
Perl version 5.18.2 documentation - IO::Compress::Zip

Page 1http://perldoc.perl.org

NAME
IO::Compress::Zip - Write zip files/buffers

SYNOPSIS
 use IO::Compress::Zip qw(zip $ZipError) ;

 my $status = zip $input => $output [,OPTS]
 or die "zip failed: $ZipError\n";

 my $z = new IO::Compress::Zip $output [,OPTS]
 or die "zip failed: $ZipError\n";

 $z->print($string);
 $z->printf($format, $string);
 $z->write($string);
 $z->syswrite($string [, $length, $offset]);
 $z->flush();
 $z->tell();
 $z->eof();
 $z->seek($position, $whence);
 $z->binmode();
 $z->fileno();
 $z->opened();
 $z->autoflush();
 $z->input_line_number();
 $z->newStream([OPTS]);

 $z->deflateParams();

 $z->close() ;

 $ZipError ;

 # IO::File mode

 print $z $string;
 printf $z $format, $string;
 tell $z
 eof $z
 seek $z, $position, $whence
 binmode $z
 fileno $z
 close $z ;

DESCRIPTION
This module provides a Perl interface that allows writing zip compressed data to files or buffer.

The primary purpose of this module is to provide streaming write access to
 zip files and buffers. It is
not a general-purpose file archiver. If that
 is what you want, check out Archive::Zip.

At present three compression methods are supported by IO::Compress::Zip,
 namely Store (no
compression at all), Deflate, Bzip2 and LZMA.

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 2http://perldoc.perl.org

Note that to create Bzip2 content, the module IO::Compress::Bzip2 must
 be installed.

Note that to create LZMA content, the module IO::Compress::Lzma must
 be installed.

For reading zip files/buffers, see the companion module IO::Uncompress::Unzip.

Functional Interface
A top-level function, zip, is provided to carry out
 "one-shot" compression between buffers and/or
files. For finer
 control over the compression process, see the OO Interface
 section.

 use IO::Compress::Zip qw(zip $ZipError) ;

 zip $input_filename_or_reference => $output_filename_or_reference
[,OPTS]
 or die "zip failed: $ZipError\n";

The functional interface needs Perl5.005 or better.

zip $input => $output [, OPTS]
zip expects at least two parameters, $input_filename_or_reference and
$output_filename_or_reference.

The $input_filename_or_reference parameter

The parameter, $input_filename_or_reference, is used to define the
 source of the
uncompressed data.

It can take one of the following forms:

A filename

If the <$input_filename_or_reference> parameter is a simple scalar, it is
 assumed to be a
filename. This file will be opened for reading and the
 input data will be read from it.

A filehandle

If the $input_filename_or_reference parameter is a filehandle, the input
 data will be
read from it. The string '-' can be used as an alias for
 standard input.

A scalar reference

If $input_filename_or_reference is a scalar reference, the input data
 will be read
from $$input_filename_or_reference.

An array reference

If $input_filename_or_reference is an array reference, each element in
 the array
must be a filename.

The input data will be read from each file in turn.

The complete array will be walked to ensure that it only
 contains valid filenames before any
data is compressed.

An Input FileGlob string

If $input_filename_or_reference is a string that is delimited by the
 characters "<" and
">" zip will assume that it is an input fileglob string. The input is the list of files that match
the fileglob.

See File::GlobMapper for more details.

If the $input_filename_or_reference parameter is any other type, undef will be returned.

In addition, if $input_filename_or_reference is a simple filename, the default values for
 the

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 3http://perldoc.perl.org

Name, Time, TextFlag, ExtAttr, exUnixN and exTime options will be sourced from that file.

If you do not want to use these defaults they can be overridden by
 explicitly setting the Name, Time,
TextFlag, ExtAttr, exUnixN and exTime options or by setting the Minimal parameter.

The $output_filename_or_reference parameter

The parameter $output_filename_or_reference is used to control the
 destination of the
compressed data. This parameter can take one of
 these forms.

