
Perl version 5.18.2 documentation - perlsyn

Page 1http://perldoc.perl.org

NAME
perlsyn - Perl syntax

DESCRIPTION
A Perl program consists of a sequence of declarations and statements
 which run from the top to the
bottom. Loops, subroutines, and other
 control structures allow you to jump around within the code.

Perl is a free-form language: you can format and indent it however
 you like. Whitespace serves
mostly to separate tokens, unlike
 languages like Python where it is an important part of the syntax,
 or
Fortran where it is immaterial.

Many of Perl's syntactic elements are optional. Rather than
 requiring you to put parentheses around
every function call and
 declare every variable, you can often leave such explicit elements off
 and Perl
will figure out what you meant. This is known as Do What I
 Mean, abbreviated DWIM. It allows
programmers to be lazy and to
 code in a style with which they are comfortable.

Perl borrows syntax and concepts from many languages: awk, sed, C,
 Bourne Shell, Smalltalk, Lisp
and even English. Other
 languages have borrowed syntax from Perl, particularly its regular

expression extensions. So if you have programmed in another language
 you will see familiar pieces in
Perl. They often work the same, but
 see perltrap for information about how they differ.

Declarations
The only things you need to declare in Perl are report formats and
 subroutines (and sometimes not
even subroutines). A scalar variable holds
 the undefined value (undef) until it has been assigned a
defined
 value, which is anything other than undef. When used as a number, undef is treated as 0;
when used as a string, it is treated as
 the empty string, ""; and when used as a reference that isn't
being
 assigned to, it is treated as an error. If you enable warnings,
 you'll be notified of an uninitialized
value whenever you treat undef as a string or a number. Well, usually. Boolean contexts,
 such as:

 if ($a) {}

are exempt from warnings (because they care about truth rather than
 definedness). Operators such
as ++, --, +=, -=, and .=, that operate on undefined variables such as:

 undef $a;
 $a++;

are also always exempt from such warnings.

A declaration can be put anywhere a statement can, but has no effect on
 the execution of the primary
sequence of statements: declarations all
 take effect at compile time. All declarations are typically put
at
 the beginning or the end of the script. However, if you're using
 lexically-scoped private variables
created with my(), state(), or our(), you'll have to make sure
 your format or subroutine definition
is within the same block scope
 as the my if you expect to be able to access those private variables.

Declaring a subroutine allows a subroutine name to be used as if it were a
 list operator from that point
forward in the program. You can declare a
 subroutine without defining it by saying sub name, thus:

 sub myname;
 $me = myname $0 		 or die "can't get myname";

A bare declaration like that declares the function to be a list operator,
 not a unary operator, so you
have to be careful to use parentheses (or or instead of ||.) The || operator binds too tightly to use
after
 list operators; it becomes part of the last element. You can always use
 parentheses around the
list operators arguments to turn the list operator
 back into something that behaves more like a
function call. Alternatively,
 you can use the prototype ($) to turn the subroutine into a unary
 operator:

 sub myname ($);

Perl version 5.18.2 documentation - perlsyn

Page 2http://perldoc.perl.org

 $me = myname $0 || die "can't get myname";

That now parses as you'd expect, but you still ought to get in the habit of
 using parentheses in that
situation. For more on prototypes, see perlsub

Subroutines declarations can also be loaded up with the require statement
 or both loaded and
imported into your namespace with a use statement.
 See perlmod for details on this.

A statement sequence may contain declarations of lexically-scoped
 variables, but apart from
declaring a variable name, the declaration acts
 like an ordinary statement, and is elaborated within
the sequence of
 statements as if it were an ordinary statement. That means it actually
 has both
compile-time and run-time effects.

Comments
Text from a "#" character until the end of the line is a comment,
 and is ignored. Exceptions include
"#" inside a string or regular
 expression.

Simple Statements
The only kind of simple statement is an expression evaluated for its
 side-effects. Every simple
statement must be terminated with a
 semicolon, unless it is the final statement in a block, in which
case
 the semicolon is optional. But put the semicolon in anyway if the
 block takes up more than one
line, because you may eventually add
 another line. Note that there are operators like eval {}, sub
{}, and do {} that look like compound statements, but aren't--they're just
 TERMs in an
expression--and thus need an explicit termination when used
 as the last item in a statement.

Truth and Falsehood
The number 0, the strings '0' and "", the empty list (), and undef are all false in a boolean
context. All other values are true.
 Negation of a true value by ! or not returns a special false value.

When evaluated as a string it is treated as "", but as a number, it
 is treated as 0. Most Perl operators

that return true or false behave this way.

