
Perl version 5.18.2 documentation - Pod::Simple::XHTML

Page 1http://perldoc.perl.org

NAME
Pod::Simple::XHTML -- format Pod as validating XHTML

SYNOPSIS
 use Pod::Simple::XHTML;

 my $parser = Pod::Simple::XHTML->new();

 ...

 $parser->parse_file('path/to/file.pod');

DESCRIPTION
This class is a formatter that takes Pod and renders it as XHTML
 validating HTML.

This is a subclass of Pod::Simple::Methody and inherits all its
 methods. The implementation is entirely
different than Pod::Simple::HTML, but it largely preserves the same interface.

Minimal code
 use Pod::Simple::XHTML;
 my $psx = Pod::Simple::XHTML->new;
 $psx->output_string(\my $html);
 $psx->parse_file('path/to/Module/Name.pm');
 open my $out, '>', 'out.html' or die "Cannot open 'out.html': $!\n";
 print $out $html;

You can also control the character encoding and entities. For example, if
 you're sure that the POD is
properly encoded (using the =encoding command),
 you can prevent high-bit characters from being
encoded as HTML entities and
 declare the output character set as UTF-8 before parsing, like so:

 $psx->html_charset('UTF-8');
 $psx->html_encode_chars('&<>">');

METHODS
Pod::Simple::XHTML offers a number of methods that modify the format of
 the HTML output. Call
these after creating the parser object, but before
 the call to parse_file:

 my $parser = Pod::PseudoPod::HTML->new();
 $parser->set_optional_param("value");
 $parser->parse_file($file);

perldoc_url_prefix
In turning Foo::Bar into http://whatever/Foo%3a%3aBar, what
 to put before the "Foo%3a%3aBar".
The default value is
 "http://search.cpan.org/perldoc?".

perldoc_url_postfix
What to put after "Foo%3a%3aBar" in the URL. This option is not set by
 default.

man_url_prefix
In turning crontab(5) into http://whatever/man/1/crontab, what
 to put before the "1/crontab". The
default value is
 "http://man.he.net/man".

Perl version 5.18.2 documentation - Pod::Simple::XHTML

Page 2http://perldoc.perl.org

man_url_postfix
What to put after "1/crontab" in the URL. This option is not set by default.

title_prefix, title_postfix
What to put before and after the title in the head. The values should
 already be &-escaped.

html_css
 $parser->html_css('path/to/style.css');

The URL or relative path of a CSS file to include. This option is not
 set by default.

html_javascript
The URL or relative path of a JavaScript file to pull in. This option is
 not set by default.

html_doctype
A document type tag for the file. This option is not set by default.

html_charset
The charater set to declare in the Content-Type meta tag created by default
 for html_header_tags.
Note that this option will be ignored if the value of html_header_tags is changed. Defaults to
"ISO-8859-1".

html_header_tags
Additional arbitrary HTML tags for the header of the document. The
 default value is just a content type
header tag:

 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

Add additional meta tags here, or blocks of inline CSS or JavaScript
 (wrapped in the appropriate
tags).

html_encode_chars

A string containing all characters that should be encoded as HTML entities,
 specified using the
regular expression character class syntax (what you find
 within brackets in regular expressions). This
value will be passed as the
 second argument to the encode_entities function of HTML::Entities. If
HTML::Entities is not installed, then any characters other than &<"'>
 will be encoded numerically.

html_h_level
This is the level of HTML "Hn" element to which a Pod "head1" corresponds. For
 example, if
html_h_level is set to 2, a head1 will produce an H2, a head2
 will produce an H3, and so on.

default_title
Set a default title for the page if no title can be determined from the
 content. The value of this string
should already be &-escaped.

force_title
Force a title for the page (don't try to determine it from the content).
 The value of this string should
already be &-escaped.

html_header, html_footer
Set the HTML output at the beginning and end of each file. The default
 header includes a title, a
doctype tag (if html_doctype is set), a
 content tag (customized by html_header_tags), a tag for
a CSS file
 (if html_css is set), and a tag for a Javascript file (if html_javascript is set). The
default footer simply closes the html
 and body tags.

The options listed above customize parts of the default header, but
 setting html_header or

Perl version 5.18.2 documentation - Pod::Simple::XHTML

Page 3http://perldoc.perl.org

html_footer completely overrides the
 built-in header or footer. These may be useful if you want to
use
 template tags instead of literal HTML headers and footers or are
 integrating converted POD
pages in a larger website.

If you want no headers or footers output in the HTML, set these options
 to the empty string.

index
Whether to add a table-of-contents at the top of each page (called an
 index for the sake of tradition).

anchor_items
Whether to anchor every definition =item directive. This needs to be
 enabled if you want to be able
to link to specific =item directives, which
 are output as <dt> elements. Disabled by default.

backlink
Whether to turn every =head1 directive into a link pointing to the top of the page (specifically, the
opening body tag).

SUBCLASSING
If the standard options aren't enough, you may want to subclass
 Pod::Simple::XHMTL. These are the
most likely candidates for methods
 you'll want to override when subclassing.

handle_text
This method handles the body of text within any element: it's the body
 of a paragraph, or everything
between a "=begin" tag and the
 corresponding "=end" tag, or the text within an L entity, etc. You
would
 want to override this if you are adding a custom element type that does
 more than just display
formatted text. Perhaps adding a way to generate
 HTML tables from an extended version of POD.

