
Perl version 5.18.2 documentation - perlintern

Page 1http://perldoc.perl.org

NAME
perlintern - autogenerated documentation of purely internal 
 Perl functions

DESCRIPTION
This file is the autogenerated documentation of functions in the
 Perl interpreter that are documented 
using Perl's internal documentation
 format but are not marked as part of the Perl API. In other words, 
they are not for use in extensions!

Compile-time scope hooks
BhkENTRY 

Return an entry from the BHK structure. which is a preprocessor token
 indicating 
which entry to return. If the appropriate flag is not set
 this will return NULL. The type of 
the return value depends on which
 entry you ask for.

NOTE: this function is experimental and may change or be
 removed without notice.

	 void *	 BhkENTRY(BHK *hk, which)

BhkFLAGS 

Return the BHK's flags.

NOTE: this function is experimental and may change or be
 removed without notice.

	 U32	 BhkFLAGS(BHK *hk)

CALL_BLOCK_HOOKS 

Call all the registered block hooks for type which. which is a
 preprocessing token; the 
type of arg depends on which.

NOTE: this function is experimental and may change or be
 removed without notice.

	 void	 CALL_BLOCK_HOOKS(which, arg)

CV reference counts and CvOUTSIDE
CvWEAKOUTSIDE 

Each CV has a pointer, CvOUTSIDE(), to its lexically enclosing
 CV (if any). Because 
pointers to anonymous sub prototypes are
 stored in & pad slots, it is a possible to get a
circular reference,
 with the parent pointing to the child and vice-versa. To avoid the

ensuing memory leak, we do not increment the reference count of the CV
 pointed to by
CvOUTSIDE in the one specific instance that the parent
 has a & pad slot pointing back 
to us. In this case, we set the CvWEAKOUTSIDE flag in the child. This allows us to 
determine under what
 circumstances we should decrement the refcount of the parent 
when freeing
 the child.

There is a further complication with non-closure anonymous subs (i.e. those
 that do 
not refer to any lexicals outside that sub). In this case, the
 anonymous prototype is 
shared rather than being cloned. This has the
 consequence that the parent may be 
freed while there are still active
 children, eg

    BEGIN { $a = sub { eval '$x' } }

In this case, the BEGIN is freed immediately after execution since there
 are no active 
references to it: the anon sub prototype has CvWEAKOUTSIDE set since it's not a 
closure, and $a points to the same
 CV, so it doesn't contribute to BEGIN's refcount 
either. When $a is
 executed, the eval '$x' causes the chain of CvOUTSIDEs to be 
followed,
 and the freed BEGIN is accessed.

To avoid this, whenever a CV and its associated pad is freed, any & entries in the pad 
are explicitly removed from the pad, and if the
 refcount of the pointed-to anon sub is 



Perl version 5.18.2 documentation - perlintern

Page 2http://perldoc.perl.org

still positive, then that
 child's CvOUTSIDE is set to point to its grandparent. This will 
only
 occur in the single specific case of a non-closure anon prototype
 having one or 
more active references (such as $a above).

One other thing to consider is that a CV may be merely undefined
 rather than freed, eg
undef &foo. In this case, its refcount may
 not have reached zero, but we still delete 
its pad and its CvROOT etc.
 Since various children may still have their CvOUTSIDE 
pointing at this
 undefined CV, we keep its own CvOUTSIDE for the time being, so that

the chain of lexical scopes is unbroken. For example, the following
 should print 123:

    my $x = 123;
    sub tmp { sub { eval '$x' } }
    my $a = tmp();
    undef &tmp;
    print  $a->();

	 bool	 CvWEAKOUTSIDE(CV *cv)

Embedding Functions
cv_dump 

dump the contents of a CV

	 void	 cv_dump(CV *cv, const char *title)

cv_forget_slab 

When a CV has a reference count on its slab (CvSLABBED), it is responsible
 for 
making sure it is freed. (Hence, no two CVs should ever have a
 reference count on the
same slab.) The CV only needs to reference the slab
 during compilation. Once it is 
compiled and CvROOT attached, it has
 finished its job, so it can forget the slab.

	 void	 cv_forget_slab(CV *cv)

do_dump_pad 

Dump the contents of a padlist

	 void	 do_dump_pad(I32 level, PerlIO *file,
		            PADLIST *padlist, int full)

intro_my 

"Introduce" my variables to visible status. This is called during parsing
 at the end of 
each statement to make lexical variables visible to
 subsequent statements.

	 U32	 intro_my()

padlist_dup 

Duplicates a pad.

	 PADLIST * padlist_dup(PADLIST *srcpad,
	                      CLONE_PARAMS *param)

pad_alloc_name 

Allocates a place in the currently-compiling
 pad (via "pad_alloc" in perlapi) and
 then 
stores a name for that entry. namesv is adopted and becomes the
 name entry; it must 
already contain the name string and be sufficiently
 upgraded. typestash and ourstash 
and the padadd_STATE flag get
 added to namesv. None of the other
 processing of 
"pad_add_name_pvn" in perlapi 
 is done. Returns the offset of the allocated pad slot.



