
Perl version 5.18.2 documentation - Term::ANSIColor

Page 1http://perldoc.perl.org

NAME
Term::ANSIColor - Color screen output using ANSI escape sequences

SYNOPSIS
 use Term::ANSIColor;
 print color 'bold blue';
 print "This text is bold blue.\n";
 print color 'reset';
 print "This text is normal.\n";
 print colored("Yellow on magenta.", 'yellow on_magenta'), "\n";
 print "This text is normal.\n";
 print colored ['yellow on_magenta'], 'Yellow on magenta.', "\n";
 print colored ['red on_bright_yellow'], 'Red on bright yellow.', "\n";
 print colored ['bright_red on_black'], 'Bright red on black.', "\n";
 print "\n";

 # Map escape sequences back to color names.
 use Term::ANSIColor 1.04 qw(uncolor);
 my $names = uncolor('01;31');
 print join(q{ }, @{$names}), "\n";

 # Strip all color escape sequences.
 use Term::ANSIColor 2.01 qw(colorstrip);
 print colorstrip '\e[1mThis is bold\e[0m', "\n";

 # Determine whether a color is valid.
 use Term::ANSIColor 2.02 qw(colorvalid);
 my $valid = colorvalid('blue bold', 'on_magenta');
 print "Color string is ", $valid ? "valid\n" : "invalid\n";

 # Create new aliases for colors.
 use Term::ANSIColor 4.00 qw(coloralias);
 coloralias('alert', 'red');
 print "Alert is ", coloralias('alert'), "\n";
 print colored("This is in red.", 'alert'), "\n";

 use Term::ANSIColor qw(:constants);
 print BOLD, BLUE, "This text is in bold blue.\n", RESET;

 use Term::ANSIColor qw(:constants);
 {
 local $Term::ANSIColor::AUTORESET = 1;
 print BOLD BLUE "This text is in bold blue.\n";
 print "This text is normal.\n";
 }

 use Term::ANSIColor 2.00 qw(:pushpop);
 print PUSHCOLOR RED ON_GREEN "This text is red on green.\n";
 print PUSHCOLOR BRIGHT_BLUE "This text is bright blue on green.\n";
 print RESET BRIGHT_BLUE "This text is just bright blue.\n";
 print POPCOLOR "Back to red on green.\n";
 print LOCALCOLOR GREEN ON_BLUE "This text is green on blue.\n";
 print "This text is red on green.\n";

Perl version 5.18.2 documentation - Term::ANSIColor

Page 2http://perldoc.perl.org

 {
 local $Term::ANSIColor::AUTOLOCAL = 1;
 print ON_BLUE "This text is red on blue.\n";
 print "This text is red on green.\n";
 }
 print POPCOLOR "Back to whatever we started as.\n";

DESCRIPTION
This module has two interfaces, one through color() and colored() and the
 other through constants. It
also offers the utility functions uncolor(),
 colorstrip(), colorvalid(), and coloralias(), which have to be
explicitly
 imported to be used (see SYNOPSIS).

See COMPATIBILITY for the versions of Term::ANSIColor that introduced
 particular features and the
versions of Perl that included them.

Supported Colors
Terminal emulators that support color divide into two types: ones that
 support only eight colors, ones
that support sixteen, and ones that
 support 256. This module provides the ANSI escape codes all of
them.
 These colors are referred to as ANSI colors 0 through 7 (normal), 8
 through 15 (16-color), and
16 through 255 (256-color).

Unfortunately, interpretation of colors 0 through 7 often depends on
 whether the emulator supports
eight colors or sixteen colors. Emulators
 that only support eight colors (such as the Linux console) will
display
 colors 0 through 7 with normal brightness and ignore colors 8 through 15,
 treating them the
same as white. Emulators that support 16 colors, such
 as gnome-terminal, normally display colors 0
through 7 as dim or darker
 versions and colors 8 through 15 as normal brightness. On such
emulators,
 the "normal" white (color 7) usually is shown as pale grey, requiring
 bright white (15) to be
used to get a real white color. Bright black
 usually is a dark grey color, although some terminals
display it as pure
 black. Some sixteen-color terminal emulators also treat normal yellow
 (color 3) as
orange or brown, and bright yellow (color 11) as yellow.

Following the normal convention of sixteen-color emulators, this module
 provides a pair of attributes
for each color. For every normal color (0
 through 7), the corresponding bright color (8 through 15) is
obtained by
 prepending the string bright_ to the normal color name. For example, red is color 1
and bright_red is color 9. The same applies for
 background colors: on_red is the normal color
and on_bright_red is
 the bright color. Capitalize these strings for the constant interface.

