
Perl version 5.18.2 documentation - perllexwarn

Page 1http://perldoc.perl.org

NAME
perllexwarn - Perl Lexical Warnings

DESCRIPTION
The use warnings pragma enables to control precisely what warnings are
 to be enabled in which
parts of a Perl program. It's a more flexible
 alternative for both the command line flag -w and the
equivalent Perl
 variable, $^W.

This pragma works just like the strict pragma.
 This means that the scope of the warning pragma is
limited to the
 enclosing block. It also means that the pragma setting will not
 leak across files (via use,
require or do). This allows
 authors to independently define the degree of warning checks that will

be applied to their module.

By default, optional warnings are disabled, so any legacy code that
 doesn't attempt to control the
warnings will work unchanged.

All warnings are enabled in a block by either of these:

 use warnings;
 use warnings 'all';

Similarly all warnings are disabled in a block by either of these:

 no warnings;
 no warnings 'all';

For example, consider the code below:

 use warnings;
 my @a;
 {
 no warnings;
	 my $b = @a[0];
 }
 my $c = @a[0];

The code in the enclosing block has warnings enabled, but the inner
 block has them disabled. In this
case that means the assignment to the
 scalar $c will trip the "Scalar value @a[0] better
written as $a[0]"
 warning, but the assignment to the scalar $b will not.

Default Warnings and Optional Warnings
Before the introduction of lexical warnings, Perl had two classes of
 warnings: mandatory and optional.

As its name suggests, if your code tripped a mandatory warning, you
 would get a warning whether
you wanted it or not.
 For example, the code below would always produce an "isn't numeric"

warning about the "2:".

 my $a = "2:" + 3;

With the introduction of lexical warnings, mandatory warnings now become default warnings. The
difference is that although the previously
 mandatory warnings are still enabled by default, they can
then be
 subsequently enabled or disabled with the lexical warning pragma. For
 example, in the code
below, an "isn't numeric" warning will only
 be reported for the $a variable.

 my $a = "2:" + 3;
 no warnings;
 my $b = "2:" + 3;

Perl version 5.18.2 documentation - perllexwarn

Page 2http://perldoc.perl.org

Note that neither the -w flag or the $^W can be used to
 disable/enable default warnings. They are still
mandatory in this case.

What's wrong with -w and $^W
Although very useful, the big problem with using -w on the command
 line to enable warnings is that it
is all or nothing. Take the typical
 scenario when you are writing a Perl program. Parts of the code you

will write yourself, but it's very likely that you will make use of
 pre-written Perl modules. If you use the
-w flag in this case, you
 end up enabling warnings in pieces of code that you haven't written.

Similarly, using $^W to either disable or enable blocks of code is
 fundamentally flawed. For a start,
say you want to disable warnings in
 a block of code. You might expect this to be enough to do the
trick:

 {
 local ($^W) = 0;
	 my $a =+ 2;
	 my $b; chop $b;
 }

When this code is run with the -w flag, a warning will be produced
 for the $a line: "Reversed +=
operator".

The problem is that Perl has both compile-time and run-time warnings. To
 disable compile-time
warnings you need to rewrite the code like this:

 {
 BEGIN { $^W = 0 }
	 my $a =+ 2;
	 my $b; chop $b;
 }

The other big problem with $^W is the way you can inadvertently
 change the warning setting in
unexpected places in your code. For example,
 when the code below is run (without the -w flag), the
second call
 to doit will trip a "Use of uninitialized value" warning, whereas
 the first will
not.

 sub doit
 {
 my $b; chop $b;
 }

 doit();

 {
 local ($^W) = 1;
 doit()
 }

This is a side-effect of $^W being dynamically scoped.

Lexical warnings get around these limitations by allowing finer control
 over where warnings can or
can't be tripped.

Controlling Warnings from the Command Line
There are three Command Line flags that can be used to control when
 warnings are (or aren't)
produced:

Perl version 5.18.2 documentation - perllexwarn

Page 3http://perldoc.perl.org

-w

This is the existing flag. If the lexical warnings pragma is not
 used in any of you code, or any
of the modules that you use, this flag
 will enable warnings everywhere. See Backward
Compatibility for
 details of how this flag interacts with lexical warnings.

-W

If the -W flag is used on the command line, it will enable all warnings
 throughout the
program regardless of whether warnings were disabled
 locally using no warnings or $^W
=0. This includes all files that get
 included via use, require or do.
 Think of it as the Perl
equivalent of the "lint" command.