Perl version 5.18.2 documentation - perlintern

Page 3http://perldoc.perl.org

	 PADOFFSET pad_alloc_name(SV *namesv, U32 flags,
	                         HV *typestash, HV *ourstash)

pad_block_start 

Update the pad compilation state variables on entry to a new block.

	 void	 pad_block_start(int full)

pad_check_dup 

Check for duplicate declarations: report any of:

     * a my in the current scope with the same name;
     * an our (anywhere in the pad) with the same name and the
       same stash as C<ourstash>

is_our indicates that the name to check is an 'our' declaration.

	 void	 pad_check_dup(SV *name, U32 flags,
		              const HV *ourstash)

pad_findlex 

Find a named lexical anywhere in a chain of nested pads. Add fake entries
 in the inner
pads if it's found in an outer one.

Returns the offset in the bottom pad of the lex or the fake lex.
 cv is the CV in which to 
start the search, and seq is the current cop_seq
 to match against. If warn is true, print 
appropriate warnings. The out_*
 vars return values, and so are pointers to where the 
returned values
 should be stored. out_capture, if non-null, requests that the innermost

instance of the lexical is captured; out_name_sv is set to the innermost
 matched 
namesv or fake namesv; out_flags returns the flags normally
 associated with the IVX 
field of a fake namesv.

Note that pad_findlex() is recursive; it recurses up the chain of CVs,
 then comes back 
down, adding fake entries as it goes. It has to be this way
 because fake namesvs in 
anon protoypes have to store in xlow the index into
 the parent pad.

	 PADOFFSET pad_findlex(const char *namepv,
	                      STRLEN namelen, U32 flags,
	                      const CV* cv, U32 seq, int warn,
	                      SV** out_capture,
	                      SV** out_name_sv, int *out_flags)

pad_fixup_inner_anons 

For any anon CVs in the pad, change CvOUTSIDE of that CV from
 old_cv to new_cv if
necessary. Needed when a newly-compiled CV has to be
 moved to a pre-existing CV 
struct.

	 void	 pad_fixup_inner_anons(PADLIST *padlist,
		                      CV *old_cv, CV *new_cv)

pad_free 

Free the SV at offset po in the current pad.

	 void	 pad_free(PADOFFSET po)

pad_leavemy 

Cleanup at end of scope during compilation: set the max seq number for
 lexicals in this



Perl version 5.18.2 documentation - perlintern

Page 4http://perldoc.perl.org

scope and warn of any lexicals that never got introduced.

	 void	 pad_leavemy()

pad_push 

Push a new pad frame onto the padlist, unless there's already a pad at
 this depth, in 
which case don't bother creating a new one. Then give
 the new pad an @_ in slot 
zero.

	 void	 pad_push(PADLIST *padlist, int depth)

pad_reset 

Mark all the current temporaries for reuse

	 void	 pad_reset()

pad_swipe 

Abandon the tmp in the current pad at offset po and replace with a
 new one.

	 void	 pad_swipe(PADOFFSET po, bool refadjust)

Functions in file op.c
core_prototype 

This function assigns the prototype of the named core function to sv, or
 to a new 
mortal SV if sv is NULL. It returns the modified sv, or
 NULL if the core function has no
prototype. code is a code as returned
 by keyword(). It must not be equal to 0 or 
-KEY_CORE.

	 SV *	 core_prototype(SV *sv, const char *name,
		               const int code,
		               int * const opnum)

Functions in file pp_ctl.c
docatch 

Check for the cases 0 or 3 of cur_env.je_ret, only used inside an eval context.

0 is used as continue inside eval,

3 is used for a die caught by an inner eval - continue inner loop

See cop.h: je_mustcatch, when set at any runlevel to TRUE, means eval ops must

establish a local jmpenv to handle exception traps.

	 OP*	 docatch(OP *o)

GV Functions
gv_try_downgrade 

If the typeglob gv can be expressed more succinctly, by having
 something other than 
a real GV in its place in the stash, replace it
 with the optimised form. Basic 
requirements for this are that gv
 is a real typeglob, is sufficiently ordinary, and is only 
referenced
 from its package. This function is meant to be used when a GV has been

looked up in part to see what was there, causing upgrading, but based
 on what was 
found it turns out that the real GV isn't required after all.

If gv is a completely empty typeglob, it is deleted from the stash.

If gv is a typeglob containing only a sufficiently-ordinary constant
 sub, the typeglob is 
replaced with a scalar-reference placeholder that
 more compactly represents the same



Perl version 5.18.2 documentation - perlintern

Page 5http://perldoc.perl.org

thing.

NOTE: this function is experimental and may change or be
 removed without notice.

	 void	 gv_try_downgrade(GV* gv)

Hash Manipulation Functions
hv_ename_add 

Adds a name to a stash's internal list of effective names. See hv_ename_delete.