So, let's say you want to add a custom element called 'foo'. In your
 subclass's new method, after
calling SUPER::new you'd call:

 $new->accept_targets_as_text('foo');

Then override the start_for method in the subclass to check for when
 "$flags->{'target'}" is equal
to 'foo' and set a flag that marks that
 you're in a foo block (maybe "$self->{'in_foo'} = 1"). Then
override the handle_text method to check for the flag, and pass $text to your
 custom subroutine to
construct the HTML output for 'foo' elements,
 something like:

 sub handle_text {
 my ($self, $text) = @_;
 if ($self->{'in_foo'}) {
 $self->{'scratch'} .= build_foo_html($text);
 return;
 }
 $self->SUPER::handle_text($text);
 }

handle_code
This method handles the body of text that is marked up to be code.
 You might for instance override
this to plug in a syntax highlighter.
 The base implementation just escapes the text.

The callback methods start_code and end_code emits the code tags
 before and after
handle_code is invoked, so you might want to override these
 together with handle_code if this
wrapping isn't suiteable.

Note that the code might be broken into mulitple segments if there are
 nested formatting codes inside
a C<...> sequence. In between the
 calls to handle_code other markup tags might have been
emitted in that
 case. The same is true for verbatim sections if the codes_in_verbatim
 option is

Perl version 5.18.2 documentation - Pod::Simple::XHTML

Page 4http://perldoc.perl.org

turned on.

accept_targets_as_html
This method behaves like accept_targets_as_text, but also marks the region
 as one whose
content should be emitted literally, without HTML entity escaping
 or wrapping in a div element.

resolve_pod_page_link
 my $url = $pod->resolve_pod_page_link('Net::Ping', 'INSTALL');
 my $url = $pod->resolve_pod_page_link('perlpodspec');
 my $url = $pod->resolve_pod_page_link(undef, 'SYNOPSIS');

Resolves a POD link target (typically a module or POD file name) and section
 name to a URL. The
resulting link will be returned for the above examples as:

 http://search.cpan.org/perldoc?Net::Ping#INSTALL
 http://search.cpan.org/perldoc?perlpodspec
 #SYNOPSIS

Note that when there is only a section argument the URL will simply be a link
 to a section in the
current document.

resolve_man_page_link
 my $url = $pod->resolve_man_page_link('crontab(5)', 'EXAMPLE CRON FILE');
 my $url = $pod->resolve_man_page_link('crontab');

Resolves a man page link target and numeric section to a URL. The resulting
 link will be returned for
the above examples as:

 http://man.he.net/man5/crontab
 http://man.he.net/man1/crontab

Note that the first argument is required. The section number will be parsed
 from it, and if it's missing
will default to 1. The second argument is
 currently ignored, as man.he.net does not currently
 include
linkable IDs or anchor names in its pages. Subclass to link to a
 different man page HTTP server.

idify
 my $id = $pod->idify($text);
 my $hash = $pod->idify($text, 1);

This method turns an arbitrary string into a valid XHTML ID attribute value.
 The rules enforced,
following http://webdesign.about.com/od/htmltags/a/aa031707.htm, are:

The id must start with a letter (a-z or A-Z)

All subsequent characters can be letters, numbers (0-9), hyphens (-),
 underscores (_), colons
(:), and periods (.).

The final character can't be a hyphen, colon, or period. URLs ending with these
 characters,
while allowed by XHTML, can be awkward to extract from plain text.

Each id must be unique within the document.

In addition, the returned value will be unique within the context of the
 Pod::Simple::XHTML object
unless a second argument is passed a true value. ID
 attributes should always be unique within a
single XHTML document, but pass
 the true value if you are creating not an ID but a URL hash to point
to
 an ID (i.e., if you need to put the "#foo" in foo.

Perl version 5.18.2 documentation - Pod::Simple::XHTML

Page 5http://perldoc.perl.org

batch_mode_page_object_init
 $pod->batch_mode_page_object_init($batchconvobj, $module, $infile,
$outfile, $depth);

Called by Pod::Simple::HTMLBatch so that the class has a chance to
 initialize the converter. Internally
it sets the batch_mode property to
 true and sets batch_mode_current_level(), but
Pod::Simple::XHTML does not
 currently use those features. Subclasses might, though.

SEE ALSO
Pod::Simple, Pod::Simple::Text, Pod::Spell

SUPPORT
Questions or discussion about POD and Pod::Simple should be sent to the
 pod-people@perl.org mail
list. Send an empty email to
 pod-people-subscribe@perl.org to subscribe.

This module is managed in an open GitHub repository, https://github.com/theory/pod-simple/. Feel
free to fork and contribute, or
 to clone git://github.com/theory/pod-simple.git and send patches!

Patches against Pod::Simple are welcome. Please send bug reports to

<bug-pod-simple@rt.cpan.org>.

COPYRIGHT AND DISCLAIMERS
Copyright (c) 2003-2005 Allison Randal.

This library is free software; you can redistribute it and/or modify it
 under the same terms as Perl
itself.

This program is distributed in the hope that it will be useful, but
 without any warranty; without even the
implied warranty of
 merchantability or fitness for a particular purpose.

ACKNOWLEDGEMENTS
Thanks to Hurricane Electric for permission to use its Linux man pages online site for man page links.

Thanks to search.cpan.org for permission to use the
 site for Perl module links.

AUTHOR
Pod::Simpele::XHTML was created by Allison Randal <allison@perl.org>.

Pod::Simple was created by Sean M. Burke <sburke@cpan.org>.
 But don't bother him, he's retired.

Pod::Simple is maintained by:

* Allison Randal allison@perl.org

* Hans Dieter Pearcey hdp@cpan.org

* David E. Wheeler dwheeler@cpan.org

