
Perl version 5.18.2 documentation - perlpolicy

Page 1http://perldoc.perl.org

NAME
perlpolicy - Various and sundry policies and commitments related to the Perl core

DESCRIPTION
This document is the master document which records all written
 policies about how the Perl 5 Porters 
collectively develop and maintain
 the Perl core.

GOVERNANCE
Perl 5 Porters

Subscribers to perl5-porters (the porters themselves) come in several flavours.
 Some are quiet 
curious lurkers, who rarely pitch in and instead watch
 the ongoing development to ensure they're 
forewarned of new changes or
 features in Perl. Some are representatives of vendors, who are there

to make sure that Perl continues to compile and work on their
 platforms. Some patch any reported 
bug that they know how to fix,
 some are actively patching their pet area (threads, Win32, the regexp

-engine), while others seem to do nothing but complain. In other
 words, it's your usual mix of technical
people.

Over this group of porters presides Larry Wall. He has the final word
 in what does and does not 
change in any of the Perl programming languages.
 These days, Larry spends most of his time on Perl
6, while Perl 5 is
 shepherded by a "pumpking", a porter responsible for deciding what
 goes into each 
release and ensuring that releases happen on a regular
 basis.

Larry sees Perl development along the lines of the US government:
 there's the Legislature (the 
porters), the Executive branch (the
 -pumpking), and the Supreme Court (Larry). The legislature can

discuss and submit patches to the executive branch all they like, but
 the executive branch is free to 
veto them. Rarely, the Supreme Court
 will side with the executive branch over the legislature, or the

legislature over the executive branch. Mostly, however, the
 legislature and the executive branch are 
supposed to get along and
 work out their differences without impeachment or court cases.

You might sometimes see reference to Rule 1 and Rule 2. Larry's power
 as Supreme Court is 
expressed in The Rules:

1 Larry is always by definition right about how Perl should behave.
 This means he has final veto 
power on the core functionality.

2 Larry is allowed to change his mind about any matter at a later date,
 regardless of whether he 
previously invoked Rule 1.

Got that? Larry is always right, even when he was wrong. It's rare
 to see either Rule exercised, but 
they are often alluded to.

MAINTENANCE AND SUPPORT
Perl 5 is developed by a community, not a corporate entity. Every change
 contributed to the Perl core 
is the result of a donation. Typically, these
 donations are contributions of code or time by individual 
members of our
 community. On occasion, these donations come in the form of corporate
 or 
organizational sponsorship of a particular individual or project.

As a volunteer organization, the commitments we make are heavily dependent
 on the goodwill and 
hard work of individuals who have no obligation to
 contribute to Perl.

That being said, we value Perl's stability and security and have long
 had an unwritten covenant with 
the broader Perl community to support
 and maintain releases of Perl.

This document codifies the support and maintenance commitments that
 the Perl community should 
expect from Perl's developers:

We "officially" support the two most recent stable release series. 5.12.x
 and earlier are now 
out of support. As of the release of 5.18.0, we will
 "officially" end support for Perl 5.14.x, other 
than providing security
 updates as described below.



Perl version 5.18.2 documentation - perlpolicy

Page 2http://perldoc.perl.org

To the best of our ability, we will attempt to fix critical issues
 in the two most recent stable 5.x 
release series. Fixes for the
 current release series take precedence over fixes for the previous
release series.

To the best of our ability, we will provide "critical" security patches
 / releases for any major 
version of Perl whose 5.x.0 release was within
 the past three years. We can only commit to 
providing these for the
 most recent .y release in any 5.x.y series.

We will not provide security updates or bug fixes for development
 releases of Perl.

We encourage vendors to ship the most recent supported release of
 Perl at the time of their 
code freeze.

As a vendor, you may have a requirement to backport security fixes
 beyond our 3 year 
support commitment. We can provide limited support and
 advice to you as you do so and, 
where possible will try to apply
 those patches to the relevant -maint branches in git, though we
may or
 may not choose to make numbered releases or "official" patches
 available. Contact us 
at <perl5-security-report@perl.org>
 to begin that process.

BACKWARD COMPATIBILITY AND DEPRECATION
Our community has a long-held belief that backward-compatibility is a
 virtue, even when the 
functionality in question is a design flaw.