This is called when a stash is assigned to a new location in the symbol
 table.

	 void	 hv_ename_add(HV *hv, const char *name, U32 len,
		             U32 flags)

hv_ename_delete 

Removes a name from a stash's internal list of effective names. If this is
 the name 
returned by HvENAME, then another name in the list will take
 its place (HvENAME will 
use it).

This is called when a stash is deleted from the symbol table.

	 void	 hv_ename_delete(HV *hv, const char *name,
		                U32 len, U32 flags)

refcounted_he_chain_2hv 

Generates and returns a HV * representing the content of a refcounted_he chain. 
flags is currently unused and must be zero.

	 HV *	 refcounted_he_chain_2hv(
		    const struct refcounted_he *c, U32 flags
		 )

refcounted_he_fetch_pv 

Like refcounted_he_fetch_pvn, but takes a nul-terminated string
 instead of a 
string/length pair.

	 SV *	 refcounted_he_fetch_pv(
		    const struct refcounted_he *chain,
		    const char *key, U32 hash, U32 flags
		 )

refcounted_he_fetch_pvn 

Search along a refcounted_he chain for an entry with the key specified
 by keypv 
and keylen. If flags has the REFCOUNTED_HE_KEY_UTF8
 bit set, the key octets are 
interpreted as UTF-8, otherwise they
 are interpreted as Latin-1. hash is a precomputed
hash of the key
 string, or zero if it has not been precomputed. Returns a mortal scalar

representing the value associated with the key, or &PL_sv_placeholder
 if there is 
no value associated with the key.

	 SV *	 refcounted_he_fetch_pvn(
		    const struct refcounted_he *chain,
		    const char *keypv, STRLEN keylen, U32 hash,
		    U32 flags
		 )

refcounted_he_fetch_pvs 

Like refcounted_he_fetch_pvn, but takes a literal string instead of
 a string/length pair, 



Perl version 5.18.2 documentation - perlintern

Page 6http://perldoc.perl.org

and no precomputed hash.

	 SV *	 refcounted_he_fetch_pvs(
		    const struct refcounted_he *chain,
		    const char *key, U32 flags
		 )

refcounted_he_fetch_sv 

Like refcounted_he_fetch_pvn, but takes a Perl scalar instead of a
 string/length pair.

	 SV *	 refcounted_he_fetch_sv(
		    const struct refcounted_he *chain, SV *key,
		    U32 hash, U32 flags
		 )

refcounted_he_free 

Decrements the reference count of a refcounted_he by one. If the
 reference count 
reaches zero the structure's memory is freed, which
 (recursively) causes a reduction of
its parent refcounted_he's
 reference count. It is safe to pass a null pointer to this 
function:
 no action occurs in this case.

	 void	 refcounted_he_free(struct refcounted_he *he)

refcounted_he_inc 

Increment the reference count of a refcounted_he. The pointer to the 
refcounted_he is also returned. It is safe to pass a null pointer
 to this function: no 
action occurs and a null pointer is returned.

	 struct refcounted_he * refcounted_he_inc(
	                           struct refcounted_he *he
	                       )

refcounted_he_new_pv 

Like refcounted_he_new_pvn, but takes a nul-terminated string instead
 of a 
string/length pair.

	 struct refcounted_he * refcounted_he_new_pv(
	                           struct refcounted_he *parent,
	                           const char *key, U32 hash,
	                           SV *value, U32 flags
	                       )

refcounted_he_new_pvn 

Creates a new refcounted_he. This consists of a single key/value
 pair and a 
reference to an existing refcounted_he chain (which may
 be empty), and thus forms
a longer chain. When using the longer chain,
 the new key/value pair takes precedence
over any entry for the same key
 further along the chain.

The new key is specified by keypv and keylen. If flags has
 the 
REFCOUNTED_HE_KEY_UTF8 bit set, the key octets are interpreted
 as UTF-8, 
otherwise they are interpreted as Latin-1. hash is
 a precomputed hash of the key 
string, or zero if it has not been
 precomputed.

value is the scalar value to store for this key. value is copied
 by this function, which 
thus does not take ownership of any reference
 to it, and later changes to the scalar will
not be reflected in the
 value visible in the refcounted_he. Complex types of scalar 
will not
 be stored with referential integrity, but will be coerced to strings. value may be 



Perl version 5.18.2 documentation - perlintern

Page 7http://perldoc.perl.org

either null or &PL_sv_placeholder to indicate that no
 value is to be associated with 
the key; this, as with any non-null value,
 takes precedence over the existence of a 
value for the key further along
 the chain.

parent points to the rest of the refcounted_he chain to be
 attached to the new 
refcounted_he. This function takes ownership
 of one reference to parent, and 
returns one reference to the new refcounted_he.