Statement Modifiers
Any simple statement may optionally be followed by a SINGLE modifier,
 just before the terminating
semicolon (or block ending). The possible
 modifiers are:

 if EXPR
 unless EXPR
 while EXPR
 until EXPR
 for LIST
 foreach LIST
 when EXPR

The EXPR following the modifier is referred to as the "condition".
 Its truth or falsehood determines how
the modifier will behave.

if executes the statement once if and only if the condition is
 true. unless is the opposite, it executes
the statement unless
 the condition is true (that is, if the condition is false).

 print "Basset hounds got long ears" if length $ear >= 10;
 go_outside() and play() unless $is_raining;

The for(each) modifier is an iterator: it executes the statement once
 for each item in the LIST (with
$_ aliased to each item in turn).

 print "Hello $_!\n" for qw(world Dolly nurse);

Perl version 5.18.2 documentation - perlsyn

Page 3http://perldoc.perl.org

while repeats the statement while the condition is true. until does the opposite, it repeats the
statement until the
 condition is true (or while the condition is false):

 # Both of these count from 0 to 10.
 print $i++ while $i <= 10;
 print $j++ until $j > 10;

The while and until modifiers have the usual "while loop"
 semantics (conditional evaluated first),
except when applied to a do-BLOCK (or to the Perl4 do-SUBROUTINE statement), in
 which case the
block executes once before the conditional is
 evaluated.

This is so that you can write loops like:

 do {
	 $line = <STDIN>;
	 ...
 } until !defined($line) || $line eq ".\n"

See "do" in perlfunc. Note also that the loop control statements described
 later will NOT work in this
construct, because modifiers don't take
 loop labels. Sorry. You can always put another block inside of
it
 (for next) or around it (for last) to do that sort of thing.
 For next, just double the braces:

 do {{
	 next if $x == $y;
	 # do something here
 }} until $x++ > $z;

For last, you have to be more elaborate:

 LOOP: {
	 do {
		 last if $x = $y**2;
		 # do something here
	 } while $x++ <= $z;
 }

NOTE: The behaviour of a my, state, or our modified with a statement modifier conditional
 or loop
construct (for example, my $x if ...) is undefined. The value of the my variable may be undef,
any
 previously assigned value, or possibly anything else. Don't rely on
 it. Future versions of perl might
do something different from the
 version of perl you try it out on. Here be dragons.

The when modifier is an experimental feature that first appeared in Perl
 5.14. To use it, you should
include a use v5.14 declaration.
 (Technically, it requires only the switch feature, but that aspect of
it
 was not available before 5.14.) Operative only from within a foreach
 loop or a given block, it
executes the statement only if the smartmatch $_ ~~ EXPR is true. If the statement executes, it is
followed by
 a next from inside a foreach and break from inside a given.

Under the current implementation, the foreach loop can be
 anywhere within the when modifier's
dynamic scope, but must be
 within the given block's lexical scope. This restricted may
 be relaxed in
a future release. See Switch Statements below.

Compound Statements
In Perl, a sequence of statements that defines a scope is called a block.
 Sometimes a block is
delimited by the file containing it (in the case
 of a required file, or the program as a whole), and
sometimes a block
 is delimited by the extent of a string (in the case of an eval).

But generally, a block is delimited by curly brackets, also known as braces.
 We will call this syntactic

Perl version 5.18.2 documentation - perlsyn

Page 4http://perldoc.perl.org

construct a BLOCK.

The following compound statements may be used to control flow:

 if (EXPR) BLOCK
 if (EXPR) BLOCK else BLOCK
 if (EXPR) BLOCK elsif (EXPR) BLOCK ...
 if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

 unless (EXPR) BLOCK
 unless (EXPR) BLOCK else BLOCK
 unless (EXPR) BLOCK elsif (EXPR) BLOCK ...
 unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

 given (EXPR) BLOCK

 LABEL while (EXPR) BLOCK
 LABEL while (EXPR) BLOCK continue BLOCK

 LABEL until (EXPR) BLOCK
 LABEL until (EXPR) BLOCK continue BLOCK

 LABEL for (EXPR; EXPR; EXPR) BLOCK
 LABEL for VAR (LIST) BLOCK
 LABEL for VAR (LIST) BLOCK continue BLOCK

 LABEL foreach (EXPR; EXPR; EXPR) BLOCK
 LABEL foreach VAR (LIST) BLOCK
 LABEL foreach VAR (LIST) BLOCK continue BLOCK

 LABEL BLOCK
 LABEL BLOCK continue BLOCK

 PHASE BLOCK

The experimental given statement is not automatically enabled; see Switch Statements below for
how to do so, and the attendant caveats.

Unlike in C and Pascal, in Perl these are all defined in terms of BLOCKs,
 not statements. This means
that the curly brackets are required--no
 dangling statements allowed. If you want to write conditionals
without
 curly brackets, there are several other ways to do it. The following
 all do the same thing:

 if (!open(FOO)) { die "Can't open $FOO: $!" }
 die "Can't open $FOO: $!" unless open(FOO);
 open(FOO) || die "Can't open $FOO: $!";
 open(FOO) ? () : die "Can't open $FOO: $!";
			 # a bit exotic, that last one

The if statement is straightforward. Because BLOCKs are always
 bounded by curly brackets, there
is never any ambiguity about which if an else goes with. If you use unless in place of if,
 the
sense of the test is reversed. Like if, unless can be followed
 by else. unless can even be
followed by one or more elsif
 statements, though you may want to think twice before using that
particular
 language construct, as everyone reading your code will have to think at least
 twice before
they can understand what's going on.