-X

Does the exact opposite to the -W flag, i.e. it disables all warnings.

Backward Compatibility
If you are used to working with a version of Perl prior to the
 introduction of lexically scoped warnings,
or have code that uses both
 lexical warnings and $^W, this section will describe how they interact.

How Lexical Warnings interact with -w/$^W:

1. If none of the three command line flags (-w, -W or -X) that
 control warnings is used and
neither $^W nor the warnings pragma
 are used, then default warnings will be enabled and
optional warnings
 disabled.
 This means that legacy code that doesn't attempt to control the
warnings
 will work unchanged.

2. The -w flag just sets the global $^W variable as in 5.005. This
 means that any legacy code
that currently relies on manipulating $^W
 to control warning behavior will still work as is.

3. Apart from now being a boolean, the $^W variable operates in exactly
 the same horrible
uncontrolled global way, except that it cannot
 disable/enable default warnings.

4. If a piece of code is under the control of the warnings pragma,
 both the $^W variable and
the -w flag will be ignored for the
 scope of the lexical warning.

5. The only way to override a lexical warnings setting is with the -W
 or -X command line flags.

The combined effect of 3 & 4 is that it will allow code which uses
 the warnings pragma to control the
warning behavior of $^W-type
 code (using a local $^W=0) if it really wants to, but not vice-versa.

Category Hierarchy
A hierarchy of "categories" have been defined to allow groups of warnings
 to be enabled/disabled in
isolation.

The current hierarchy is:

 all -+
 |
 +- closure
 |
 +- deprecated
 |
 +- exiting
 |
 +- experimental --+
 | |
 | +- experimental::lexical_subs
 |
 +- glob
 |

Perl version 5.18.2 documentation - perllexwarn

Page 4http://perldoc.perl.org

 +- imprecision
 |
 +- io ------------+
 | |
 | +- closed
 | |
 | +- exec
 | |
 | +- layer
 | |
 | +- newline
 | |
 | +- pipe
 | |
 | +- unopened
 |
 +- misc
 |
 +- numeric
 |
 +- once
 |
 +- overflow
 |
 +- pack
 |
 +- portable
 |
 +- recursion
 |
 +- redefine
 |
 +- regexp
 |
 +- severe --------+
 | |
 | +- debugging
 | |
 | +- inplace
 | |
 | +- internal
 | |
 | +- malloc
 |
 +- signal
 |
 +- substr
 |
 +- syntax --------+
 | |
 | +- ambiguous
 | |
 | +- bareword
 | |
 | +- digit
 | |

Perl version 5.18.2 documentation - perllexwarn

Page 5http://perldoc.perl.org

 | +- illegalproto
 | |
 | +- parenthesis
 | |
 | +- precedence
 | |
 | +- printf
 | |
 | +- prototype
 | |
 | +- qw
 | |
 | +- reserved
 | |
 | +- semicolon
 |
 +- taint
 |
 +- threads
 |
 +- uninitialized
 |
 +- unpack
 |
 +- untie
 |
 +- utf8 ----------+
 | |
 | +- non_unicode
 | |
 | +- nonchar
 | |
 | +- surrogate
 |
 +- void

Just like the "strict" pragma any of these categories can be combined

 use warnings qw(void redefine);
 no warnings qw(io syntax untie);

Also like the "strict" pragma, if there is more than one instance of the warnings pragma in a given
scope the cumulative effect is additive.

 use warnings qw(void); # only "void" warnings enabled
 ...
 use warnings qw(io); # only "void" & "io" warnings enabled
 ...
 no warnings qw(void); # only "io" warnings enabled

To determine which category a specific warning has been assigned to see perldiag.

Note: In Perl 5.6.1, the lexical warnings category "deprecated" was a
 sub-category of the "syntax"
category. It is now a top-level category
 in its own right.

Perl version 5.18.2 documentation - perllexwarn

Page 6http://perldoc.perl.org

Fatal Warnings
The presence of the word "FATAL" in the category list will escalate any
 warnings detected from the
categories specified in the lexical scope
 into fatal errors. In the code below, the use of time, length

and join can all produce a "Useless use of xxx in void context"
 warning.

 use warnings;

 time;

 {
 use warnings FATAL => qw(void);
 length "abc";
 }

 join "", 1,2,3;

 print "done\n";

When run it produces this output

 Useless use of time in void context at fatal line 3.
 Useless use of length in void context at fatal line 7.