A filename

If the $output_filename_or_reference parameter is a simple scalar, it is
 assumed to
be a filename. This file will be opened for writing and the compressed data will be written to
it.

A filehandle

If the $output_filename_or_reference parameter is a filehandle, the
 compressed
data will be written to it. The string '-' can be used as
 an alias for standard output.

A scalar reference

If $output_filename_or_reference is a scalar reference, the
 compressed data will be
stored in $$output_filename_or_reference.

An Array Reference

If $output_filename_or_reference is an array reference, the compressed data will be
pushed onto the array.

An Output FileGlob

If $output_filename_or_reference is a string that is delimited by the
 characters "<"
and ">" zip will assume that it is an output fileglob string. The output is the list of files that
match the
 fileglob.

When $output_filename_or_reference is an fileglob string,
$input_filename_or_reference must also be a fileglob string. Anything
 else is an
error.

See File::GlobMapper for more details.

If the $output_filename_or_reference parameter is any other type, undef will be returned.

Notes
When $input_filename_or_reference maps to multiple files/buffers and
$output_filename_or_reference is a single
 file/buffer the input files/buffers will each be stored

in $output_filename_or_reference as a distinct entry.

Optional Parameters
Unless specified below, the optional parameters for zip, OPTS, are the same as those used with the
OO interface defined in the Constructor Options section below.

AutoClose => 0|1

This option applies to any input or output data streams to zip that are filehandles.

If AutoClose is specified, and the value is true, it will result in all
 input and/or output
filehandles being closed once zip has
 completed.

This parameter defaults to 0.

BinModeIn => 0|1

When reading from a file or filehandle, set binmode before reading.

Defaults to 0.

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 4http://perldoc.perl.org

Append => 0|1

The behaviour of this option is dependent on the type of output data
 stream.

* A Buffer

If Append is enabled, all compressed data will be append to the end of
 the output
buffer. Otherwise the output buffer will be cleared before any
 compressed data is
written to it.

* A Filename

If Append is enabled, the file will be opened in append mode. Otherwise
 the
contents of the file, if any, will be truncated before any compressed
 data is written
to it.

* A Filehandle

If Append is enabled, the filehandle will be positioned to the end of
 the file via a
call to seek before any compressed data is
 written to it. Otherwise the file pointer
will not be moved.

When Append is specified, and set to true, it will append all compressed data to the output
data stream.

So when the output is a filehandle it will carry out a seek to the eof
 before writing any
compressed data. If the output is a filename, it will be opened for
 appending. If the output is
a buffer, all compressed data will be
 appended to the existing buffer.

Conversely when Append is not specified, or it is present and is set to
 false, it will operate
as follows.

When the output is a filename, it will truncate the contents of the file
 before writing any
compressed data. If the output is a filehandle
 its position will not be changed. If the output is
a buffer, it will be
 wiped before any compressed data is output.

Defaults to 0.

Examples
To read the contents of the file file1.txt and write the compressed
 data to the file
file1.txt.zip.

 use strict ;
 use warnings ;
 use IO::Compress::Zip qw(zip $ZipError) ;

 my $input = "file1.txt";
 zip $input => "$input.zip"
 or die "zip failed: $ZipError\n";

To read from an existing Perl filehandle, $input, and write the
 compressed data to a buffer,
$buffer.

 use strict ;
 use warnings ;
 use IO::Compress::Zip qw(zip $ZipError) ;
 use IO::File ;

 my $input = new IO::File "<file1.txt"
 or die "Cannot open 'file1.txt': $!\n" ;
 my $buffer ;
 zip $input => \$buffer
 or die "zip failed: $ZipError\n";

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 5http://perldoc.perl.org

To create a zip file, output.zip, that contains the compressed contents
 of the files alpha.txt and
beta.txt

 use strict ;
 use warnings ;
 use IO::Compress::Zip qw(zip $ZipError) ;

 zip ['alpha.txt', 'beta.txt'] => 'output.zip'
 or die "zip failed: $ZipError\n";