Perl version 5.18.2 documentation - perlsyn

Page 5http://perldoc.perl.org

The while statement executes the block as long as the expression is true.
 The until statement
executes the block as long as the expression is
 false.
 The LABEL is optional, and if present, consists
of an identifier followed
 by a colon. The LABEL identifies the loop for the loop control
 statements
next, last, and redo.
 If the LABEL is omitted, the loop control statement
 refers to the innermost
enclosing loop. This may include dynamically
 looking back your call-stack at run time to find the
LABEL. Such
 desperate behavior triggers a warning if you use the use warnings
 pragma or the -w
flag.

If there is a continue BLOCK, it is always executed just before the
 conditional is about to be
evaluated again. Thus it can be used to
 increment a loop variable, even when the loop has been
continued via
 the next statement.

When a block is preceding by a compilation phase keyword such as BEGIN, END, INIT, CHECK, or
UNITCHECK, then the block will run only
 during the corresponding phase of execution. See perlmod
for more details.

Extension modules can also hook into the Perl parser to define new
 kinds of compound statements.
These are introduced by a keyword which
 the extension recognizes, and the syntax following the
keyword is
 defined entirely by the extension. If you are an implementor, see "PL_keyword_plugin" in
perlapi for the mechanism. If you are using such
 a module, see the module's documentation for
details of the syntax that
 it defines.

Loop Control
The next command starts the next iteration of the loop:

 LINE: while (<STDIN>) {
	 next LINE if /^#/;	 # discard comments
	 ...
 }

The last command immediately exits the loop in question. The continue block, if any, is not
executed:

 LINE: while (<STDIN>) {
	 last LINE if /^$/;	 # exit when done with header
	 ...
 }

The redo command restarts the loop block without evaluating the
 conditional again. The continue
block, if any, is not executed.
 This command is normally used by programs that want to lie to
themselves
 about what was just input.

For example, when processing a file like /etc/termcap.
 If your input lines might end in backslashes to
indicate continuation, you
 want to skip ahead and get the next record.

 while (<>) {
	 chomp;
	 if (s/\\$//) {
	 $_ .= <>;
	 redo unless eof();
	 }
	 # now process $_
 }

which is Perl shorthand for the more explicitly written version:

 LINE: while (defined($line = <ARGV>)) {
	 chomp($line);

Perl version 5.18.2 documentation - perlsyn

Page 6http://perldoc.perl.org

	 if ($line =~ s/\\$//) {
	 $line .= <ARGV>;
	 redo LINE unless eof(); # not eof(ARGV)!
	 }
	 # now process $line
 }

Note that if there were a continue block on the above code, it would
 get executed only on lines
discarded by the regex (since redo skips the
 continue block). A continue block is often used to reset
line counters
 or m?pat? one-time matches:

 # inspired by :1,$g/fred/s//WILMA/
 while (<>) {
	 m?(fred)? && s//WILMA $1 WILMA/;
	 m?(barney)? && s//BETTY $1 BETTY/;
	 m?(homer)? && s//MARGE $1 MARGE/;
 } continue {
	 print "$ARGV $.: $_";
	 close ARGV if eof;		 # reset $.
	 reset	 if eof;		 # reset ?pat?
 }

If the word while is replaced by the word until, the sense of the
 test is reversed, but the
conditional is still tested before the first
 iteration.

Loop control statements don't work in an if or unless, since
 they aren't loops. You can double the
braces to make them such, though.

 if (/pattern/) {{
	 last if /fred/;
	 next if /barney/; # same effect as "last",
			 # but doesn't document as well
	 # do something here
 }}

This is caused by the fact that a block by itself acts as a loop that
 executes once, see Basic BLOCKs.

The form while/if BLOCK BLOCK, available in Perl 4, is no longer
 available. Replace any
occurrence of if BLOCK by if (do BLOCK).

For Loops
Perl's C-style for loop works like the corresponding while loop;
 that means that this:

 for ($i = 1; $i < 10; $i++) {
	 ...
 }

is the same as this:

 $i = 1;
 while ($i < 10) {
	 ...
 } continue {
	 $i++;
 }

Perl version 5.18.2 documentation - perlsyn

Page 7http://perldoc.perl.org

There is one minor difference: if variables are declared with my
 in the initialization section of the for,
the lexical scope of
 those variables is exactly the for loop (the body of the loop
 and the control
sections).

Besides the normal array index looping, for can lend itself
 to many other interesting applications.
Here's one that avoids the
 problem you get into if you explicitly test for end-of-file on
 an interactive file
descriptor causing your program to appear to
 hang.

