
Perl version 5.18.2 documentation - perlrequick

Page 1http://perldoc.perl.org

NAME
perlrequick - Perl regular expressions quick start

DESCRIPTION
This page covers the very basics of understanding, creating and
 using regular expressions ('regexes')
in Perl.

The Guide
Simple word matching

The simplest regex is simply a word, or more generally, a string of
 characters. A regex consisting of a
word matches any string that
 contains that word:

 "Hello World" =~ /World/; # matches

In this statement, World is a regex and the // enclosing /World/ tells Perl to search a string for a
match. The operator =~ associates the string with the regex match and produces a true
 value if the
regex matched, or false if the regex did not match. In
 our case, World matches the second word in
"Hello World", so the
 expression is true. This idea has several variations.

Expressions like this are useful in conditionals:

 print "It matches\n" if "Hello World" =~ /World/;

The sense of the match can be reversed by using !~ operator:

 print "It doesn't match\n" if "Hello World" !~ /World/;

The literal string in the regex can be replaced by a variable:

 $greeting = "World";
 print "It matches\n" if "Hello World" =~ /$greeting/;

If you're matching against $_, the $_ =~ part can be omitted:

 $_ = "Hello World";
 print "It matches\n" if /World/;

Finally, the // default delimiters for a match can be changed to
 arbitrary delimiters by putting an 'm'
out front:

 "Hello World" =~ m!World!; # matches, delimited by '!'
 "Hello World" =~ m{World}; # matches, note the matching '{}'
 "/usr/bin/perl" =~ m"/perl"; # matches after '/usr/bin',
 # '/' becomes an ordinary char

Regexes must match a part of the string exactly in order for the
 statement to be true:

 "Hello World" =~ /world/; # doesn't match, case sensitive
 "Hello World" =~ /o W/; # matches, ' ' is an ordinary char
 "Hello World" =~ /World /; # doesn't match, no ' ' at end

Perl will always match at the earliest possible point in the string:

 "Hello World" =~ /o/; # matches 'o' in 'Hello'
 "That hat is red" =~ /hat/; # matches 'hat' in 'That'

Perl version 5.18.2 documentation - perlrequick

Page 2http://perldoc.perl.org

Not all characters can be used 'as is' in a match. Some characters,
 called metacharacters, are
reserved for use in regex notation.
 The metacharacters are

 {}[]()^$.|*+?\

A metacharacter can be matched by putting a backslash before it:

 "2+2=4" =~ /2+2/; # doesn't match, + is a metacharacter
 "2+2=4" =~ /2\+2/; # matches, \+ is treated like an ordinary +
 'C:\WIN32' =~ /C:\\WIN/; # matches
 "/usr/bin/perl" =~ /\/usr\/bin\/perl/; # matches

In the last regex, the forward slash '/' is also backslashed,
 because it is used to delimit the regex.

Non-printable ASCII characters are represented by escape sequences.
 Common examples are \t
for a tab, \n for a newline, and \r
 for a carriage return. Arbitrary bytes are represented by octal

escape sequences, e.g., \033, or hexadecimal escape sequences,
 e.g., \x1B:

 "1000\t2000" =~ m(0\t2) # matches
 "cat" =~ /\143\x61\x74/ # matches in ASCII, but a weird way to
spell cat

Regexes are treated mostly as double-quoted strings, so variable
 substitution works:

 $foo = 'house';
 'cathouse' =~ /cat$foo/; # matches
 'housecat' =~ /${foo}cat/; # matches

With all of the regexes above, if the regex matched anywhere in the
 string, it was considered a match.
To specify where it should
 match, we would use the anchor metacharacters ^ and $. The
 anchor ^
means match at the beginning of the string and the anchor $ means match at the end of the string, or
before a newline at the
 end of the string. Some examples:

 "housekeeper" =~ /keeper/; # matches
 "housekeeper" =~ /^keeper/; # doesn't match
 "housekeeper" =~ /keeper$/; # matches
 "housekeeper\n" =~ /keeper$/; # matches
 "housekeeper" =~ /^housekeeper$/; # matches

Using character classes
A character class allows a set of possible characters, rather than
 just a single character, to match at
a particular point in a regex.
 Character classes are denoted by brackets [...], with the set of

characters to be possibly matched inside. Here are some examples:

 /cat/; # matches 'cat'
 /[bcr]at/; # matches 'bat', 'cat', or 'rat'
 "abc" =~ /[cab]/; # matches 'a'

In the last statement, even though 'c' is the first character in
 the class, the earliest point at which the
regex can match is 'a'.