Alternatively, rather than having to explicitly name each of the files that
 you want to compress, you
could use a fileglob to select all the txt
 files in the current directory, as follows

 use strict ;
 use warnings ;
 use IO::Compress::Zip qw(zip $ZipError) ;

 my @files = <*.txt>;
 zip \@files => 'output.zip'
 or die "zip failed: $ZipError\n";

or more succinctly

 zip [<*.txt>] => 'output.zip'
 or die "zip failed: $ZipError\n";

OO Interface
Constructor

The format of the constructor for IO::Compress::Zip is shown below

 my $z = new IO::Compress::Zip $output [,OPTS]
 or die "IO::Compress::Zip failed: $ZipError\n";

It returns an IO::Compress::Zip object on success and undef on failure. The variable $ZipError
will contain an error message on failure.

If you are running Perl 5.005 or better the object, $z, returned from IO::Compress::Zip can be used
exactly like an IO::File filehandle. This means that all normal output file operations can be carried out
with $z. For example, to write to a compressed file/buffer you can use either of these forms

 $z->print("hello world\n");
 print $z "hello world\n";

The mandatory parameter $output is used to control the destination
 of the compressed data. This
parameter can take one of these forms.

A filename

If the $output parameter is a simple scalar, it is assumed to be a
 filename. This file will be
opened for writing and the compressed data
 will be written to it.

A filehandle

If the $output parameter is a filehandle, the compressed data will be
 written to it.
 The
string '-' can be used as an alias for standard output.

A scalar reference

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 6http://perldoc.perl.org

If $output is a scalar reference, the compressed data will be stored
 in $$output.

If the $output parameter is any other type, IO::Compress::Zip::new will
 return undef.

Constructor Options
OPTS is any combination of the following options:

AutoClose => 0|1

This option is only valid when the $output parameter is a filehandle. If
 specified, and the
value is true, it will result in the $output being
 closed once either the close method is
called or the IO::Compress::Zip
 object is destroyed.

This parameter defaults to 0.

Append => 0|1

Opens $output in append mode.

The behaviour of this option is dependent on the type of $output.

* A Buffer

If $output is a buffer and Append is enabled, all compressed data
 will be append
to the end of $output. Otherwise $output will be
 cleared before any data is
written to it.

* A Filename

If $output is a filename and Append is enabled, the file will be
 opened in append
mode. Otherwise the contents of the file, if any, will be
 truncated before any
compressed data is written to it.

* A Filehandle

If $output is a filehandle, the file pointer will be positioned to the
 end of the file
via a call to seek before any compressed data is written
 to it. Otherwise the file
pointer will not be moved.

This parameter defaults to 0.

Name => $string

Stores the contents of $string in the zip filename header field.

If Name is not specified and the $input parameter is a filename, the
 value of $input will
be used for the zip filename header field.

If Name is not specified and the $input parameter is not a filename,
 no zip filename field
will be created.

Note that both the CanonicalName and FilterName options
 can modify the value used
for the zip filename header field.

CanonicalName => 0|1

This option controls whether the filename field in the zip header is normalized into Unix
format before being written to the zip file.

It is recommended that you enable this option unless you really need
 to create a
non-standard Zip file.

This is what APPNOTE.TXT has to say on what should be stored in the zip
 filename header
field.

 The name of the file, with optional relative path.
 The path stored should not contain a drive or
 device letter, or a leading slash. All slashes
 should be forward slashes '/' as opposed to

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 7http://perldoc.perl.org

 backwards slashes '\' for compatibility with Amiga
 and UNIX file systems etc.

This option defaults to false.

FilterName => sub { ... }

This option allow the filename field in the zip header to be modified
 before it is written to the
zip file.

This option takes a parameter that must be a reference to a sub. On entry
 to the sub the $_
variable will contain the name to be filtered. If no
 filename is available $_ will contain an
empty string.

The value of $_ when the sub returns will be stored in the filename
 header field.

Note that if CanonicalName is enabled, a
 normalized filename will be passed to the sub.

If you use FilterName to modify the filename, it is your responsibility
 to keep the filename
in Unix format.