 $on_a_tty = -t STDIN && -t STDOUT;
 sub prompt { print "yes? " if $on_a_tty }
 for (prompt(); <STDIN>; prompt()) {
	 # do something
 }

Using readline (or the operator form, <EXPR>) as the
 conditional of a for loop is shorthand for the
following. This
 behaviour is the same as a while loop conditional.

 for (prompt(); defined($_ = <STDIN>); prompt()) {
 # do something
 }

Foreach Loops
The foreach loop iterates over a normal list value and sets the
 variable VAR to be each element of
the list in turn. If the variable
 is preceded with the keyword my, then it is lexically scoped, and
 is
therefore visible only within the loop. Otherwise, the variable is
 implicitly local to the loop and regains
its former value upon exiting
 the loop. If the variable was previously declared with my, it uses
 that
variable instead of the global one, but it's still localized to
 the loop. This implicit localization occurs
only in a foreach
 loop.

The foreach keyword is actually a synonym for the for keyword, so
 you can use either. If VAR is
omitted, $_ is set to each value.

If any element of LIST is an lvalue, you can modify it by modifying
 VAR inside the loop. Conversely, if
any element of LIST is NOT an
 lvalue, any attempt to modify that element will fail. In other words,
 the
foreach loop index variable is an implicit alias for each item
 in the list that you're looping over.

If any part of LIST is an array, foreach will get very confused if
 you add or remove elements within
the loop body, for example with splice. So don't do that.

foreach probably won't do what you expect if VAR is a tied or other
 special variable. Don't do that
either.

Examples:

 for (@ary) { s/foo/bar/ }

 for my $elem (@elements) {
	 $elem *= 2;
 }

 for $count (reverse(1..10), "BOOM") {
	 print $count, "\n";
	 sleep(1);
 }

 for (1..15) { print "Merry Christmas\n"; }

Perl version 5.18.2 documentation - perlsyn

Page 8http://perldoc.perl.org

 foreach $item (split(/:[\\\n:]*/, $ENV{TERMCAP})) {
	 print "Item: $item\n";
 }

Here's how a C programmer might code up a particular algorithm in Perl:

 for (my $i = 0; $i < @ary1; $i++) {
	 for (my $j = 0; $j < @ary2; $j++) {
	 if ($ary1[$i] > $ary2[$j]) {
		 last; # can't go to outer :-(
	 }
	 $ary1[$i] += $ary2[$j];
	 }
	 # this is where that last takes me
 }

Whereas here's how a Perl programmer more comfortable with the idiom might
 do it:

 OUTER: for my $wid (@ary1) {
 INNER: for my $jet (@ary2) {
		 next OUTER if $wid > $jet;
		 $wid += $jet;
	 }
	 }

See how much easier this is? It's cleaner, safer, and faster. It's
 cleaner because it's less noisy. It's
safer because if code gets added
 between the inner and outer loops later on, the new code won't be

accidentally executed. The next explicitly iterates the other loop
 rather than merely terminating the
inner one. And it's faster because
 Perl executes a foreach statement more rapidly than it would the

equivalent for loop.

Basic BLOCKs
A BLOCK by itself (labeled or not) is semantically equivalent to a
 loop that executes once. Thus you
can use any of the loop control
 statements in it to leave or restart the block. (Note that this is NOT
true in eval{}, sub{}, or contrary to popular belief do{} blocks, which do NOT count as loops.) The
continue
 block is optional.

The BLOCK construct can be used to emulate case structures.

 SWITCH: {
	 if (/^abc/) { $abc = 1; last SWITCH; }
	 if (/^def/) { $def = 1; last SWITCH; }
	 if (/^xyz/) { $xyz = 1; last SWITCH; }
	 $nothing = 1;
 }

You'll also find that foreach loop used to create a topicalizer
 and a switch:

 SWITCH:
 for ($var) {
	 if (/^abc/) { $abc = 1; last SWITCH; }
	 if (/^def/) { $def = 1; last SWITCH; }
	 if (/^xyz/) { $xyz = 1; last SWITCH; }
	 $nothing = 1;
 }

Perl version 5.18.2 documentation - perlsyn

Page 9http://perldoc.perl.org

Such constructs are quite frequently used, both because older versions of
 Perl had no official switch
statement, and also because the new version
 described immediately below remains experimental and
can sometimes be confusing.