	 struct refcounted_he * refcounted_he_new_pvn(
	                           struct refcounted_he *parent,
	                           const char *keypv,
	                           STRLEN keylen, U32 hash,
	                           SV *value, U32 flags
	                       )

refcounted_he_new_pvs 

Like refcounted_he_new_pvn, but takes a literal string instead of
 a string/length pair, 
and no precomputed hash.

	 struct refcounted_he * refcounted_he_new_pvs(
	                           struct refcounted_he *parent,
	                           const char *key, SV *value,
	                           U32 flags
	                       )

refcounted_he_new_sv 

Like refcounted_he_new_pvn, but takes a Perl scalar instead of a
 string/length pair.

	 struct refcounted_he * refcounted_he_new_sv(
	                           struct refcounted_he *parent,
	                           SV *key, U32 hash, SV *value,
	                           U32 flags
	                       )

IO Functions
start_glob 

Function called by do_readline to spawn a glob (or do the glob inside
 perl on VMS).
This code used to be inline, but now perl uses File::Glob
 this glob starter is only 
used by miniperl during the build process.
 Moving it away shrinks pp_hot.c; shrinking 
pp_hot.c helps speed perl up.

NOTE: this function is experimental and may change or be
 removed without notice.

	 PerlIO*	 start_glob(SV *tmpglob, IO *io)

Magical Functions
magic_clearhint 

Triggered by a delete from %^H, records the key to 
PL_compiling.cop_hints_hash.

	 int	 magic_clearhint(SV* sv, MAGIC* mg)

magic_clearhints 

Triggered by clearing %^H, resets PL_compiling.cop_hints_hash.

	 int	 magic_clearhints(SV* sv, MAGIC* mg)



Perl version 5.18.2 documentation - perlintern

Page 8http://perldoc.perl.org

magic_methcall 

Invoke a magic method (like FETCH).

sv and mg are the tied thingy and the tie magic.

meth is the name of the method to call.

argc is the number of args (in addition to $self) to pass to the method.

The flags can be:

    G_DISCARD     invoke method with G_DISCARD flag and don't
                  return a value
    G_UNDEF_FILL  fill the stack with argc pointers to
                  PL_sv_undef

The arguments themselves are any values following the flags argument.

Returns the SV (if any) returned by the method, or NULL on failure.

	 SV*	 magic_methcall(SV *sv, const MAGIC *mg,
		               const char *meth, U32 flags,
		               U32 argc, ...)

magic_sethint 

Triggered by a store to %^H, records the key/value pair to 
PL_compiling.cop_hints_hash. It is assumed that hints aren't storing
 anything 
that would need a deep copy. Maybe we should warn if we find a
 reference.

	 int	 magic_sethint(SV* sv, MAGIC* mg)

mg_localize 

Copy some of the magic from an existing SV to new localized version of that
 SV. 
Container magic (eg %ENV, $1, tie) gets copied, value magic doesn't (eg
 taint, pos).

If setmagic is false then no set magic will be called on the new (empty) SV.
 This 
typically means that assignment will soon follow (e.g. 'local $x = $y'),
 and that will 
handle the magic.

	 void	 mg_localize(SV* sv, SV* nsv, bool setmagic)

MRO Functions
mro_get_linear_isa_dfs 

Returns the Depth-First Search linearization of @ISA
 the given stash. The return value
is a read-only AV*. level should be 0 (it is used internally in this
 function's recursion).

You are responsible for SvREFCNT_inc() on the
 return value if you plan to store it 
anywhere
 semi-permanently (otherwise it might be deleted
 out from under you the next
time the cache is
 invalidated).

	 AV*	 mro_get_linear_isa_dfs(HV* stash, U32 level)

mro_isa_changed_in 

Takes the necessary steps (cache invalidations, mostly)
 when the @ISA of the given 
package has changed. Invoked
 by the setisa magic, should not need to invoke 
directly.

	 void	 mro_isa_changed_in(HV* stash)

mro_package_moved 

Call this function to signal to a stash that it has been assigned to
 another spot in the 



Perl version 5.18.2 documentation - perlintern

Page 9http://perldoc.perl.org

stash hierarchy. stash is the stash that has been
 assigned. oldstash is the stash it 
replaces, if any. gv is the glob
 that is actually being assigned to.

This can also be called with a null first argument to
 indicate that oldstash has been 
deleted.

This function invalidates isa caches on the old stash, on all subpackages
 nested inside
it, and on the subclasses of all those, including
 non-existent packages that have 
corresponding entries in stash.

It also sets the effective names (HvENAME) on all the stashes as
 appropriate.

If the gv is present and is not in the symbol table, then this function
 simply returns. 
This checked will be skipped if flags & 1.

	 void	 mro_package_moved(HV * const stash,
		                  HV * const oldstash,
		                  const GV * const gv,
		                  U32 flags)

Optree Manipulation Functions
finalize_optree 

This function finalizes the optree. Should be called directly after
 the complete optree is 
built. It does some additional
 checking which can't be done in the normal ck_xxx 
functions and makes
 the tree thread-safe.

	 void	 finalize_optree(OP* o)

Pad Data Structures
CX_CURPAD_SAVE 

Save the current pad in the given context block structure.

	 void	 CX_CURPAD_SAVE(struct context)

CX_CURPAD_SV 

Access the SV at offset po in the saved current pad in the given
 context block structure
(can be used as an lvalue).