Although this option can be used with the OO ointerface, it is of most use
 with the one-shot
interface. For example, the code below shows how FilterName can be used to remove the
path component from a series of
 filenames before they are stored in $zipfile.

 sub compressTxtFiles
 {
 my $zipfile = shift ;
 my $dir = shift ;

 zip [<$dir/*.txt>] => $zipfile,
 FilterName => sub { s[^$dir/][] } ;
 }

Time => $number

Sets the last modified time field in the zip header to $number.

This field defaults to the time the IO::Compress::Zip object was created
 if this option is
not specified and the $input parameter is not a
 filename.

ExtAttr => $attr

This option controls the "external file attributes" field in the central
 header of the zip file. This
is a 4 byte field.

If you are running a Unix derivative this value defaults to

 0100644 << 16

This should allow read/write access to any files that are extracted from
 the zip file/buffer`.

For all other systems it defaults to 0.

exTime => [$atime, $mtime, $ctime]

This option expects an array reference with exactly three elements: $atime, mtime and
$ctime. These correspond to the last access
 time, last modification time and creation time
respectively.

It uses these values to set the extended timestamp field (ID is "UT") in
 the local zip header
using the three values, $atime, $mtime, $ctime. In
 addition it sets the extended timestamp
field in the central zip header
 using $mtime.

If any of the three values is undef that time value will not be used.
 So, for example, to set
only the $mtime you would use this

 exTime => [undef, $mtime, undef]

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 8http://perldoc.perl.org

If the Minimal option is set to true, this option will be ignored.

By default no extended time field is created.

exUnix2 => [$uid, $gid]

This option expects an array reference with exactly two elements: $uid
 and $gid. These
values correspond to the numeric User ID (UID) and Group ID
 (GID) of the owner of the files
respectively.

When the exUnix2 option is present it will trigger the creation of a
 Unix2 extra field (ID is
"Ux") in the local zip header. This will be populated
 with $uid and $gid. An empty Unix2
extra field will also
 be created in the central zip header.

Note - The UID & GID are stored as 16-bit
 integers in the "Ux" field. Use exUnixN if your
UID or GID are
 32-bit.

If the Minimal option is set to true, this option will be ignored.

By default no Unix2 extra field is created.

exUnixN => [$uid, $gid]

This option expects an array reference with exactly two elements: $uid
 and $gid. These
values correspond to the numeric User ID (UID) and Group ID
 (GID) of the owner of the files
respectively.

When the exUnixN option is present it will trigger the creation of a
 UnixN extra field (ID is
"ux") in bothe the local and central zip headers. This will be populated with $uid and $gid.
The UID & GID are stored as 32-bit integers.

If the Minimal option is set to true, this option will be ignored.

By default no UnixN extra field is created.

Comment => $comment

Stores the contents of $comment in the Central File Header of
 the zip file.

By default, no comment field is written to the zip file.

ZipComment => $comment

Stores the contents of $comment in the End of Central Directory record
 of the zip file.

By default, no comment field is written to the zip file.

Method => $method

Controls which compression method is used. At present four compression
 methods are
supported, namely Store (no compression at all), Deflate, Bzip2 and Lzma.

The symbols, ZIP_CM_STORE, ZIP_CM_DEFLATE, ZIP_CM_BZIP2 and ZIP_CM_LZMA
are used to select the compression method.

These constants are not imported by IO::Compress::Zip by default.

 use IO::Compress::Zip qw(:zip_method);
 use IO::Compress::Zip qw(:constants);
 use IO::Compress::Zip qw(:all);

Note that to create Bzip2 content, the module IO::Compress::Bzip2 must
 be installed. A
fatal error will be thrown if you attempt to create Bzip2
 content when
IO::Compress::Bzip2 is not available.

Note that to create Lzma content, the module IO::Compress::Lzma must
 be installed. A
fatal error will be thrown if you attempt to create Lzma
 content when
IO::Compress::Lzma is not available.

The default method is ZIP_CM_DEFLATE.

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 9http://perldoc.perl.org

Stream => 0|1

This option controls whether the zip file/buffer output is created in
 streaming mode.