For 256-color emulators, this module additionally provides ansi0
 through ansi15, which are the
same as colors 0 through 15 in
 sixteen-color emulators but use the 256-color escape syntax, grey0

through grey23 ranging from nearly black to nearly white, and a set of
 RGB colors. The RGB colors
are of the form rgbRGB where R, G,
 and B are numbers from 0 to 5 giving the intensity of red, green,
and
 blue. on_ variants of all of these colors are also provided. These
 colors may be ignored
completely on non-256-color terminals or may be
 misinterpreted and produce random behavior.
Additional attributes such as
 blink, italic, or bold may not work with the 256-color palette.

There is unfortunately no way to know whether the current emulator
 supports more than eight colors,
which makes the choice of colors
 difficult. The most conservative choice is to use only the regular

colors, which are at least displayed on all emulators. However, they will
 appear dark in sixteen-color
terminal emulators, including most common
 emulators in UNIX X environments. If you know the
display is one of those
 emulators, you may wish to use the bright variants instead. Even better,
 offer
the user a way to configure the colors for a given application to
 fit their terminal emulator.

Function Interface
The function interface uses attribute strings to describe the colors and
 text attributes to assign to text.
The recognized non-color attributes
 are clear, reset, bold, dark, faint, italic, underline, underscore,
blink,
 reverse, and concealed. Clear and reset (reset to default attributes),
 dark and faint (dim and
saturated), and underline and underscore are
 equivalent, so use whichever is the most intuitive to

Perl version 5.18.2 documentation - Term::ANSIColor

Page 3http://perldoc.perl.org

you.Note that not all attributes are supported by all terminal types, and some
 terminals may not
support any of these sequences. Dark and faint, italic,
 blink, and concealed in particular are frequently
not implemented.

The recognized normal foreground color attributes (colors 0 to 7) are:

 black red green yellow blue magenta cyan white

The corresponding bright foreground color attributes (colors 8 to 15) are:

 bright_black bright_red bright_green bright_yellow
 bright_blue bright_magenta bright_cyan bright_white

The recognized normal background color attributes (colors 0 to 7) are:

 on_black on_red on_green on yellow
 on_blue on_magenta on_cyan on_white

The recognized bright background color attributes (colors 8 to 15) are:

 on_bright_black on_bright_red on_bright_green on_bright_yellow
 on_bright_blue on_bright_magenta on_bright_cyan on_bright_white

For 256-color terminals, the recognized foreground colors are:

 ansi0 .. ansi15
 grey0 .. grey23

plus rgbRGB for R, G, and B values from 0 to 5, such as rgb000 or rgb515. Similarly, the
recognized background colors are:

 on_ansi0 .. on_ansi15
 on_grey0 .. on_grey23

plus on_rgbRGB for for R, G, and B values from 0 to 5.

For any of the above listed attributes, case is not significant.

Attributes, once set, last until they are unset (by printing the attribute clear or reset). Be careful to
do this, or otherwise your attribute
 will last after your script is done running, and people get very
annoyed
 at having their prompt and typing changed to weird colors.

color(ATTR[, ATTR ...])

color() takes any number of strings as arguments and considers them to be
 space-separated
lists of attributes. It then forms and returns the escape
 sequence to set those attributes. It
doesn't print it out, just returns
 it, so you'll have to print it yourself if you want to. This is so that
you can save it as a string, pass it to something else, send it to a file
 handle, or do anything
else with it that you might care to. color()
 throws an exception if given an invalid attribute.

colored(STRING, ATTR[, ATTR ...])

colored(ATTR-REF, STRING[, STRING...])

As an aid in resetting colors, colored() takes a scalar as the first
 argument and any number of
attribute strings as the second argument and
 returns the scalar wrapped in escape codes so
that the attributes will be
 set as requested before the string and reset to normal after the
string.
 Alternately, you can pass a reference to an array as the first argument,
 and then the
contents of that array will be taken as attributes and color
 codes and the remainder of the
arguments as text to colorize.