	 SV *	 CX_CURPAD_SV(struct context, PADOFFSET po)

PadnameIsOUR 

Whether this is an "our" variable.

	 bool	 PadnameIsOUR(PADNAME pn)

PadnameIsSTATE 

Whether this is a "state" variable.

	 bool	 PadnameIsSTATE(PADNAME pn)

PadnameOURSTASH 

The stash in which this "our" variable was declared.

	 HV *	 PadnameOURSTASH()

PadnameOUTER 

Whether this entry belongs to an outer pad.

	 bool	 PadnameOUTER(PADNAME pn)



Perl version 5.18.2 documentation - perlintern

Page 10http://perldoc.perl.org

PadnameTYPE 

The stash associated with a typed lexical. This returns the %Foo:: hash
 for my Foo 
$bar.

	 HV *	 PadnameTYPE(PADNAME pn)

PAD_BASE_SV 

Get the value from slot po in the base (DEPTH=1) pad of a padlist

	 SV *	 PAD_BASE_SV(PADLIST padlist, PADOFFSET po)

PAD_CLONE_VARS 

Clone the state variables associated with running and compiling pads.

	 void	 PAD_CLONE_VARS(PerlInterpreter *proto_perl,
		               CLONE_PARAMS* param)

PAD_COMPNAME_FLAGS 

Return the flags for the current compiling pad name
 at offset po. Assumes a valid slot 
entry.

	 U32	 PAD_COMPNAME_FLAGS(PADOFFSET po)

PAD_COMPNAME_GEN 

The generation number of the name at offset po in the current
 compiling pad (lvalue). 
Note that SvUVX is hijacked for this purpose.

	 STRLEN	 PAD_COMPNAME_GEN(PADOFFSET po)

PAD_COMPNAME_GEN_set 

Sets the generation number of the name at offset po in the current
 ling pad (lvalue) to 
gen. Note that SvUV_set is hijacked for this purpose.

	 STRLEN	 PAD_COMPNAME_GEN_set(PADOFFSET po, int gen)

PAD_COMPNAME_OURSTASH 

Return the stash associated with an our variable.
 Assumes the slot entry is a valid 
our lexical.

	 HV *	 PAD_COMPNAME_OURSTASH(PADOFFSET po)

PAD_COMPNAME_PV 

Return the name of the current compiling pad name
 at offset po. Assumes a valid slot 
entry.

	 char *	 PAD_COMPNAME_PV(PADOFFSET po)

PAD_COMPNAME_TYPE 

Return the type (stash) of the current compiling pad name at offset po. Must be a valid
name. Returns null if not typed.

	 HV *	 PAD_COMPNAME_TYPE(PADOFFSET po)

pad_peg 

When PERL_MAD is enabled, this is a small no-op function that gets called
 at the start
of each pad-related function. It can be breakpointed to
 track all pad operations. The 



Perl version 5.18.2 documentation - perlintern

Page 11http://perldoc.perl.org

parameter is a string indicating the type
 of pad operation being performed.

NOTE: this function is experimental and may change or be
 removed without notice.

	 void	 pad_peg(const char *s)

PAD_RESTORE_LOCAL 

Restore the old pad saved into the local variable opad by PAD_SAVE_LOCAL()

	 void	 PAD_RESTORE_LOCAL(PAD *opad)

PAD_SAVE_LOCAL 

Save the current pad to the local variable opad, then make the
 current pad equal to 
npad

	 void	 PAD_SAVE_LOCAL(PAD *opad, PAD *npad)

PAD_SAVE_SETNULLPAD 

Save the current pad then set it to null.

	 void	 PAD_SAVE_SETNULLPAD()

PAD_SETSV 

Set the slot at offset po in the current pad to sv

	 SV *	 PAD_SETSV(PADOFFSET po, SV* sv)

PAD_SET_CUR 

Set the current pad to be pad n in the padlist, saving
 the previous current pad. NB 
currently this macro expands to a string too
 long for some compilers, so it's best to 
replace it with

    SAVECOMPPAD();
    PAD_SET_CUR_NOSAVE(padlist,n);

	 void	 PAD_SET_CUR(PADLIST padlist, I32 n)

PAD_SET_CUR_NOSAVE 

like PAD_SET_CUR, but without the save

	 void	 PAD_SET_CUR_NOSAVE(PADLIST padlist, I32 n)

PAD_SV 

Get the value at offset po in the current pad

	 void	 PAD_SV(PADOFFSET po)

PAD_SVl 

Lightweight and lvalue version of PAD_SV.
 Get or set the value at offset po in the 
current pad.
 Unlike PAD_SV, does not print diagnostics with -DX.
 For internal use only.