 /[yY][eE][sS]/; # match 'yes' in a case-insensitive way
 # 'yes', 'Yes', 'YES', etc.
 /yes/i; # also match 'yes' in a case-insensitive way

The last example shows a match with an 'i' modifier, which makes
 the match case-insensitive.

Perl version 5.18.2 documentation - perlrequick

Page 3http://perldoc.perl.org

Character classes also have ordinary and special characters, but the
 sets of ordinary and special
characters inside a character class are
 different than those outside a character class. The special

characters for a character class are -]\^$ and are matched using an
 escape:

 /[\]c]def/; # matches ']def' or 'cdef'
 $x = 'bcr';
 /[$x]at/; # matches 'bat, 'cat', or 'rat'
 /[\$x]at/; # matches '$at' or 'xat'
 /[\\$x]at/; # matches '\at', 'bat, 'cat', or 'rat'

The special character '-' acts as a range operator within character
 classes, so that the unwieldy
[0123456789] and [abc...xyz]
 become the svelte [0-9] and [a-z]:

 /item[0-9]/; # matches 'item0' or ... or 'item9'
 /[0-9a-fA-F]/; # matches a hexadecimal digit

If '-' is the first or last character in a character class, it is
 treated as an ordinary character.

The special character ^ in the first position of a character class
 denotes a negated character class,
which matches any character but
 those in the brackets. Both [...] and [^...] must match a

character, or the match fails. Then

 /[^a]at/; # doesn't match 'aat' or 'at', but matches
 # all other 'bat', 'cat, '0at', '%at', etc.
 /[^0-9]/; # matches a non-numeric character
 /[a^]at/; # matches 'aat' or '^at'; here '^' is ordinary

Perl has several abbreviations for common character classes. (These
 definitions are those that Perl
uses in ASCII-safe mode with the /a modifier.
 Otherwise they could match many more non-ASCII
Unicode characters as
 well. See "Backslash sequences" in perlrecharclass for details.)

\d is a digit and represents

 [0-9]

\s is a whitespace character and represents

 [\ \t\r\n\f]

\w is a word character (alphanumeric or _) and represents

 [0-9a-zA-Z_]

\D is a negated \d; it represents any character but a digit

 [^0-9]

\S is a negated \s; it represents any non-whitespace character

 [^\s]

\W is a negated \w; it represents any non-word character

 [^\w]

The period '.' matches any character but "\n"

The \d\s\w\D\S\W abbreviations can be used both inside and outside
 of character classes. Here
are some in use:

Perl version 5.18.2 documentation - perlrequick

Page 4http://perldoc.perl.org

 /\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format
 /[\d\s]/; # matches any digit or whitespace character
 /\w\W\w/; # matches a word char, followed by a
 # non-word char, followed by a word char
 /..rt/; # matches any two chars, followed by 'rt'
 /end\./; # matches 'end.'
 /end[.]/; # same thing, matches 'end.'

The word anchor \b matches a boundary between a word
 character and a non-word character
\w\W or \W\w:

 $x = "Housecat catenates house and cat";
 $x =~ /\bcat/; # matches cat in 'catenates'
 $x =~ /cat\b/; # matches cat in 'housecat'
 $x =~ /\bcat\b/; # matches 'cat' at end of string

In the last example, the end of the string is considered a word
 boundary.

Matching this or that
We can match different character strings with the alternation
 metacharacter '|'. To match dog or
cat, we form the regex dog|cat. As before, Perl will try to match the regex at the
 earliest possible
point in the string. At each character position,
 Perl will first try to match the first alternative, dog. If
dog doesn't match, Perl will then try the next alternative, cat.
 If cat doesn't match either, then the
match fails and Perl moves to
 the next position in the string. Some examples:

 "cats and dogs" =~ /cat|dog|bird/; # matches "cat"
 "cats and dogs" =~ /dog|cat|bird/; # matches "cat"

Even though dog is the first alternative in the second regex, cat is able to match earlier in the string.

 "cats" =~ /c|ca|cat|cats/; # matches "c"
 "cats" =~ /cats|cat|ca|c/; # matches "cats"

At a given character position, the first alternative that allows the
 regex match to succeed will be the
one that matches. Here, all the
 alternatives match at the first string position, so the first matches.