We would all love to unmake some mistakes we've made over the past
 decades. Living with every 
design error we've ever made can lead
 to painful stagnation. Unwinding our mistakes is very, very

difficult. Doing so without actively harming our users is
 nearly impossible.

Lately, ignoring or actively opposing compatibility with earlier versions
 of Perl has come into vogue. 
Sometimes, a change is proposed which
 wants to usurp syntax which previously had another 
meaning. Sometimes,
 a change wants to improve previously-crazy semantics.

Down this road lies madness.

Requiring end-user programmers to change just a few language constructs,
 even language constructs
which no well-educated developer would ever
 intentionally use is tantamount to saying "you should 
not upgrade to
 a new release of Perl unless you have 100% test coverage and can do a
 full manual 
audit of your codebase." If we were to have tools capable of
 reliably upgrading Perl source code from 
one version of Perl to another,
 this concern could be significantly mitigated.

We want to ensure that Perl continues to grow and flourish in the coming
 years and decades, but not 
at the expense of our user community.

Existing syntax and semantics should only be marked for destruction in
 very limited circumstances. If 
a given language feature's continued
 inclusion in the language will cause significant harm to the 
language
 or prevent us from making needed changes to the runtime, then it may
 be considered for 
deprecation.

Any language change which breaks backward-compatibility should be able to
 be enabled or disabled 
lexically. Unless code at a given scope declares
 that it wants the new behavior, that new behavior 
should be disabled.
 Which backward-incompatible changes are controlled implicitly by a
 'use v5.x.y' is
a decision which should be made by the pumpking in
 consultation with the community.

When a backward-incompatible change can't be toggled lexically, the decision
 to change the 
language must be considered very, very carefully. If it's
 possible to move the old syntax or semantics 
out of the core language
 and into XS-land, that XS module should be enabled by default unless
 the 
user declares that they want a newer revision of Perl.

Historically, we've held ourselves to a far higher standard than
 backward-compatibility -- 
bugward-compatibility. Any accident of
 implementation or unintentional side-effect of running some bit
of code
 has been considered to be a feature of the language to be defended with
 the same zeal as 



Perl version 5.18.2 documentation - perlpolicy

Page 3http://perldoc.perl.org

any other feature or functionality. No matter how
 frustrating these unintentional features may be to us 
as we continue
 to improve Perl, these unintentional features often deserve our
 protection. It is very 
important that existing software written in
 Perl continue to work correctly. If end-user developers have 
adopted a
 bug as a feature, we need to treat it as such.

New syntax and semantics which don't break existing language constructs
 and syntax have a much 
lower bar. They merely need to prove themselves
 to be useful, elegant, well designed, and well 
tested.

Terminology
To make sure we're talking about the same thing when we discuss the removal
 of features or 
functionality from the Perl core, we have specific definitions
 for a few words and phrases.

experimental

If something in the Perl core is marked as experimental, we may change
 its behaviour, 
deprecate or remove it without notice. While we'll always
 do our best to smooth the transition 
path for users of experimental
 features, you should contact the perl5-porters mailinglist if you 
find
 an experimental feature useful and want to help shape its future.

deprecated

If something in the Perl core is marked as deprecated, we may remove it
 from the core in the 
next stable release series, though we may not. As of
 Perl 5.12, deprecated features and 
modules warn the user as they're used.
 When a module is deprecated, it will also be made 
available on CPAN.
 Installing it from CPAN will silence deprecation warnings for that module.

If you use a deprecated feature or module and believe that its removal from
 the Perl core 
would be a mistake, please contact the perl5-porters
 mailinglist and plead your case. We don't
deprecate things without a good
 reason, but sometimes there's a counterargument we haven't
considered.
 Historically, we did not distinguish between "deprecated" and "discouraged"

features.

discouraged

From time to time, we may mark language constructs and features which we
 consider to have 
been mistakes as discouraged. Discouraged features
 aren't candidates for removal in the 
next major release series, but
 we may later deprecate them if they're found to stand in the way
of a
 significant improvement to the Perl core.

removed

Once a feature, construct or module has been marked as deprecated for a
 stable release 
cycle, we may remove it from the Perl core. Unsurprisingly,
 we say we've removed these 
things. When a module is removed, it will
 no longer ship with Perl, but will continue to be 
available on CPAN.