Perl version 5.18.2 documentation - Term::ANSIColor

Page 4http://perldoc.perl.org

Normally, colored() just puts attribute codes at the beginning and end of
 the string, but if you
set $Term::ANSIColor::EACHLINE to some string, that
 string will be considered the line
delimiter and the attribute will be set
 at the beginning of each line of the passed string and
reset at the end of
 each line. This is often desirable if the output contains newlines and
 you're
using background colors, since a background color that persists
 across a newline is often
interpreted by the terminal as providing the
 default background color for the next line.
Programs like pagers can also
 be confused by attributes that span lines. Normally you'll want
to set
 $Term::ANSIColor::EACHLINE to "\n" to use this feature.

uncolor(ESCAPE)

uncolor() performs the opposite translation as color(), turning escape
 sequences into a list of
strings corresponding to the attributes being set
 by those sequences.

colorstrip(STRING[, STRING ...])

colorstrip() removes all color escape sequences from the provided strings,
 returning the
modified strings separately in array context or joined
 together in scalar context. Its arguments
are not modified.

colorvalid(ATTR[, ATTR ...])

colorvalid() takes attribute strings the same as color() and returns true
 if all attributes are
known and false otherwise.

coloralias(ALIAS[, ATTR])

If ATTR is specified, coloralias() sets up an alias of ALIAS for the
 standard color ATTR. From
that point forward, ALIAS can be passed into
 color(), colored(), and colorvalid() and will have
the same meaning as
 ATTR. One possible use of this facility is to give more meaningful
names
 to the 256-color RGB colors. Only alphanumerics, ., _, and - are
 allowed in alias
names.

If ATTR is not specified, coloralias() returns the standard color name to
 which ALIAS is
aliased, if any, or undef if ALIAS does not exist.

This is the same facility used by the ANSI_COLORS_ALIASES environment
 variable (see
ENVIRONMENT below) but can be used at runtime, not just
 when the module is loaded.

Later invocations of coloralias() with the same ALIAS will override
 earlier aliases. There is no
way to remove an alias.

Aliases have no effect on the return value of uncolor().

WARNING: Aliases are global and affect all callers in the same process.
 There is no way to
set an alias limited to a particular block of code or a
 particular object.

Constant Interface
Alternately, if you import :constants, you can use the following
 constants directly:

 CLEAR RESET BOLD DARK
 FAINT ITALIC UNDERLINE UNDERSCORE
 BLINK REVERSE CONCEALED

 BLACK RED GREEN YELLOW
 BLUE MAGENTA CYAN WHITE
 BRIGHT_BLACK BRIGHT_RED BRIGHT_GREEN BRIGHT_YELLOW
 BRIGHT_BLUE BRIGHT_MAGENTA BRIGHT_CYAN BRIGHT_WHITE

 ON_BLACK ON_RED ON_GREEN ON_YELLOW
 ON_BLUE ON_MAGENTA ON_CYAN ON_WHITE
 ON_BRIGHT_BLACK ON_BRIGHT_RED ON_BRIGHT_GREEN ON_BRIGHT_YELLOW
 ON_BRIGHT_BLUE ON_BRIGHT_MAGENTA ON_BRIGHT_CYAN ON_BRIGHT_WHITE

Perl version 5.18.2 documentation - Term::ANSIColor

Page 5http://perldoc.perl.org

These are the same as color('attribute') and can be used if you prefer
 typing:

 print BOLD BLUE ON_WHITE "Text", RESET, "\n";

to

 print colored ("Text", 'bold blue on_white'), "\n";

(Note that the newline is kept separate to avoid confusing the terminal as
 described above since a
background color is being used.)

If you import :constants256, you can use the following constants
 directly:

 ANSI0 .. ANSI15
 GREY0 .. GREY23

 RGBXYZ (for X, Y, and Z values from 0 to 5, like RGB000 or RGB515)

 ON_ANSI0 .. ON_ANSI15
 ON_GREY0 .. ON_GREY23

 ON_RGBXYZ (for X, Y, and Z values from 0 to 5)

Note that :constants256 does not include the other constants, so if you
 want to mix both, you need
to include :constants as well. You may want
 to explicitly import at least RESET, as in:

 use Term::ANSIColor 4.00 qw(RESET :constants256);

When using the constants, if you don't want to have to remember to add the , RESET at the end of
each print line, you can set
 $Term::ANSIColor::AUTORESET to a true value. Then, the display mode
will
 automatically be reset if there is no comma after the constant. In other
 words, with that variable
set:

 print BOLD BLUE "Text\n";

will reset the display mode afterward, whereas:

 print BOLD, BLUE, "Text\n";

will not. If you are using background colors, you will probably want to
 either use say() (in newer
versions of Perl) or print the newline with a
 separate print statement to avoid confusing the terminal.