Switch Statements

Starting from Perl 5.10.1 (well, 5.10.0, but it didn't work
 right), you can say

 use feature "switch";

to enable an experimental switch feature. This is loosely based on an
 old version of a Perl 6 proposal,
but it no longer resembles the Perl 6
 construct. You also get the switch feature whenever you declare
that your
 code prefers to run under a version of Perl that is 5.10 or later. For
 example:

 use v5.14;

Under the "switch" feature, Perl gains the experimental keywords given, when, default, continue
, and break.
 Starting from Perl 5.16, one can prefix the switch
 keywords with CORE:: to access the
feature without a use feature
 statement. The keywords given and when are analogous to
switch and case in other languages, so the code in the previous section could be
 rewritten as

 use v5.10.1;
 for ($var) {
	 when (/^abc/) { $abc = 1 }
	 when (/^def/) { $def = 1 }
	 when (/^xyz/) { $xyz = 1 }
	 default { $nothing = 1 }
 }

The foreach is the non-experimental way to set a topicalizer.
 If you wish to use the highly
experimental given, that could be
 written like this:

 use v5.10.1;
 given ($var) {
	 when (/^abc/) { $abc = 1 }
	 when (/^def/) { $def = 1 }
	 when (/^xyz/) { $xyz = 1 }
	 default { $nothing = 1 }
 }

As of 5.14, that can also be written this way:

 use v5.14;
 for ($var) {
	 $abc = 1 when /^abc/;
	 $def = 1 when /^def/;
	 $xyz = 1 when /^xyz/;
	 default { $nothing = 1 }
 }

Or if you don't care to play it safe, like this:

 use v5.14;
 given ($var) {
	 $abc = 1 when /^abc/;
	 $def = 1 when /^def/;

Perl version 5.18.2 documentation - perlsyn

Page 10http://perldoc.perl.org

	 $xyz = 1 when /^xyz/;
	 default { $nothing = 1 }
 }

The arguments to given and when are in scalar context,
 and given assigns the $_ variable its topic
value.

Exactly what the EXPR argument to when does is hard to describe
 precisely, but in general, it tries to
guess what you want done. Sometimes
 it is interpreted as $_ ~~ EXPR, and sometimes it is not. It

also behaves differently when lexically enclosed by a given block than
 it does when dynamically
enclosed by a foreach loop. The rules are far
 too difficult to understand to be described here. See
Experimental Details on given and when later on.

Due to an unfortunate bug in how given was implemented between Perl 5.10
 and 5.16, under those
implementations the version of $_ governed by given is merely a lexically scoped copy of the
original, not a
 dynamically scoped alias to the original, as it would be if it were a foreach or under
both the original and the current Perl 6 language
 specification. This bug was fixed in Perl
 5.18. If you
really want a lexical $_,
 specify that explicitly, but note that my $_
 is now deprecated and will warn
unless warnings
 have been disabled:

 given(my $_ = EXPR) { ... }

If your code still needs to run on older versions,
 stick to foreach for your topicalizer and
 you will be
less unhappy.

Goto
Although not for the faint of heart, Perl does support a goto
 statement. There are three forms: goto
-LABEL, goto-EXPR, and goto-&NAME. A loop's LABEL is not actually a valid target for
 a goto; it's
just the name of the loop.

The goto-LABEL form finds the statement labeled with LABEL and resumes
 execution there. It may
not be used to go into any construct that
 requires initialization, such as a subroutine or a foreach
loop. It
 also can't be used to go into a construct that is optimized away. It
 can be used to go almost
anywhere else within the dynamic scope,
 including out of subroutines, but it's usually better to use
some other
 construct such as last or die. The author of Perl has never felt the
 need to use this
form of goto (in Perl, that is--C is another matter).

The goto-EXPR form expects a label name, whose scope will be resolved
 dynamically. This allows
for computed gotos per FORTRAN, but isn't
 necessarily recommended if you're optimizing for
maintainability:

 goto(("FOO", "BAR", "GLARCH")[$i]);

The goto-&NAME form is highly magical, and substitutes a call to the
 named subroutine for the
currently running subroutine. This is used by AUTOLOAD() subroutines that wish to load another
subroutine and then
 pretend that the other subroutine had been called in the first place
 (except that
any modifications to @_ in the current subroutine are
 propagated to the other subroutine.) After the
goto, not even caller()
 will be able to tell that this routine was called first.

In almost all cases like this, it's usually a far, far better idea to use the
 structured control flow
mechanisms of next, last, or redo instead of
 resorting to a goto. For certain applications, the
catch and throw pair of eval{} and die() for exception processing can also be a prudent approach.

The Ellipsis Statement
Beginning in Perl 5.12, Perl accepts an ellipsis, "...", as a
 placeholder for code that you haven't
implemented yet. This form of
 ellipsis, the unimplemented statement, should not be confused with the

binary flip-flop ... operator. One is a statement and the other an
 operator. (Perl doesn't usually

Perl version 5.18.2 documentation - perlsyn

Page 11http://perldoc.perl.org

confuse them because usually Perl can tell
 whether it wants an operator or a statement, but see
below for exceptions.)