Grouping things and hierarchical matching
The grouping metacharacters () allow a part of a regex to be
 treated as a single unit. Parts of a
regex are grouped by enclosing
 them in parentheses. The regex house(cat|keeper) means
match house followed by either cat or keeper. Some more examples
 are

 /(a|b)b/; # matches 'ab' or 'bb'
 /(^a|b)c/; # matches 'ac' at start of string or 'bc' anywhere

 /house(cat|)/; # matches either 'housecat' or 'house'
 /house(cat(s|)|)/; # matches either 'housecats' or 'housecat' or
 # 'house'. Note groups can be nested.

 "20" =~ /(19|20|)\d\d/; # matches the null alternative '()\d\d',
 # because '20\d\d' can't match

Extracting matches
The grouping metacharacters () also allow the extraction of the
 parts of a string that matched. For
each grouping, the part that
 matched inside goes into the special variables $1, $2, etc.
 They can be
used just as ordinary variables:

Perl version 5.18.2 documentation - perlrequick

Page 5http://perldoc.perl.org

 # extract hours, minutes, seconds
 $time =~ /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss format
 $hours = $1;
 $minutes = $2;
 $seconds = $3;

In list context, a match /regex/ with groupings will return the
 list of matched values ($1,$2,...).
So we could rewrite it as

 ($hours, $minutes, $second) = ($time =~ /(\d\d):(\d\d):(\d\d)/);

If the groupings in a regex are nested, $1 gets the group with the
 leftmost opening parenthesis, $2
the next opening parenthesis,
 etc. For example, here is a complex regex and the matching variables

indicated below it:

 /(ab(cd|ef)((gi)|j))/;
 1 2 34

Associated with the matching variables $1, $2, ... are
 the backreferences \g1, \g2, ...
Backreferences are
 matching variables that can be used inside a regex:

 /(\w\w\w)\s\g1/; # find sequences like 'the the' in string

$1, $2, ... should only be used outside of a regex, and \g1, \g2, ... only inside a regex.

Matching repetitions
The quantifier metacharacters ?, *, +, and {} allow us
 to determine the number of repeats of a
portion of a regex we
 consider to be a match. Quantifiers are put immediately after the
 character,
character class, or grouping that we want to specify. They
 have the following meanings:

a? = match 'a' 1 or 0 times

a* = match 'a' 0 or more times, i.e., any number of times

a+ = match 'a' 1 or more times, i.e., at least once

a{n,m} = match at least n times, but not more than m
 times.

a{n,} = match at least n or more times

a{n} = match exactly n times

Here are some examples:

 /[a-z]+\s+\d*/; # match a lowercase word, at least some space, and
 # any number of digits
 /(\w+)\s+\g1/; # match doubled words of arbitrary length
 $year =~ /^\d{2,4}$/; # make sure year is at least 2 but not more
 # than 4 digits
 $year =~ /^\d{4}$|^\d{2}$/; # better match; throw out 3 digit dates

These quantifiers will try to match as much of the string as possible,
 while still allowing the regex to
match. So we have

 $x = 'the cat in the hat';
 $x =~ /^(.*)(at)(.*)$/; # matches,
 # $1 = 'the cat in the h'
 # $2 = 'at'

Perl version 5.18.2 documentation - perlrequick

Page 6http://perldoc.perl.org

 # $3 = '' (0 matches)

The first quantifier .* grabs as much of the string as possible
 while still having the regex match. The
second quantifier .* has
 no string left to it, so it matches 0 times.

More matching
There are a few more things you might want to know about matching
 operators.
 The global modifier
//g allows the matching operator to match
 within a string as many times as possible. In scalar
context,
 successive matches against a string will have //g jump from match
 to match, keeping track
of position in the string as it goes along.
 You can get or set the position with the pos() function.
 For
example,

 $x = "cat dog house"; # 3 words
 while ($x =~ /(\w+)/g) {
 print "Word is $1, ends at position ", pos $x, "\n";
 }

prints

 Word is cat, ends at position 3
 Word is dog, ends at position 7
 Word is house, ends at position 13

A failed match or changing the target string resets the position. If
 you don't want the position reset
after failure to match, add the //c, as in /regex/gc.