If $Term::ANSIColor::AUTOLOCAL is set (see below), it takes precedence
 over
$Term::ANSIColor::AUTORESET, and the latter is ignored.

The subroutine interface has the advantage over the constants interface in
 that only two subroutines
are exported into your namespace, versus
 thirty-eight in the constants interface. On the flip side, the
constants
 interface has the advantage of better compile time error checking, since
 misspelled names
of colors or attributes in calls to color() and colored()
 won't be caught until runtime whereas misspelled
names of constants will
 be caught at compile time. So, pollute your namespace with almost two
 dozen
subroutines that you may not even use that often, or risk a silly
 bug by mistyping an attribute. Your
choice, TMTOWTDI after all.

The Color Stack
You can import :pushpop and maintain a stack of colors using PUSHCOLOR,
 POPCOLOR, and
LOCALCOLOR. PUSHCOLOR takes the attribute string that
 starts its argument and pushes it onto a

Perl version 5.18.2 documentation - Term::ANSIColor

Page 6http://perldoc.perl.org

stack of attributes. POPCOLOR
 removes the top of the stack and restores the previous attributes set
by
 the argument of a prior PUSHCOLOR. LOCALCOLOR surrounds its argument in a
 PUSHCOLOR
and POPCOLOR so that the color resets afterward.

If $Term::ANSIColor::AUTOLOCAL is set, each sequence of color constants
 will be implicitly
preceded by LOCALCOLOR. In other words, the following:

 {
 local $Term::ANSIColor::AUTOLOCAL = 1;
 print BLUE "Text\n";
 }

is equivalent to:

 print LOCALCOLOR BLUE "Text\n";

If $Term::ANSIColor::AUTOLOCAL is set, it takes precedence over
 $Term::ANSIColor::AUTORESET,
and the latter is ignored.

When using PUSHCOLOR, POPCOLOR, and LOCALCOLOR, it's particularly
 important to not put
commas between the constants.

 print PUSHCOLOR BLUE "Text\n";

will correctly push BLUE onto the top of the stack.

 print PUSHCOLOR, BLUE, "Text\n"; # wrong!

will not, and a subsequent pop won't restore the correct attributes.
 PUSHCOLOR pushes the
attributes set by its argument, which is normally a
 string of color constants. It can't ask the terminal
what the current
 attributes are.

DIAGNOSTICS
Bad color mapping %s

(W) The specified color mapping from ANSI_COLORS_ALIASES is not valid and
 could not be
parsed. It was ignored.

Bad escape sequence %s

(F) You passed an invalid ANSI escape sequence to uncolor().

Bareword "%s" not allowed while "strict subs" in use

(F) You probably mistyped a constant color name such as:

 $Foobar = FOOBAR . "This line should be blue\n";

or:

 @Foobar = FOOBAR, "This line should be blue\n";

This will only show up under use strict (another good reason to run under
 use strict).

Cannot alias standard color %s

(F) The alias name passed to coloralias() matches a standard color name.
 Standard color
names cannot be aliased.

Cannot alias standard color %s in %s

(W) The same, but in ANSI_COLORS_ALIASES. The color mapping was ignored.

Perl version 5.18.2 documentation - Term::ANSIColor

Page 7http://perldoc.perl.org

Invalid alias name %s

(F) You passed an invalid alias name to coloralias(). Alias names must
 consist only of
alphanumerics, ., -, and _.

Invalid alias name %s in %s

(W) You specified an invalid alias name on the left hand of the equal sign
 in a color mapping
in ANSI_COLORS_ALIASES. The color mapping was ignored.

Invalid attribute name %s

(F) You passed an invalid attribute name to color(), colored(), or
 coloralias().

Invalid attribute name %s in %s

(W) You specified an invalid attribute name on the right hand of the equal
 sign in a color
mapping in ANSI_COLORS_ALIASES. The color mapping was
 ignored.

Name "%s" used only once: possible typo

(W) You probably mistyped a constant color name such as:

 print FOOBAR "This text is color FOOBAR\n";

It's probably better to always use commas after constant names in order to
 force the next
error.

No comma allowed after filehandle

(F) You probably mistyped a constant color name such as:

 print FOOBAR, "This text is color FOOBAR\n";

Generating this fatal compile error is one of the main advantages of using
 the constants
interface, since you'll immediately know if you mistype a
 color name.

No name for escape sequence %s

(F) The ANSI escape sequence passed to uncolor() contains escapes which
 aren't recognized
and can't be translated to names.