Note that when outputting to a file with streaming mode disabled (Stream
 is 0), the output
file must be seekable.

The default is 1.

Zip64 => 0|1

Create a Zip64 zip file/buffer. This option is used if you want
 to store files larger than 4 Gig
or store more than 64K files in a single
 zip archive..

Zip64 will be automatically set, as needed, if working with the one-shot interface when the
input is either a filename or a scalar reference.

If you intend to manipulate the Zip64 zip files created with this module
 using an external
zip/unzip, make sure that it supports Zip64.

In particular, if you are using Info-Zip you need to have zip version 3.x
 or better to update a
Zip64 archive and unzip version 6.x to read a zip64
 archive.

The default is 0.

TextFlag => 0|1

This parameter controls the setting of a bit in the zip central header. It
 is used to signal that
the data stored in the zip file/buffer is probably
 text.

In one-shot mode this flag will be set to true if the Perl -T operator thinks
 the file contains
text.

The default is 0.

ExtraFieldLocal => $data

ExtraFieldCentral => $data

The ExtraFieldLocal option is used to store additional metadata in the
 local header for
the zip file/buffer. The ExtraFieldCentral does the
 same for the matching central
header.

An extra field consists of zero or more subfields. Each subfield consists
 of a two byte header
followed by the subfield data.

The list of subfields can be supplied in any of the following formats

 ExtraFieldLocal => [$id1, $data1,
 $id2, $data2,
 ...
]

 ExtraFieldLocal => [[$id1 => $data1],
 [$id2 => $data2],
 ...
]

 ExtraFieldLocal => { $id1 => $data1,
 $id2 => $data2,
 ...
 }

Where $id1, $id2 are two byte subfield ID's.

If you use the hash syntax, you have no control over the order in which
 the ExtraSubFields
are stored, plus you cannot have SubFields with
 duplicate ID.

Alternatively the list of subfields can by supplied as a scalar, thus

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 10http://perldoc.perl.org

 ExtraField => $rawdata

In this case IO::Compress::Zip will check that $rawdata consists of zero or more
conformant sub-fields.

The Extended Time field (ID "UT"), set using the exTime option, and the
 Unix2 extra field
(ID "Ux), set using the exUnix2 option, are examples
 of extra fields.

If the Minimal option is set to true, this option will be ignored.

The maximum size of an extra field 65535 bytes.

Minimal => 1|0

If specified, this option will disable the creation of all extra fields
 in the zip local and central
headers. So the exTime, exUnix2, exUnixN, ExtraFieldLocal and
ExtraFieldCentral options will be ignored.

This parameter defaults to 0.

BlockSize100K => number

Specify the number of 100K blocks bzip2 uses during compression.

Valid values are from 1 to 9, where 9 is best compression.

This option is only valid if the Method is ZIP_CM_BZIP2. It is ignored
 otherwise.

The default is 1.

WorkFactor => number

Specifies how much effort bzip2 should take before resorting to a slower
 fallback
compression algorithm.

Valid values range from 0 to 250, where 0 means use the default value 30.

This option is only valid if the Method is ZIP_CM_BZIP2. It is ignored
 otherwise.

The default is 0.

Preset => number

Used to choose the LZMA compression preset.

Valid values are 0-9 and LZMA_PRESET_DEFAULT.

0 is the fastest compression with the lowest memory usage and the lowest
 compression.

9 is the slowest compession with the highest memory usage but with the best
 compression.

This option is only valid if the Method is ZIP_CM_LZMA. It is ignored
 otherwise.

Defaults to LZMA_PRESET_DEFAULT (6).

Extreme => 0|1

Makes LZMA compression a lot slower, but a small compression gain.

This option is only valid if the Method is ZIP_CM_LZMA. It is ignored
 otherwise.

Defaults to 0.

-Level

Defines the compression level used by zlib. The value should either be
 a number between 0
and 9 (0 means no compression and 9 is maximum
 compression), or one of the symbolic
constants defined below.