	 SV *	 PAD_SVl(PADOFFSET po)

SAVECLEARSV 

Clear the pointed to pad value on scope exit. (i.e. the runtime action of 'my')

	 void	 SAVECLEARSV(SV **svp)



Perl version 5.18.2 documentation - perlintern

Page 12http://perldoc.perl.org

SAVECOMPPAD 

save PL_comppad and PL_curpad

	 void	 SAVECOMPPAD()

SAVEPADSV 

Save a pad slot (used to restore after an iteration)

XXX DAPM it would make more sense to make the arg a PADOFFSET
 void	
SAVEPADSV(PADOFFSET po)

Per-Interpreter Variables
PL_DBsingle 

When Perl is run in debugging mode, with the -d switch, this SV is a
 boolean which 
indicates whether subs are being single-stepped.
 Single-stepping is automatically 
turned on after every step. This is the C
 variable which corresponds to Perl's 
$DB::single variable. See PL_DBsub.

	 SV *	 PL_DBsingle

PL_DBsub 

When Perl is run in debugging mode, with the -d switch, this GV contains
 the SV which
holds the name of the sub being debugged. This is the C
 variable which corresponds 
to Perl's $DB::sub variable. See PL_DBsingle.

	 GV *	 PL_DBsub

PL_DBtrace 

Trace variable used when Perl is run in debugging mode, with the -d 
 switch. This is the
C variable which corresponds to Perl's $DB::trace
 variable. See PL_DBsingle.

	 SV *	 PL_DBtrace

PL_dowarn 

The C variable which corresponds to Perl's $^W warning variable.

	 bool	 PL_dowarn

PL_last_in_gv 

The GV which was last used for a filehandle input operation. (<FH>)

	 GV*	 PL_last_in_gv

PL_ofsgv 

The glob containing the output field separator - *, in Perl space.

	 GV*	 PL_ofsgv

PL_rs 

The input record separator - $/ in Perl space.

	 SV*	 PL_rs

Stack Manipulation Macros
djSP 

Declare Just SP. This is actually identical to dSP, and declares
 a local copy of perl's 



Perl version 5.18.2 documentation - perlintern

Page 13http://perldoc.perl.org

stack pointer, available via the SP macro.
 See SP. (Available for backward source code
compatibility with the
 old (Perl 5.005) thread model.)

		 djSP;

LVRET 

True if this op will be the return value of an lvalue subroutine

SV Manipulation Functions
SvTHINKFIRST 

A quick flag check to see whether an sv should be passed to sv_force_normal
 to be 
"downgraded" before SvIVX or SvPVX can be modified directly.

For example, if your scalar is a reference and you want to modify the SvIVX
 slot, you 
can't just do SvROK_off, as that will leak the referent.

This is used internally by various sv-modifying functions, such as
 sv_setsv, sv_setiv 
and sv_pvn_force.

One case that this does not handle is a gv without SvFAKE set. After

    if (SvTHINKFIRST(gv)) sv_force_normal(gv);

it will still be a gv.

SvTHINKFIRST sometimes produces false positives. In those cases
 sv_force_normal 
does nothing.

	 U32	 SvTHINKFIRST(SV *sv)

sv_add_arena 

Given a chunk of memory, link it to the head of the list of arenas,
 and split it into a list 
of free SVs.

	 void	 sv_add_arena(char *const ptr, const U32 size,
		             const U32 flags)

sv_clean_all 

Decrement the refcnt of each remaining SV, possibly triggering a
 cleanup. This 
function may have to be called multiple times to free
 SVs which are in complex 
self-referential hierarchies.

	 I32	 sv_clean_all()

sv_clean_objs 

Attempt to destroy all objects not yet freed.

	 void	 sv_clean_objs()

sv_free_arenas 

Deallocate the memory used by all arenas. Note that all the individual SV
 heads and 
bodies within the arenas must already have been freed.

	 void	 sv_free_arenas()

SV-Body Allocation
sv_2num 

Return an SV with the numeric value of the source SV, doing any necessary
 reference 
or overload conversion. You must use the SvNUM(sv) macro to
 access this function.



Perl version 5.18.2 documentation - perlintern

Page 14http://perldoc.perl.org

NOTE: this function is experimental and may change or be
 removed without notice.

	 SV*	 sv_2num(SV *const sv)

sv_copypv 

Copies a stringified representation of the source SV into the
 destination SV. 
Automatically performs any necessary mg_get and
 coercion of numeric values into 
strings. Guaranteed to preserve
 UTF8 flag even from overloaded objects. Similar in 
nature to
 sv_2pv[_flags] but operates directly on an SV instead of just the
 string. 
Mostly uses sv_2pv_flags to do its work, except when that
 would lose the UTF-8'ness 
of the PV.

	 void	 sv_copypv(SV *const dsv, SV *const ssv)

sv_ref 

Returns a SV describing what the SV passed in is a reference to.