When Perl 5.12 or later encounters an ellipsis statement, it parses this
 without error, but if and when
you should actually try to execute it, Perl
 throws an exception with the text Unimplemented:

 use v5.12;
 sub unimplemented { ... }
 eval { unimplemented() };
 if ($@ =~ /^Unimplemented at /) {
	 say "I found an ellipsis!";
 }

You can only use the elliptical statement to stand in for a
 complete statement. These examples of
how the ellipsis works:

 use v5.12;
 { ... }
 sub foo { ... }
 ...;
 eval { ... };
 sub somemeth {
	 my $self = shift;
	 ...;
 }
 $x = do {
	 my $n;
	 ...;
	 say "Hurrah!";
	 $n;
 };

The elliptical statement cannot stand in for an expression that
 is part of a larger statement, since the
... is also the three-dot
 version of the flip-flop operator (see "Range Operators" in perlop).

These examples of attempts to use an ellipsis are syntax errors:

 use v5.12;

 print ...;
 open(my $fh, ">", "/dev/passwd") or ...;
 if ($condition && ...) { say "Howdy" };

There are some cases where Perl can't immediately tell the difference
 between an expression and a
statement. For instance, the syntax for a
 block and an anonymous hash reference constructor look
the same unless
 there's something in the braces to give Perl a hint. The ellipsis is a
 syntax error if
Perl doesn't guess that the { ... } is a block. In that
 case, it doesn't think the ... is an ellipsis
because it's expecting an
 expression instead of a statement:

 @transformed = map { ... } @input; # syntax error

You can use a ; inside your block to denote that the { ... } is a
 block and not a hash reference
constructor. Now the ellipsis works:

 @transformed = map {; ... } @input; # ; disambiguates

Perl version 5.18.2 documentation - perlsyn

Page 12http://perldoc.perl.org

 @transformed = map { ...; } @input; # ; disambiguates

Note: Some folks colloquially refer to this bit of punctuation as a
 "yada-yada" or "triple-dot", but its true
name
 is actually an ellipsis. Perl does not yet
 accept the Unicode version, U+2026 HORIZONTAL
ELLIPSIS, as an alias for ..., but someday it may.

PODs: Embedded Documentation
Perl has a mechanism for intermixing documentation with source code.
 While it's expecting the
beginning of a new statement, if the compiler
 encounters a line that begins with an equal sign and a
word, like this

 =head1 Here There Be Pods!

Then that text and all remaining text up through and including a line
 beginning with =cut will be
ignored. The format of the intervening
 text is described in perlpod.

This allows you to intermix your source code
 and your documentation text freely, as in

 =item snazzle($)

 The snazzle() function will behave in the most spectacular
 form that you can possibly imagine, not even excepting
 cybernetic pyrotechnics.

 =cut back to the compiler, nuff of this pod stuff!

 sub snazzle($) {
	 my $thingie = shift;
	
 }

Note that pod translators should look at only paragraphs beginning
 with a pod directive (it makes
parsing easier), whereas the compiler
 actually knows to look for pod escapes even in the middle of a

paragraph. This means that the following secret stuff will be
 ignored by both the compiler and the
translators.

 $a=3;
 =secret stuff
 warn "Neither POD nor CODE!?"
 =cut back
 print "got $a\n";

You probably shouldn't rely upon the warn() being podded out forever.
 Not all pod translators are
well-behaved in this regard, and perhaps
 the compiler will become pickier.

One may also use pod directives to quickly comment out a section
 of code.

Plain Old Comments (Not!)
Perl can process line directives, much like the C preprocessor. Using
 this, one can control Perl's idea
of filenames and line numbers in
 error or warning messages (especially for strings that are processed

with eval()). The syntax for this mechanism is almost the same as for
 most C preprocessors: it
matches the regular expression

 # example: '# line 42 "new_filename.plx"'
 /^\# \s*
 line \s+ (\d+) \s*

Perl version 5.18.2 documentation - perlsyn

Page 13http://perldoc.perl.org

 (?:\s("?)([^"]+)\g2)? \s*
 $/x

with $1 being the line number for the next line, and $3 being
 the optional filename (specified with or
without quotes). Note that
 no whitespace may precede the #, unlike modern C preprocessors.

There is a fairly obvious gotcha included with the line directive:
 Debuggers and profilers will only show
the last source line to appear
 at a particular line number in a given file. Care should be taken not
 to
cause line number collisions in code you'd like to debug later.

Here are some examples that you should be able to type into your command
 shell:

 % perl
 # line 200 "bzzzt"
 # the '#' on the previous line must be the first char on line
 die 'foo';
 __END__
 foo at bzzzt line 201.

 % perl
 # line 200 "bzzzt"
 eval qq[\n#line 2001 ""\ndie 'foo']; print $@;
 __END__
 foo at - line 2001.

 % perl
 eval qq[\n#line 200 "foo bar"\ndie 'foo']; print $@;
 __END__
 foo at foo bar line 200.

 % perl
 # line 345 "goop"
 eval "\n#line " . __LINE__ . ' "' . __FILE__ ."\"\ndie 'foo'";
 print $@;
 __END__
 foo at goop line 345.

Experimental Details on given and when
As previously mentioned, the "switch" feature is considered highly
 experimental; it is subject to
change with little notice. In particular, when has tricky behaviours that are expected to change to
become less
 tricky in the future. Do not rely upon its current (mis)implementation.
 Before Perl 5.18,
given also had tricky behaviours that you should still
 beware of if your code must run on older
versions of Perl.