In list context, //g returns a list of matched groupings, or if
 there are no groupings, a list of matches
to the whole regex. So

 @words = ($x =~ /(\w+)/g); # matches,
 # $word[0] = 'cat'
 # $word[1] = 'dog'
 # $word[2] = 'house'

Search and replace
Search and replace is performed using s/regex/replacement/modifiers.
 The replacement is
a Perl double-quoted string that replaces in the
 string whatever is matched with the regex. The
operator =~ is
 also used here to associate a string with s///. If matching
 against $_, the $_ =~ can
be dropped. If there is a match, s/// returns the number of substitutions made; otherwise it returns

false. Here are a few examples:

 $x = "Time to feed the cat!";
 $x =~ s/cat/hacker/; # $x contains "Time to feed the hacker!"
 $y = "'quoted words'";
 $y =~ s/^'(.*)'$/$1/; # strip single quotes,
 # $y contains "quoted words"

With the s/// operator, the matched variables $1, $2, etc.
 are immediately available for use in the
replacement expression. With
 the global modifier, s///g will search and replace all occurrences
 of
the regex in the string:

 $x = "I batted 4 for 4";
 $x =~ s/4/four/; # $x contains "I batted four for 4"
 $x = "I batted 4 for 4";
 $x =~ s/4/four/g; # $x contains "I batted four for four"

Perl version 5.18.2 documentation - perlrequick

Page 7http://perldoc.perl.org

The non-destructive modifier s///r causes the result of the substitution
 to be returned instead of
modifying $_ (or whatever variable the
 substitute was bound to with =~):

 $x = "I like dogs.";
 $y = $x =~ s/dogs/cats/r;
 print "$x $y\n"; # prints "I like dogs. I like cats."

 $x = "Cats are great.";
 print $x =~ s/Cats/Dogs/r =~ s/Dogs/Frogs/r =~ s/Frogs/Hedgehogs/r,
"\n";
 # prints "Hedgehogs are great."

 @foo = map { s/[a-z]/X/r } qw(a b c 1 2 3);
 # @foo is now qw(X X X 1 2 3)

The evaluation modifier s///e wraps an eval{...} around the
 replacement string and the
evaluated result is substituted for the
 matched substring. Some examples:

 # reverse all the words in a string
 $x = "the cat in the hat";
 $x =~ s/(\w+)/reverse $1/ge; # $x contains "eht tac ni eht tah"

 # convert percentage to decimal
 $x = "A 39% hit rate";
 $x =~ s!(\d+)%!$1/100!e; # $x contains "A 0.39 hit rate"

The last example shows that s/// can use other delimiters, such as s!!! and s{}{}, and even
s{}//. If single quotes are used s''', then the regex and replacement are treated as single-quoted

strings.

The split operator
split /regex/, string splits string into a list of substrings
 and returns that list. The regex
determines the character sequence
 that string is split with respect to. For example, to split a
 string
into words, use

 $x = "Calvin and Hobbes";
 @word = split /\s+/, $x; # $word[0] = 'Calvin'
 # $word[1] = 'and'
 # $word[2] = 'Hobbes'

To extract a comma-delimited list of numbers, use

 $x = "1.618,2.718, 3.142";
 @const = split /,\s*/, $x; # $const[0] = '1.618'
 # $const[1] = '2.718'
 # $const[2] = '3.142'

If the empty regex // is used, the string is split into individual
 characters. If the regex has groupings,
then the list produced contains
 the matched substrings from the groupings as well:

 $x = "/usr/bin";
 @parts = split m!(/)!, $x; # $parts[0] = ''
 # $parts[1] = '/'
 # $parts[2] = 'usr'
 # $parts[3] = '/'

Perl version 5.18.2 documentation - perlrequick

Page 8http://perldoc.perl.org

 # $parts[4] = 'bin'

Since the first character of $x matched the regex, split prepended
 an empty initial element to the
list.

BUGS
None.

SEE ALSO
This is just a quick start guide. For a more in-depth tutorial on
 regexes, see perlretut and for the
reference page, see perlre.

AUTHOR AND COPYRIGHT
Copyright (c) 2000 Mark Kvale
 All rights reserved.

This document may be distributed under the same terms as Perl itself.

Acknowledgments
The author would like to thank Mark-Jason Dominus, Tom Christiansen,
 Ilya Zakharevich, Brad
Hughes, and Mike Giroux for all their helpful
 comments.