	 SV*	 sv_ref(SV *dst, const SV *const sv,
		       const int ob)

Unicode Support
find_uninit_var 

Find the name of the undefined variable (if any) that caused the operator
 to issue a 
"Use of uninitialized value" warning.
 If match is true, only return a name if its value 
matches uninit_sv.
 So roughly speaking, if a unary operator (such as OP_COS) 
generates a
 warning, then following the direct child of the op may yield an
 OP_PADSV
or OP_GV that gives the name of the undefined variable. On the
 other hand, with 
OP_ADD there are two branches to follow, so we only print
 the variable name if we get
an exact match.

The name is returned as a mortal SV.

Assumes that PL_op is the op that originally triggered the error, and that

PL_comppad/PL_curpad points to the currently executing pad.

NOTE: this function is experimental and may change or be
 removed without notice.

	 SV*	 find_uninit_var(const OP *const obase,
		                const SV *const uninit_sv,
		                bool top)

report_uninit 

Print appropriate "Use of uninitialized variable" warning.

	 void	 report_uninit(const SV *uninit_sv)

Undocumented functions
The following functions are currently undocumented. If you use one of
 them, you may wish to 
consider creating and submitting documentation for
 it.

Perl_croak_memory_wrap 

Slab_Alloc 

Slab_Free 

Slab_to_ro 

Slab_to_rw 

_add_range_to_invlist 



Perl version 5.18.2 documentation - perlintern

Page 15http://perldoc.perl.org

_core_swash_init 

_get_invlist_len_addr 

_get_swash_invlist 

_invlist_array_init 

_invlist_contains_cp 

_invlist_contents 

_invlist_intersection 

_invlist_intersection_maybe_complement_2nd 

_invlist_invert 

_invlist_invert_prop 

_invlist_len 

_invlist_populate_swatch 

_invlist_search 

_invlist_subtract 

_invlist_union 

_invlist_union_maybe_complement_2nd 

_new_invlist 

_swash_inversion_hash 

_swash_to_invlist 

_to_fold_latin1 

_to_upper_title_latin1 

aassign_common_vars 

add_cp_to_invlist 

addmad 

alloc_maybe_populate_EXACT 

allocmy 

amagic_is_enabled 

append_madprops 

apply 

av_extend_guts 

av_reify 

bind_match 

block_end 

block_start 

boot_core_PerlIO 

boot_core_UNIVERSAL 

boot_core_mro 

cando 

check_utf8_print 

ck_entersub_args_core 

compute_EXACTish 

convert 



Perl version 5.18.2 documentation - perlintern

Page 16http://perldoc.perl.org

coresub_op 

create_eval_scope 

croak_no_mem 

croak_popstack 

current_re_engine 

cv_ckproto_len_flags 

cv_clone_into 

cvgv_set 

cvstash_set 

deb_stack_all 

delete_eval_scope 

die_unwind 

do_aexec 

do_aexec5 

do_eof 

do_exec 

do_exec3 

do_execfree 

do_ipcctl 

do_ipcget 

do_msgrcv 

do_msgsnd 

do_ncmp 

do_op_xmldump 

do_pmop_xmldump 

do_print 

do_readline 

do_seek 

do_semop 

do_shmio 

do_sysseek 

do_tell 

do_trans 

do_vecget 

do_vecset 

do_vop 

dofile 

dump_all_perl 

dump_packsubs_perl 

dump_sub_perl 

dump_sv_child 

emulate_cop_io 



Perl version 5.18.2 documentation - perlintern

Page 17http://perldoc.perl.org

feature_is_enabled 

find_lexical_cv 

find_runcv_where 

find_rundefsv2 

find_script 

free_tied_hv_pool 

get_and_check_backslash_N_name 

get_db_sub 

get_debug_opts 

get_hash_seed 

get_invlist_iter_addr 

get_invlist_previous_index_addr 

get_invlist_version_id_addr 

get_invlist_zero_addr 

get_no_modify 

get_opargs 

get_re_arg 

getenv_len 

grok_bslash_x 

hfree_next_entry 

hv_backreferences_p 

hv_kill_backrefs 

hv_undef_flags 

init_argv_symbols 

init_constants 

init_dbargs 

init_debugger 

invert 

invlist_array 

invlist_clone 

invlist_highest 

invlist_is_iterating 

invlist_iterfinish 

invlist_iterinit 

invlist_max 

invlist_previous_index 

invlist_set_len 

invlist_set_previous_index 

invlist_trim 

io_close 

isALNUM_lazy 

isIDFIRST_lazy 