MAINTENANCE BRANCHES
New releases of maint should contain as few changes as possible.
 If there is any question 
about whether a given patch might merit
 inclusion in a maint release, then it almost certainly 
should not
 be included.

Portability fixes, such as changes to Configure and the files in
 hints/ are acceptable. Ports of 
Perl to a new platform, architecture
 or OS release that involve changes to the implementation 
are NOT
 acceptable.

Acceptable documentation updates are those that correct factual errors,
 explain significant 
bugs or deficiencies in the current implementation, or fix broken markup.

Patches that add new warnings or errors or deprecate features
 are not acceptable.

Patches that fix crashing bugs that do not otherwise change Perl's
 functionality or negatively 



Perl version 5.18.2 documentation - perlpolicy

Page 4http://perldoc.perl.org

impact performance are acceptable.

Patches that fix CVEs or security issues are acceptable, but should
 be run through the 
perl5-security-report@perl.org mailing list
 rather than applied directly.

Patches that fix regressions in perl's behavior relative to previous
 releases are acceptable.

Updates to dual-life modules should consist of minimal patches to fix crashing or security 
issues (as above).

Minimal patches that fix platform-specific test failures or
 installation issues are acceptable. 
When these changes are made
 to dual-life modules for which CPAN is canonical, any 
changes
 should be coordinated with the upstream author.

New versions of dual-life modules should NOT be imported into maint.
 Those belong in the 
next stable series.

Patches that add or remove features are not acceptable.

Patches that break binary compatibility are not acceptable. (Please
 talk to a pumpking.)

Getting changes into a maint branch
Historically, only the pumpking cherry-picked changes from bleadperl
 into maintperl. This has scaling 
problems. At the same time,
 maintenance branches of stable versions of Perl need to be treated with

great care. To that end, as of Perl 5.12, we have a new process for
 maint branches.

Any committer may cherry-pick any commit from blead to a maint branch if
 they send mail to 
perl5-porters announcing their intent to cherry-pick
 a specific commit along with a rationale for doing 
so and at least two other committers respond to the list giving their assent. (This policy
 applies to 
current and former pumpkings, as well as other committers.)

CONTRIBUTED MODULES
A Social Contract about Artistic Control

What follows is a statement about artistic control, defined as the ability
 of authors of packages to 
guide the future of their code and maintain
 control over their work. It is a recognition that authors 
should have
 control over their work, and that it is a responsibility of the rest of
 the Perl community to 
ensure that they retain this control. It is an
 attempt to document the standards to which we, as Perl 
developers, intend
 to hold ourselves. It is an attempt to write down rough guidelines about
 the respect
we owe each other as Perl developers.

This statement is not a legal contract. This statement is not a legal
 document in any way, shape, or 
form. Perl is distributed under the GNU
 Public License and under the Artistic License; those are the 
precise legal
 terms. This statement isn't about the law or licenses. It's about
 community, mutual 
respect, trust, and good-faith cooperation.

We recognize that the Perl core, defined as the software distributed with
 the heart of Perl itself, is a 
joint project on the part of all of us.
 From time to time, a script, module, or set of modules (hereafter 
referred
 to simply as a "module") will prove so widely useful and/or so integral to
 the correct 
functioning of Perl itself that it should be distributed with
 the Perl core. This should never be done 
without the author's explicit
 consent, and a clear recognition on all parts that this means the module
 is
being distributed under the same terms as Perl itself. A module author
 should realize that inclusion of 
a module into the Perl core will
 necessarily mean some loss of control over it, since changes may

occasionally have to be made on short notice or for consistency with the
 rest of Perl.

Once a module has been included in the Perl core, however, everyone
 involved in maintaining Perl 
should be aware that the module is still the
 property of the original author unless the original author 
explicitly
 gives up their ownership of it. In particular:

The version of the module in the Perl core should still be considered the
 work of the original 
author. All patches, bug reports, and so
 forth should be fed back to them. Their development 



Perl version 5.18.2 documentation - perlpolicy

Page 5http://perldoc.perl.org

directions
 should be respected whenever possible.

Patches may be applied by the pumpkin holder without the explicit
 cooperation of the module 
author if and only if they are very minor,
 time-critical in some fashion (such as urgent security 
fixes), or if
 the module author cannot be reached. Those patches must still be
 given back to 
the author when possible, and if the author decides on
 an alternate fix in their version, that fix 
should be strongly
 preferred unless there is a serious problem with it. Any changes not

endorsed by the author should be marked as such, and the contributor
 of the change 
acknowledged.