ENVIRONMENT
ANSI_COLORS_ALIASES

This environment variable allows the user to specify custom color aliases
 that will be
understood by color(), colored(), and colorvalid(). None of
 the other functions will be affected,
and no new color constants will be
 created. The custom colors are aliases for existing color
names; no new
 escape sequences can be introduced. Only alphanumerics, ., _, and - are
allowed in alias names.

The format is:

 ANSI_COLORS_ALIASES='newcolor1=oldcolor1,newcolor2=oldcolor2'

Whitespace is ignored.

For example the Solarized colors
 can be mapped with:

 ANSI_COLORS_ALIASES='\
 base00=bright_yellow, on_base00=on_bright_yellow,\
 base01=bright_green, on_base01=on_bright_green, \
 base02=black, on_base02=on_black, \
 base03=bright_black, on_base03=on_bright_black, \
 base0=bright_blue, on_base0=on_bright_blue, \
 base1=bright_cyan, on_base1=on_bright_cyan, \
 base2=white, on_base2=on_white, \

Perl version 5.18.2 documentation - Term::ANSIColor

Page 8http://perldoc.perl.org

 base3=bright_white, on_base3=on_bright_white, \
 orange=bright_red, on_orange=on_bright_red, \
 violet=bright_magenta,on_violet=on_bright_magenta'

This environment variable is read and applied when the Term::ANSIColor
 module is loaded
and is then subsequently ignored. Changes to
 ANSI_COLORS_ALIASES after the module is
loaded will have no effect. See
 coloralias() for an equivalent facility that can be used at
runtime.

ANSI_COLORS_DISABLED

If this environment variable is set to a true value, all of the functions
 defined by this module
(color(), colored(), and all of the constants not
 previously used in the program) will not output
any escape sequences and
 instead will just return the empty string or pass through the
original
 text as appropriate. This is intended to support easy use of scripts
 using this module
on platforms that don't support ANSI escape sequences.

COMPATIBILITY
Term::ANSIColor was first included with Perl in Perl 5.6.0.

The uncolor() function and support for ANSI_COLORS_DISABLED were added in
 Term::ANSIColor
1.04, included in Perl 5.8.0.

Support for dark was added in Term::ANSIColor 1.08, included in Perl
 5.8.4.

The color stack, including the :pushpop import tag, PUSHCOLOR,
 POPCOLOR, LOCALCOLOR,
and the $Term::ANSIColor::AUTOLOCAL variable, was
 added in Term::ANSIColor 2.00, included in
Perl 5.10.1.

colorstrip() was added in Term::ANSIColor 2.01 and colorvalid() was added
 in Term::ANSIColor 2.02,
both included in Perl 5.11.0.

Support for colors 8 through 15 (the bright_ variants) was added in
 Term::ANSIColor 3.00, included
in Perl 5.13.3.

Support for italic was added in Term::ANSIColor 3.02, included in Perl
 5.17.1.

Support for colors 16 through 256 (the ansi, rgb, and grey
 colors), the :constants256 import
tag, the coloralias() function, and
 support for the ANSI_COLORS_ALIASES environment variable
were added in
 Term::ANSIColor 4.00.

$Term::ANSIColor::AUTOLOCAL was changed to take precedence over

$Term::ANSIColor::AUTORESET, rather than the other way around, in
 Term::ANSIColor 4.00.

RESTRICTIONS
It would be nice if one could leave off the commas around the constants
 entirely and just say:

 print BOLD BLUE ON_WHITE "Text\n" RESET;

but the syntax of Perl doesn't allow this. You need a comma after the
 string. (Of course, you may
consider it a bug that commas between all the
 constants aren't required, in which case you may feel
free to insert
 commas unless you're using $Term::ANSIColor::AUTORESET or

PUSHCOLOR/POPCOLOR.)

For easier debugging, you may prefer to always use the commas when not
 setting
$Term::ANSIColor::AUTORESET or PUSHCOLOR/POPCOLOR so that you'll
 get a fatal compile
error rather than a warning.

It's not possible to use this module to embed formatting and color
 attributes using Perl formats. They
replace the escape character with a
 space (as documented in perlform(1)), resulting in garbled output

Perl version 5.18.2 documentation - Term::ANSIColor

Page 9http://perldoc.perl.org

from
 the unrecognized attribute. Even if there were a way around that problem,
 the format doesn't
know that the non-printing escape sequence is
 zero-length and would incorrectly format the output.
For formatted output
 using color or other attributes, either use sprintf() instead or use
 formline() and
then add the color or other attributes after formatting and
 before output.