Here is a longer example of given:

 use feature ":5.10";
 given ($foo) {
	 when (undef) {
	 say '$foo is undefined';
	 }
	 when ("foo") {
	 say '$foo is the string "foo"';
	 }
	 when ([1,3,5,7,9]) {
	 say '$foo is an odd digit';

Perl version 5.18.2 documentation - perlsyn

Page 14http://perldoc.perl.org

	 continue; # Fall through
	 }
	 when ($_ < 100) {
	 say '$foo is numerically less than 100';
	 }
	 when (\&complicated_check) {
	 say 'a complicated check for $foo is true';
	 }
	 default {
	 die q(I don't know what to do with $foo);
	 }
 }

Before Perl 5.18, given(EXPR) assigned the value of EXPR to
 merely a lexically scoped copy (!) of
$_, not a dynamically
 scoped alias the way foreach does. That made it similar to

	 do { my $_ = EXPR; ... }

except that the block was automatically broken out of by a successful when or an explicit break.
Because it was only a copy, and because
 it was only lexically scoped, not dynamically scoped, you
could not do the
 things with it that you are used to in a foreach loop. In particular,
 it did not work for
arbitrary function calls if those functions might try
 to access $_. Best stick to foreach for that.

Most of the power comes from the implicit smartmatching that can
 sometimes apply. Most of the time,
when(EXPR) is treated as an
 implicit smartmatch of $_, that is, $_ ~~ EXPR. (See "Smartmatch
Operator" in perlop for more information on smartmatching.)
 But when EXPR is one of the 10
exceptional cases (or things like them)
 listed below, it is used directly as a boolean.

1. A user-defined subroutine call or a method invocation.

2. A regular expression match in the form of /REGEX/, $foo =~ /REGEX/,
 or $foo =~ EXPR.
Also, a negated regular expression match in
 the form !/REGEX/, $foo !~ /REGEX/, or
$foo !~ EXPR.

3. A smart match that uses an explicit ~~ operator, such as EXPR ~~ EXPR.

4. A boolean comparison operator such as $_ < 10 or $x eq "abc". The
 relational operators
that this applies to are the six numeric comparisons
 (<, >, <=, >=, ==, and !=), and
 the six
string comparisons (lt, gt, le, ge, eq, and ne).

NOTE: You will often have to use $c ~~ $_ because
 the default case uses $_ ~~ $c ,
which is frequently
 the opposite of what you want.

5. At least the three builtin functions defined(...), exists(...), and eof(...). We might
someday add more of these later if we think of them.

6. A negated expression, whether !(EXPR) or not(EXPR), or a logical
 exclusive-or, (EXPR1)
xor (EXPR2). The bitwise versions (~ and ^)
 are not included.

7. A filetest operator, with exactly 4 exceptions: -s, -M, -A, and -C, as these return numerical
values, not boolean ones. The -z
 filetest operator is not included in the exception list.

8. The .. and ... flip-flop operators. Note that the ... flip-flop
 operator is completely different
from the ... elliptical statement
 just described.

In those 8 cases above, the value of EXPR is used directly as a boolean, so
 no smartmatching is
done. You may think of when as a smartsmartmatch.

Furthermore, Perl inspects the operands of logical operators to
 decide whether to use smartmatching
for each one by applying the
 above test to the operands:

Perl version 5.18.2 documentation - perlsyn

Page 15http://perldoc.perl.org

9. If EXPR is EXPR1 && EXPR2 or EXPR1 and EXPR2, the test is applied recursively to both
EXPR1 and EXPR2.
 Only if both operands also pass the
 test, recursively, will the expression
be treated as boolean. Otherwise,
 smartmatching is used.

10. If EXPR is EXPR1 || EXPR2, EXPR1 // EXPR2, or EXPR1 or EXPR2, the
 test is applied
recursively to EXPR1 only (which might itself be a
 higher-precedence AND operator, for
example, and thus subject to the
 previous rule), not to EXPR2. If EXPR1 is to use
smartmatching, then EXPR2
 also does so, no matter what EXPR2 contains. But if EXPR2
does not get to
 use smartmatching, then the second argument will not be either. This is
 quite
different from the && case just described, so be careful.

These rules are complicated, but the goal is for them to do what you want
 (even if you don't quite
understand why they are doing it). For example:

 when (/^\d+$/ && $_ < 75) { ... }

will be treated as a boolean match because the rules say both
 a regex match and an explicit test on
$_ will be treated
 as boolean.

Also:

 when ([qw(foo bar)] && /baz/) { ... }

will use smartmatching because only one of the operands is a boolean:
 the other uses
smartmatching, and that wins.

