
Perl version 5.18.2 documentation - Text::Wrap

Page 1http://perldoc.perl.org

NAME
Text::Wrap - line wrapping to form simple paragraphs

SYNOPSIS
Example 1

	 use Text::Wrap;

	 $initial_tab = "\t";	 # Tab before first line
	 $subsequent_tab = "";	 # All other lines flush left

	 print wrap($initial_tab, $subsequent_tab, @text);
	 print fill($initial_tab, $subsequent_tab, @text);

	 $lines = wrap($initial_tab, $subsequent_tab, @text);

	 @paragraphs = fill($initial_tab, $subsequent_tab, @text);

Example 2

	 use Text::Wrap qw(wrap $columns $huge);

	 $columns = 132;		 # Wrap at 132 characters
	 $huge = 'die';
	 $huge = 'wrap';
	 $huge = 'overflow';

Example 3

	 use Text::Wrap;

	 $Text::Wrap::columns = 72;
	 print wrap('', '', @text);

DESCRIPTION
Text::Wrap::wrap() is a very simple paragraph formatter. It formats a
 single paragraph at a time 
by breaking lines at word boundaries.
 Indentation is controlled for the first line ($initial_tab) and

all subsequent lines ($subsequent_tab) independently. Please note: $initial_tab and 
$subsequent_tab are the literal strings that will
 be used: it is unlikely you would want to pass in a 
number.

Text::Wrap::fill() is a simple multi-paragraph formatter. It formats
 each paragraph separately 
and then joins them together when it's done. It
 will destroy any whitespace in the original text. It 
breaks text into
 paragraphs by looking for whitespace after a newline. In other respects,
 it acts like 
wrap().

wrap() compresses trailing whitespace into one newline, and fill()
 deletes all trailing whitespace.

Both wrap() and fill() return a single string.

Unlike the old Unix fmt(1) utility, this module correctly accounts for
 any Unicode combining characters
(such as diacriticals) that may occur
 in each line for both expansion and unexpansion. These are 
overstrike
 characters that do not increment the logical position. Make sure
 you have the appropriate 
Unicode settings enabled.



Perl version 5.18.2 documentation - Text::Wrap

Page 2http://perldoc.perl.org

OVERRIDES
Text::Wrap::wrap() has a number of variables that control its behavior.
 Because other modules 
might be using Text::Wrap::wrap() it is suggested
 that you leave these variables alone! If you 
can't do that, then use local($Text::Wrap::VARIABLE) = YOURVALUE when you change the

values so that the original value is restored. This local() trick
 will not work if you import the variable
into your own namespace.

Lines are wrapped at $Text::Wrap::columns columns (default value: 76). 
$Text::Wrap::columns should be set to the full width of your output
 device. In fact, every resulting
line will have length of no more than $columns - 1.

It is possible to control which characters terminate words by
 modifying $Text::Wrap::break. Set 
this to a string such as '[\s:]' (to break before spaces or colons) or a pre-compiled regexp
 such as
qr/[\s']/ (to break before spaces or apostrophes). The
 default is simply '\s'; that is, words are 
terminated by spaces.
 (This means, among other things, that trailing punctuation such as
 full stops or 
commas stay with the word they are "attached" to.)
 Setting $Text::Wrap::break to a regular 
expression that doesn't
 eat any characters (perhaps just a forward look-ahead assertion) will
 cause 
warnings.

Beginner note: In example 2, above $columns is imported into
 the local namespace, and set locally. 
In example 3, $Text::Wrap::columns is set in its own namespace without importing it.

Text::Wrap::wrap() starts its work by expanding all the tabs in its
 input into spaces. The last 
thing it does it to turn spaces back
 into tabs. If you do not want tabs in your results, set 
$Text::Wrap::unexpand to a false value. Likewise if you do not
 want to use 8-character tabstops, 
set $Text::Wrap::tabstop to
 the number of characters you do want for your tabstops.

If you want to separate your lines with something other than \n
 then set 
$Text::Wrap::separator to your preference. This replaces
 all newlines with 
$Text::Wrap::separator. If you just want to preserve existing newlines but add new breaks with 
something else, set $Text::Wrap::separator2 instead.

When words that are longer than $columns are encountered, they
 are broken up. wrap() adds a 
"\n" at column $columns.
 This behavior can be overridden by setting $huge to
 'die' or to 'overflow'. 
When set to 'die', large words will cause die() to be called. When set to 'overflow', large words will 
be
 left intact.

Historical notes: 'die' used to be the default value of $huge. Now, 'wrap' is the default value.

EXAMPLES
Code:

  print wrap("\t","",<<END);
  This is a bit of text that forms
  a normal book-style indented paragraph
  END

Result:

  "	 This is a bit of text that forms
  a normal book-style indented paragraph
  "

Code:

  $Text::Wrap::columns=20;
  $Text::Wrap::separator="|";
  print wrap("","","This is a bit of text that forms a normal book-style 



Perl version 5.18.2 documentation - Text::Wrap

Page 3http://perldoc.perl.org

paragraph");Result:

  "This is a bit of|text that forms a|normal book-style|paragraph"

SUBVERSION
This module comes in two flavors: one for modern perls (5.10 and above)
 and one for ancient 
obsolete perls. The version for modern perls has
 support for Unicode. The version for old perls does 
not. You can tell
 which version you have installed by looking at $Text::Wrap::SUBVERSION:
 it is 
old for obsolete perls and modern for current perls.

This man page is for the version for modern perls and so that's probably
 what you've got.

SEE ALSO
For correct handling of East Asian half- and full-width characters, see Text::WrapI18N. For more 
detailed controls: Text::Format.

AUTHOR
David Muir Sharnoff <cpan@dave.sharnoff.org> with help from Tim Pierce and
 many many others.

LICENSE
Copyright (C) 1996-2009 David Muir Sharnoff. Copyright (C) 2012 Google, Inc.
 This module may be 
modified, used, copied, and redistributed at your own risk.
 Publicly redistributed modified versions 
must use a different name.