NOTES
The codes generated by this module are standard terminal control codes,
 complying with ECMA-048
and ISO 6429 (generally referred to as "ANSI
 color" for the color codes). The non-color control codes
(bold, dark,
 italic, underline, and reverse) are part of the earlier ANSI X3.64
 standard for control
sequences for video terminals and peripherals.

Note that not all displays are ISO 6429-compliant, or even X3.64-compliant
 (or are even attempting to
be so). This module will not work as expected
 on displays that do not honor these escape sequences,
such as cmd.exe,
 4nt.exe, and command.com under either Windows NT or Windows 2000. They
 may
just be ignored, or they may display as an ESC character followed by
 some apparent garbage.

Jean Delvare provided the following table of different common terminal
 emulators and their support
for the various attributes and others have
 helped me flesh it out:

 clear bold faint under blink reverse conceal
 --
 xterm yes yes no yes yes yes yes
 linux yes yes yes bold yes yes no
 rxvt yes yes no yes bold/black yes no
 dtterm yes yes yes yes reverse yes yes
 teraterm yes reverse no yes rev/red yes no
 aixterm kinda normal no yes no yes yes
 PuTTY yes color no yes no yes no
 Windows yes no no no no yes no
 Cygwin SSH yes yes no color color color yes
 Terminal.app yes yes no yes yes yes yes

Windows is Windows telnet, Cygwin SSH is the OpenSSH implementation under
 Cygwin on Windows
NT, and Mac Terminal is the Terminal application in Mac
 OS X. Where the entry is other than yes or
no, that emulator displays the
 given attribute as something else instead. Note that on an aixterm,
clear
 doesn't reset colors; you have to explicitly set the colors back to what
 you want. More entries in
this table are welcome.

Support for code 3 (italic) is rare and therefore not mentioned in that
 table. It is not believed to be fully
supported by any of the terminals
 listed, although it's displayed as green in the Linux console, but it is

reportedly supported by urxvt.

Note that codes 6 (rapid blink) and 9 (strike-through) are specified in
 ANSI X3.64 and ECMA-048 but
are not commonly supported by most displays
 and emulators and therefore aren't supported by this
module at the present
 time. ECMA-048 also specifies a large number of other attributes,
 including a
sequence of attributes for font changes, Fraktur characters,
 double-underlining, framing, circling, and
overlining. As none of these
 attributes are widely supported or useful, they also aren't currently

supported by this module.

Most modern X terminal emulators support 256 colors. Known to not support
 those colors are aterm,
rxvt, Terminal.app, and TTY/VC.

SEE ALSO
ECMA-048 is available on-line (at least at the time of this writing) at
http://www.ecma-international.org/publications/standards/Ecma-048.htm.

ISO 6429 is available from ISO for a charge; the author of this module
 does not own a copy of it.
Since the source material for ISO 6429 was
 ECMA-048 and the latter is available for free, there

Perl version 5.18.2 documentation - Term::ANSIColor

Page 10http://perldoc.perl.org

seems little reason
 to obtain the ISO standard.

The 256-color control sequences are documented at http://www.xfree86.org/current/ctlseqs.html
(search for 256-color).

The CPAN module Term::ExtendedColor provides a different and more
 comprehensive interface for
256-color emulators that may be more
 convenient.

The current version of this module is always available from its web site
 at
http://www.eyrie.org/~eagle/software/ansicolor/. It is also part of
 the Perl core distribution as of 5.6.0.

AUTHORS
Original idea (using constants) by Zenin, reimplemented using subs by Russ
 Allbery
<rra@stanford.edu>, and then combined with the original idea by
 Russ with input from Zenin.
256-color support is based on work by Kurt
 Starsinic. Russ Allbery now maintains this module.

PUSHCOLOR, POPCOLOR, and LOCALCOLOR were contributed by openmethods.com
 voice
solutions.

COPYRIGHT AND LICENSE
Copyright 1996 Zenin. Copyright 1996, 1997, 1998, 2000, 2001, 2002, 2005,
 2006, 2008, 2009, 2010,
2011, 2012 Russ Allbery <rra@stanford.edu>.
 Copyright 2012 Kurt Starsinic
<kstarsinic@gmail.com>. This program is
 free software; you may redistribute it and/or modify it under
the same
 terms as Perl itself.