The scope where length is used has escalated the void warnings
 category into a fatal error, so the
program terminates immediately it
 encounters the warning.

To explicitly turn off a "FATAL" warning you just disable the warning
 it is associated with. So, for
example, to disable the "void" warning
 in the example above, either of these will do the trick:

 no warnings qw(void);
 no warnings FATAL => qw(void);

If you want to downgrade a warning that has been escalated into a fatal
 error back to a normal
warning, you can use the "NONFATAL" keyword. For
 example, the code below will promote all
warnings into fatal errors,
 except for those in the "syntax" category.

 use warnings FATAL => 'all', NONFATAL => 'syntax';

Reporting Warnings from a Module
The warnings pragma provides a number of functions that are useful for
 module authors. These are
used when you want to report a module-specific
 warning to a calling module has enabled warnings
via the warnings
 pragma.

Consider the module MyMod::Abc below.

 package MyMod::Abc;

 use warnings::register;

 sub open {
 my $path = shift;
 if ($path !~ m#^/#) {
 warnings::warn("changing relative path to /var/abc")
 if warnings::enabled();

Perl version 5.18.2 documentation - perllexwarn

Page 7http://perldoc.perl.org

 $path = "/var/abc/$path";
 }
 }

 1;

The call to warnings::register will create a new warnings category
 called "MyMod::Abc", i.e. the
new category name matches the current
 package name. The open function in the module will display
a warning
 message if it gets given a relative path as a parameter. This warnings
 will only be displayed
if the code that uses MyMod::Abc has actually
 enabled them with the warnings pragma like below.

 use MyMod::Abc;
 use warnings 'MyMod::Abc';
 ...
 abc::open("../fred.txt");

It is also possible to test whether the pre-defined warnings categories are
 set in the calling module
with the warnings::enabled function. Consider
 this snippet of code:

 package MyMod::Abc;

 sub open {
 warnings::warnif("deprecated",
 "open is deprecated, use new instead");
 new(@_);
 }

 sub new
 ...
 1;

The function open has been deprecated, so code has been included to
 display a warning message
whenever the calling module has (at least) the
 "deprecated" warnings category enabled. Something
like this, say.

 use warnings 'deprecated';
 use MyMod::Abc;
 ...
 MyMod::Abc::open($filename);

Either the warnings::warn or warnings::warnif function should be
 used to actually display the
warnings message. This is because they can
 make use of the feature that allows warnings to be
escalated into fatal
 errors. So in this case

 use MyMod::Abc;
 use warnings FATAL => 'MyMod::Abc';
 ...
 MyMod::Abc::open('../fred.txt');

the warnings::warnif function will detect this and die after
 displaying the warning message.

The three warnings functions, warnings::warn, warnings::warnif
 and warnings::enabled
can optionally take an object reference in place
 of a category name. In this case the functions will use
the class name
 of the object as the warnings category.

Perl version 5.18.2 documentation - perllexwarn

Page 8http://perldoc.perl.org

Consider this example:

 package Original;

 no warnings;
 use warnings::register;

 sub new
 {
 my $class = shift;
 bless [], $class;
 }

 sub check
 {
 my $self = shift;
 my $value = shift;

 if ($value % 2 && warnings::enabled($self))
 { warnings::warn($self, "Odd numbers are unsafe") }
 }

 sub doit
 {
 my $self = shift;
 my $value = shift;
 $self->check($value);
 # ...
 }

 1;

 package Derived;

 use warnings::register;
 use Original;
 our @ISA = qw(Original);
 sub new
 {
 my $class = shift;
 bless [], $class;
 }

 1;

The code below makes use of both modules, but it only enables warnings from Derived.

 use Original;
 use Derived;
 use warnings 'Derived';
 my $a = Original->new();
 $a->doit(1);
 my $b = Derived->new();

Perl version 5.18.2 documentation - perllexwarn

Page 9http://perldoc.perl.org

 $a->doit(1);

When this code is run only the Derived object, $b, will generate
 a warning.

 Odd numbers are unsafe at main.pl line 7

Notice also that the warning is reported at the line where the object is first
 used.

When registering new categories of warning, you can supply more names to
 warnings::register like
this:

 package MyModule;
 use warnings::register qw(format precision);

 ...

 warnings::warnif('MyModule::format', '...');

SEE ALSO
warnings, perldiag.

AUTHOR
Paul Marquess