Further:

 when ([qw(foo bar)] || /^baz/) { ... }

will use smart matching (only the first operand is considered), whereas

 when (/^baz/ || [qw(foo bar)]) { ... }

will test only the regex, which causes both operands to be
 treated as boolean. Watch out for this one,
then, because an
 arrayref is always a true value, which makes it effectively
 redundant. Not a good
idea.

Tautologous boolean operators are still going to be optimized
 away. Don't be tempted to write

 when ("foo" or "bar") { ... }

This will optimize down to "foo", so "bar" will never be considered (even
 though the rules say to
use a smartmatch
 on "foo"). For an alternation like
 this, an array ref will work, because this will
instigate smartmatching:

 when ([qw(foo bar)] { ... }

This is somewhat equivalent to the C-style switch statement's fallthrough
 functionality (not to be
confused with Perl's fallthrough
 functionality--see below), wherein the same block is used for several
case statements.

Another useful shortcut is that, if you use a literal array or hash as the
 argument to given, it is turned
into a reference. So given(@foo) is
 the same as given(\@foo), for example.

default behaves exactly like when(1 == 1), which is
 to say that it always matches.

Perl version 5.18.2 documentation - perlsyn

Page 16http://perldoc.perl.org

Breaking out

You can use the break keyword to break out of the enclosing given block. Every when block is
implicitly ended with
 a break.

Fall-through

You can use the continue keyword to fall through from one
 case to the next:

 given($foo) {
	 when (/x/) { say '$foo contains an x'; continue }
	 when (/y/) { say '$foo contains a y' }
	 default { say '$foo does not contain a y' }
 }

Return value

When a given statement is also a valid expression (for example,
 when it's the last statement of a
block), it evaluates to:

An empty list as soon as an explicit break is encountered.

The value of the last evaluated expression of the successful when/default clause, if there
happens to be one.

The value of the last evaluated expression of the given block if no
 condition is true.

In both last cases, the last expression is evaluated in the context that
 was applied to the given block.

Note that, unlike if and unless, failed when statements always
 evaluate to an empty list.

 my $price = do {
	 given ($item) {
	 when (["pear", "apple"]) { 1 }
	 break when "vote"; # My vote cannot be bought
	 1e10 when /Mona Lisa/;
	 "unknown";
	 }
 };

Currently, given blocks can't always
 be used as proper expressions. This
 may be addressed in a
future version of Perl.

Switching in a loop

Instead of using given(), you can use a foreach() loop.
 For example, here's one way to count
how many times a particular
 string occurs in an array:

 use v5.10.1;
 my $count = 0;
 for (@array) {
	 when ("foo") { ++$count }
 }
 print "\@array contains $count copies of 'foo'\n";

Or in a more recent version:

 use v5.14;
 my $count = 0;
 for (@array) {
	 ++$count when "foo";

Perl version 5.18.2 documentation - perlsyn

Page 17http://perldoc.perl.org

 }
 print "\@array contains $count copies of 'foo'\n";

At the end of all when blocks, there is an implicit next.
 You can override that with an explicit last if
you're
 interested in only the first match alone.

This doesn't work if you explicitly specify a loop variable, as
 in for $item (@array). You have to
use the default variable $_.

Differences from Perl 6

The Perl 5 smartmatch and given/when constructs are not compatible
 with their Perl 6 analogues.
The most visible difference and least
 important difference is that, in Perl 5, parentheses are required
around
 the argument to given() and when() (except when this last one is used
 as a statement
modifier). Parentheses in Perl 6 are always optional in a
 control construct such as if(), while(), or
when(); they can't be
 made optional in Perl 5 without a great deal of potential confusion,
 because
Perl 5 would parse the expression

 given $foo {
	 ...
 }

as though the argument to given were an element of the hash %foo, interpreting the braces as
hash-element syntax.

However, their are many, many other differences. For example,
 this works in Perl 5:

 use v5.12;
 my @primary = ("red", "blue", "green");

 if (@primary ~~ "red") {
 say "primary smartmatches red";
 }

 if ("red" ~~ @primary) {
 say "red smartmatches primary";
 }

 say "that's all, folks!";

But it doesn't work at all in Perl 6. Instead, you should
 use the (parallelizable) any operator instead:

 if any(@primary) eq "red" {
 say "primary smartmatches red";
 }

 if "red" eq any(@primary) {
 say "red smartmatches primary";
 }

The table of smartmatches in "Smartmatch Operator" in perlop is not
 identical to that proposed by the
Perl 6 specification, mainly due to
 differences between Perl 6's and Perl 5's data models, but also
because
 the Perl 6 spec has changed since Perl 5 rushed into early adoption.

In Perl 6, when() will always do an implicit smartmatch with its
 argument, while in Perl 5 it is
convenient (albeit potentially confusing) to
 suppress this implicit smartmatch in various rather

Perl version 5.18.2 documentation - perlsyn

Page 18http://perldoc.perl.org

loosely-defined
 situations, as roughly outlined above. (The difference is largely because
 Perl 5 does
not have, even internally, a boolean type.)