Perl version 5.18.2 documentation - perlintern

Page 18http://perldoc.perl.org

is_utf8_char_slow 

is_utf8_common 

jmaybe 

keyword 

keyword_plugin_standard 

list 

localize 

mad_free 

madlex 

madparse 

magic_clear_all_env 

magic_cleararylen_p 

magic_clearenv 

magic_clearisa 

magic_clearpack 

magic_clearsig 

magic_copycallchecker 

magic_existspack 

magic_freearylen_p 

magic_freeovrld 

magic_get 

magic_getarylen 

magic_getdefelem 

magic_getnkeys 

magic_getpack 

magic_getpos 

magic_getsig 

magic_getsubstr 

magic_gettaint 

magic_getuvar 

magic_getvec 

magic_killbackrefs 

magic_nextpack 

magic_regdata_cnt 

magic_regdatum_get 

magic_regdatum_set 

magic_scalarpack 

magic_set 

magic_set_all_env 

magic_setarylen 

magic_setcollxfrm 

magic_setdbline 



Perl version 5.18.2 documentation - perlintern

Page 19http://perldoc.perl.org

magic_setdefelem 

magic_setenv 

magic_setisa 

magic_setmglob 

magic_setnkeys 

magic_setpack 

magic_setpos 

magic_setregexp 

magic_setsig 

magic_setsubstr 

magic_settaint 

magic_setutf8 

magic_setuvar 

magic_setvec 

magic_sizepack 

magic_wipepack 

malloc_good_size 

malloced_size 

mem_collxfrm 

mode_from_discipline 

more_bodies 

mro_meta_dup 

mro_meta_init 

my_attrs 

my_betoh16 

my_betoh32 

my_betoh64 

my_betohi 

my_betohl 

my_betohs 

my_clearenv 

my_htobe16 

my_htobe32 

my_htobe64 

my_htobei 

my_htobel 

my_htobes 

my_htole16 

my_htole32 

my_htole64 

my_htolei 

my_htolel 



Perl version 5.18.2 documentation - perlintern

Page 20http://perldoc.perl.org

my_htoles 

my_letoh16 

my_letoh32 

my_letoh64 

my_letohi 

my_letohl 

my_letohs 

my_lstat_flags 

my_stat_flags 

my_swabn 

my_unexec 

newATTRSUB_flags 

newGP 

newMADPROP 

newMADsv 

newSTUB 

newTOKEN 

newXS_len_flags 

new_warnings_bitfield 

nextargv 

oopsAV 

oopsHV 

op_clear 

op_const_sv 

op_getmad 

op_getmad_weak 

op_integerize 

op_lvalue_flags 

op_refcnt_dec 

op_refcnt_inc 

op_std_init 

op_unscope 

op_xmldump 

opslab_force_free 

opslab_free 

opslab_free_nopad 

package 

package_version 

padlist_store 

parse_unicode_opts 

parser_free 

parser_free_nexttoke_ops 



Perl version 5.18.2 documentation - perlintern

Page 21http://perldoc.perl.org

peep 

pmop_xmldump 

pmruntime 

populate_isa 

prepend_madprops 

qerror 

re_op_compile 

reg_named_buff 

reg_named_buff_iter 

reg_numbered_buff_fetch 

reg_numbered_buff_length 

reg_numbered_buff_store 

reg_qr_package 

reg_temp_copy 

regcurly 

regpposixcc 

regprop 

report_evil_fh 

report_redefined_cv 

report_wrongway_fh 

rpeep 

rsignal_restore 

rsignal_save 

rxres_save 

same_dirent 

sawparens 

scalar 

scalarvoid 

sighandler 

softref2xv 

sub_crush_depth 

sv_add_backref 

sv_catxmlpv 

sv_catxmlpvn 

sv_catxmlsv 

sv_del_backref 

sv_free2 

sv_kill_backrefs 

sv_len_utf8_nomg 

sv_mortalcopy_flags 

sv_resetpvn 

sv_sethek 



Perl version 5.18.2 documentation - perlintern

Page 22http://perldoc.perl.org

sv_setsv_cow 

sv_unglob 

sv_xmlpeek 

tied_method 

token_free 

token_getmad 

translate_substr_offsets 

try_amagic_bin 

try_amagic_un 

unshare_hek 

utilize 

varname 

vivify_defelem 

vivify_ref 

wait4pid 

was_lvalue_sub 

watch 

win32_croak_not_implemented 

write_to_stderr 

xmldump_all 

xmldump_all_perl 

xmldump_eval 

xmldump_form 

xmldump_indent 

xmldump_packsubs 

xmldump_packsubs_perl 

xmldump_sub 

xmldump_sub_perl 

xmldump_vindent 

xs_apiversion_bootcheck 

xs_version_bootcheck 

yyerror 

yyerror_pv 

yyerror_pvn 

yylex 

yyparse 

yyunlex 

AUTHORS
The autodocumentation system was originally added to the Perl core by
 Benjamin Stuhl. 
Documentation is by whoever was kind enough to
 document their functions.



Perl version 5.18.2 documentation - perlintern

Page 23http://perldoc.perl.org

SEE ALSO
perlguts, perlapi