 Z_NO_COMPRESSION
 Z_BEST_SPEED
 Z_BEST_COMPRESSION
 Z_DEFAULT_COMPRESSION

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 11http://perldoc.perl.org

The default is Z_DEFAULT_COMPRESSION.

Note, these constants are not imported by IO::Compress::Zip by default.

 use IO::Compress::Zip qw(:strategy);
 use IO::Compress::Zip qw(:constants);
 use IO::Compress::Zip qw(:all);

-Strategy

Defines the strategy used to tune the compression. Use one of the symbolic
 constants
defined below.

 Z_FILTERED
 Z_HUFFMAN_ONLY
 Z_RLE
 Z_FIXED
 Z_DEFAULT_STRATEGY

The default is Z_DEFAULT_STRATEGY.

Strict => 0|1

This is a placeholder option.

Examples
TODO

Methods
print

Usage is

 $z->print($data)
 print $z $data

Compresses and outputs the contents of the $data parameter. This
 has the same behaviour as the
print built-in.

Returns true if successful.

printf
Usage is

 $z->printf($format, $data)
 printf $z $format, $data

Compresses and outputs the contents of the $data parameter.

Returns true if successful.

syswrite
Usage is

 $z->syswrite $data
 $z->syswrite $data, $length
 $z->syswrite $data, $length, $offset

Compresses and outputs the contents of the $data parameter.

Returns the number of uncompressed bytes written, or undef if
 unsuccessful.

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 12http://perldoc.perl.org

write
Usage is

 $z->write $data
 $z->write $data, $length
 $z->write $data, $length, $offset

Compresses and outputs the contents of the $data parameter.

Returns the number of uncompressed bytes written, or undef if
 unsuccessful.

flush
Usage is

 $z->flush;
 $z->flush($flush_type);

Flushes any pending compressed data to the output file/buffer.

This method takes an optional parameter, $flush_type, that controls
 how the flushing will be
carried out. By default the $flush_type
 used is Z_FINISH. Other valid values for $flush_type
are Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FULL_FLUSH and Z_BLOCK. It is
 strongly recommended that
you only set the flush_type parameter if
 you fully understand the implications of what it does -
overuse of flush
 can seriously degrade the level of compression achieved. See the zlib

documentation for details.

Returns true on success.

tell
Usage is

 $z->tell()
 tell $z

Returns the uncompressed file offset.

eof
Usage is

 $z->eof();
 eof($z);

Returns true if the close method has been called.

seek
 $z->seek($position, $whence);
 seek($z, $position, $whence);

Provides a sub-set of the seek functionality, with the restriction
 that it is only legal to seek forward in
the output file/buffer.
 It is a fatal error to attempt to seek backward.

Empty parts of the file/buffer will have NULL (0x00) bytes written to them.

The $whence parameter takes one the usual values, namely SEEK_SET,
 SEEK_CUR or
SEEK_END.

Returns 1 on success, 0 on failure.

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 13http://perldoc.perl.org

binmode
Usage is

 $z->binmode
 binmode $z ;

This is a noop provided for completeness.

opened
 $z->opened()

Returns true if the object currently refers to a opened file/buffer.

autoflush
 my $prev = $z->autoflush()
 my $prev = $z->autoflush(EXPR)

If the $z object is associated with a file or a filehandle, this method
 returns the current autoflush
setting for the underlying filehandle. If EXPR is present, and is non-zero, it will enable flushing after
every
 write/print operation.

If $z is associated with a buffer, this method has no effect and always
 returns undef.

Note that the special variable $| cannot be used to set or
 retrieve the autoflush setting.

input_line_number
 $z->input_line_number()
 $z->input_line_number(EXPR)

This method always returns undef when compressing.

fileno
 $z->fileno()
 fileno($z)

If the $z object is associated with a file or a filehandle, fileno
 will return the underlying file
descriptor. Once the close method is
 called fileno will return undef.

If the $z object is associated with a buffer, this method will return undef.

close
 $z->close() ;
 close $z ;

Flushes any pending compressed data and then closes the output file/buffer.