The version of the module distributed with Perl should, whenever
 possible, be the latest 
version of the module as distributed by the
 author (the latest non-beta version in the case of 
public Perl
 releases), although the pumpkin holder may hold off on upgrading the
 version of 
the module distributed with Perl to the latest version
 until the latest version has had sufficient 
testing.

In other words, the author of a module should be considered to have final
 say on modifications to their
module whenever possible (bearing in mind
 that it's expected that everyone involved will work 
together and arrive at
 reasonable compromises when there are disagreements).

As a last resort, however:

If the author's vision of the future of their module is sufficiently
 different from the vision of the pumpkin
holder and perl5-porters as a
 whole so as to cause serious problems for Perl, the pumpkin holder may
choose to formally fork the version of the module in the Perl core from the
 one maintained by the 
author. This should not be done lightly and
 should always if at all possible be done only after direct 
input
 from Larry. If this is done, it must then be made explicit in the
 module as distributed with the Perl
core that it is a forked version and
 that while it is based on the original author's work, it is no longer

maintained by them. This must be noted in both the documentation and
 in the comments in the 
source of the module.

Again, this should be a last resort only. Ideally, this should never
 happen, and every possible effort at 
cooperation and compromise should be
 made before doing this. If it does prove necessary to fork a 
module for
 the overall health of Perl, proper credit must be given to the original
 author in perpetuity 
and the decision should be constantly re-evaluated to
 see if a remerging of the two branches is 
possible down the road.

In all dealings with contributed modules, everyone maintaining Perl should
 keep in mind that the code 
belongs to the original author, that they may
 not be on perl5-porters at any given time, and that a 
patch is not
 official unless it has been integrated into the author's copy of the
 module. To aid with this,
and with points #1, #2, and #3 above, contact
 information for the authors of all contributed modules 
should be kept with
 the Perl distribution.

Finally, the Perl community as a whole recognizes that respect for
 ownership of code, respect for 
artistic control, proper credit, and active
 effort to prevent unintentional code skew or communication 
gaps is vital
 to the health of the community and Perl itself. Members of a community
 should not 
normally have to resort to rules and laws to deal with each
 other, and this document, although it 
contains rules so as to be clear, is
 about an attitude and general approach. The first step in any 
dispute
 should be open communication, respect for opposing views, and an attempt
 at a compromise.
In nearly every circumstance nothing more will be
 necessary, and certainly no more drastic measure 
should be used until
 every avenue of communication and discussion has failed.

DOCUMENTATION
Perl's documentation is an important resource for our users. It's
 incredibly important for Perl's 
documentation to be reasonably coherent
 and to accurately reflect the current implementation.

Just as P5P collectively maintains the codebase, we collectively
 maintain the documentation. Writing 
a particular bit of documentation
 doesn't give an author control of the future of that documentation.
 At 
the same time, just as source code changes should match the style
 of their surrounding blocks, so 



Perl version 5.18.2 documentation - perlpolicy

Page 6http://perldoc.perl.org

should documentation changes.

Examples in documentation should be illustrative of the concept
 they're explaining. Sometimes, the 
best way to show how a
 language feature works is with a small program the reader can
 run without 
modification. More often, examples will consist
 of a snippet of code containing only the "important" 
bits.
 The definition of "important" varies from snippet to snippet.
 Sometimes it's important to declare 
use strict and use warnings,
 initialize all variables and fully catch every error condition.
 More 
often than not, though, those things obscure the lesson
 the example was intended to teach.

As Perl is developed by a global team of volunteers, our
 documentation often contains spellings which
look funny
 to somebody. Choice of American/British/Other spellings
 is left as an exercise for the 
author of each bit of
 documentation. When patching documentation, try to emulate
 the documentation
around you, rather than changing the existing
 prose.

In general, documentation should describe what Perl does "now" rather
 than what it used to do. It's 
perfectly reasonable to include notes
 in documentation about how behaviour has changed from 
previous releases,
 but, with very few exceptions, documentation isn't "dual-life" --
 it doesn't need to 
fully describe how all old versions used to work.

CREDITS
"Social Contract about Contributed Modules" originally by Russ Allbery <rra@stanford.edu> and the 
perl5-porters.


