macros initialized in
 init_platform() rather than put them in
constants().

_PREREQ_PRINT

 $self->_PREREQ_PRINT;

Implements PREREQ_PRINT.

Refactored out of MakeMaker->new().

_PRINT_PREREQ

 $mm->_PRINT_PREREQ;

Implements PRINT_PREREQ, a slightly different version of PREREQ_PRINT
 added by Redhat to, I
think, support generating RPMs from Perl modules.

Should not include BUILD_REQUIRES as RPMs do not incluide them.

Refactored out of MakeMaker->new().

_all_prereqs

 my $prereqs = $self->_all_prereqs;

Returns a hash ref of both PREREQ_PM and BUILD_REQUIRES.

_perl_header_files

 my $perl_header_files= $self->_perl_header_files;

returns a sorted list of header files as found in PERL_SRC or $archlibexp/CORE.

Used by perldepend() in MM_Unix and MM_VMS via _perl_header_files_fragment()

_perl_header_files_fragment ($o, $separator)

 my $perl_header_files_fragment= $self->_perl_header_files_fragment("/");

return a Makefile fragment which holds the list of perl header files which
 XS code depends on
$(PERL_INC), and sets up the dependency for the $(OBJECT) file.

The $separator argument defaults to "". MM_VMS will set it to "" and MM_UNIX to "/"
 in perldepend().
This reason child subclasses need to control this is that in
 VMS the $(PERL_INC) directory will
already have delimiters in it, but in
 UNIX $(PERL_INC) will need a slash between it an the filename.
Hypothetically
 win32 could use "\\" (but it doesn't need to).

AUTHOR
Michael G Schwern <schwern@pobox.com> and the denizens of
 makemaker@perl.org with code
from ExtUtils::MM_Unix and
 ExtUtils::MM_Win32.