For most versions of Perl this method will be automatically invoked if
 the IO::Compress::Zip object is
destroyed (either explicitly or by the
 variable with the reference to the object going out of scope). The

exceptions are Perl versions 5.005 through 5.00504 and 5.8.0. In
 these cases, the close method will
be called automatically, but
 not until global destruction of all live objects when the program is

terminating.

Therefore, if you want your scripts to be able to run on all versions
 of Perl, you should call close
explicitly and not rely on automatic
 closing.

Returns true on success, otherwise 0.

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 14http://perldoc.perl.org

If the AutoClose option has been enabled when the IO::Compress::Zip
 object was created, and the
object is associated with a file, the
 underlying file will also be closed.

newStream([OPTS])
Usage is

 $z->newStream([OPTS])

Closes the current compressed data stream and starts a new one.

OPTS consists of any of the the options that are available when creating
 the $z object.

See the Constructor Options section for more details.

deflateParams
Usage is

 $z->deflateParams

TODO

Importing
A number of symbolic constants are required by some methods in IO::Compress::Zip. None are
imported by default.

:all

Imports zip, $ZipError and all symbolic
 constants that can be used by
IO::Compress::Zip. Same as doing this

 use IO::Compress::Zip qw(zip $ZipError :constants) ;

:constants

Import all symbolic constants. Same as doing this

 use IO::Compress::Zip qw(:flush :level :strategy :zip_method) ;

:flush

These symbolic constants are used by the flush method.

 Z_NO_FLUSH
 Z_PARTIAL_FLUSH
 Z_SYNC_FLUSH
 Z_FULL_FLUSH
 Z_FINISH
 Z_BLOCK

:level

These symbolic constants are used by the Level option in the constructor.

 Z_NO_COMPRESSION
 Z_BEST_SPEED
 Z_BEST_COMPRESSION
 Z_DEFAULT_COMPRESSION

:strategy

These symbolic constants are used by the Strategy option in the constructor.

Perl version 5.18.2 documentation - IO::Compress::Zip

Page 15http://perldoc.perl.org

 Z_FILTERED
 Z_HUFFMAN_ONLY
 Z_RLE
 Z_FIXED
 Z_DEFAULT_STRATEGY

:zip_method

These symbolic constants are used by the Method option in the
 constructor.

 ZIP_CM_STORE
 ZIP_CM_DEFLATE
 ZIP_CM_BZIP2

EXAMPLES
Apache::GZip Revisited

See IO::Compress::FAQ

Working with Net::FTP
See IO::Compress::FAQ

SEE ALSO
Compress::Zlib, IO::Compress::Gzip, IO::Uncompress::Gunzip, IO::Compress::Deflate,
IO::Uncompress::Inflate, IO::Compress::RawDeflate, IO::Uncompress::RawInflate,
IO::Compress::Bzip2, IO::Uncompress::Bunzip2, IO::Compress::Lzma, IO::Uncompress::UnLzma,
IO::Compress::Xz, IO::Uncompress::UnXz, IO::Compress::Lzop, IO::Uncompress::UnLzop,
IO::Compress::Lzf, IO::Uncompress::UnLzf, IO::Uncompress::AnyInflate,
IO::Uncompress::AnyUncompress

IO::Compress::FAQ

File::GlobMapper, Archive::Zip, Archive::Tar, IO::Zlib

For RFC 1950, 1951 and 1952 see http://www.faqs.org/rfcs/rfc1950.html,
http://www.faqs.org/rfcs/rfc1951.html and http://www.faqs.org/rfcs/rfc1952.html

The zlib compression library was written by Jean-loup Gailly gzip@prep.ai.mit.edu and Mark Adler
madler@alumni.caltech.edu.

The primary site for the zlib compression library is http://www.zlib.org.

The primary site for gzip is http://www.gzip.org.

AUTHOR
This module was written by Paul Marquess, pmqs@cpan.org.

MODIFICATION HISTORY
See the Changes file.

COPYRIGHT AND LICENSE
Copyright (c) 2005-2013 Paul Marquess. All rights reserved.

This program is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

