
Perl version 5.18.2 documentation - perlvar

Page 1http://perldoc.perl.org

NAME
perlvar - Perl predefined variables

DESCRIPTION
The Syntax of Variable Names

Variable names in Perl can have several formats. Usually, they
 must begin with a letter or underscore,
in which case they can be
 arbitrarily long (up to an internal limit of 251 characters) and
 may contain
letters, digits, underscores, or the special sequence :: or '. In this case, the part before the last ::
or ' is taken to be a package qualifier; see perlmod.

Perl variable names may also be a sequence of digits or a single
 punctuation or control character.
These names are all reserved for
 special uses by Perl; for example, the all-digits names are used
 to
hold data captured by backreferences after a regular expression
 match. Perl has a special syntax for
the single-control-character
 names: It understands ^X (caret X) to mean the control-X
 character. For
example, the notation $^W (dollar-sign caret W) is the scalar variable whose name is the single
character
 control-W. This is better than typing a literal control-W
 into your program.

Since Perl v5.6.0, Perl variable names may be alphanumeric
 strings that begin with control characters
(or better yet, a caret).
 These variables must be written in the form ${^Foo}; the braces
 are not
optional. ${^Foo} denotes the scalar variable whose
 name is a control-F followed by two o's. These
variables are
 reserved for future special uses by Perl, except for the ones that
 begin with ^_
(control-underscore or caret-underscore). No
 control-character name that begins with ^_ will acquire
a special
 meaning in any future version of Perl; such names may therefore be
 used safely in
programs. $^_ itself, however, is reserved.

Perl identifiers that begin with digits, control characters, or
 punctuation characters are exempt from
the effects of the package
 declaration and are always forced to be in package main; they are
 also
exempt from strict 'vars' errors. A few other names are also
 exempt in these ways:

 ENV STDIN
 INC STDOUT
 ARGV STDERR
 ARGVOUT
 SIG

In particular, the special ${^_XYZ} variables are always taken
 to be in package main, regardless of
any package declarations
 presently in scope.

SPECIAL VARIABLES
The following names have special meaning to Perl. Most punctuation
 names have reasonable
mnemonics, or analogs in the shells.
 Nevertheless, if you wish to use long variable names, you need
only say:

 use English;

at the top of your program. This aliases all the short names to the long
 names in the current package.
Some even have medium names, generally
 borrowed from awk. To avoid a performance hit, if you
don't need the $PREMATCH, $MATCH, or $POSTMATCH it's best to use the English
 module without
them:

 use English '-no_match_vars';

Before you continue, note the sort order for variables. In general, we
 first list the variables in
case-insensitive, almost-lexigraphical
 order (ignoring the { or ^ preceding words, as in ${^UNICODE}
or $^T), although $_ and @_ move up to the top of the pile.
 For variables with the same identifier, we
list it in order of scalar,
 array, hash, and bareword.

Perl version 5.18.2 documentation - perlvar

Page 2http://perldoc.perl.org

General Variables
$ARG

$_

The default input and pattern-searching space. The following pairs are
 equivalent:

 while (<>) {...} # equivalent only in while!
 while (defined($_ = <>)) {...}

 /^Subject:/
 $_ =~ /^Subject:/

 tr/a-z/A-Z/
 $_ =~ tr/a-z/A-Z/

 chomp
 chomp($_)

Here are the places where Perl will assume $_ even if you don't use it:

The following functions use $_ as a default argument:

abs, alarm, chomp, chop, chr, chroot,
 cos, defined, eval, evalbytes, exp, fc, glob,
hex, int, lc,
 lcfirst, length, log, lstat, mkdir, oct, ord, pos, print, printf,
 quotemeta,
readlink, readpipe, ref, require, reverse (in scalar context only),
 rmdir, say, sin,
split (for its second
 argument), sqrt, stat, study, uc, ucfirst,
 unlink, unpack.

All file tests (-f, -d) except for -t, which defaults to STDIN.
 See "-X" in perlfunc

The pattern matching operations m//, s/// and tr/// (aka y///)
 when used
without an =~ operator.

The default iterator variable in a foreach loop if no other
 variable is supplied.

The implicit iterator variable in the grep() and map() functions.

The implicit variable of given().

The default place to put the next value or input record
 when a <FH>, readline,
readdir or each
 operation's result is tested by itself as the sole criterion of a
while
 test. Outside a while test, this will not happen.

$_ is by default a global variable. However, as
 of perl v5.10.0, you can use a lexical
version of $_ by declaring it in a file or in a block with my. Moreover,
 declaring our $_
restores the global $_ in the current scope. Though
 this seemed like a good idea at
the time it was introduced, lexical $_
 actually causes more problems than it solves. If
you call a function that
 expects to be passed information via $_, it may or may not
work,
 depending on how the function is written, there not being any easy way to
 solve
this. Just avoid lexical $_, unless you are feeling particularly
 masochistic. For this
reason lexical $_ is still experimental and will
 produce a warning unless warnings have
been disabled. As with other
 experimental features, the behavior of lexical $_ is
subject to change
 without notice, including change into a fatal error.

Mnemonic: underline is understood in certain operations.

@ARG

@_

Within a subroutine the array @_ contains the parameters passed to
 that subroutine.
Inside a subroutine, @_ is the default array for
 the array operators push, pop, shift,
and unshift.

Perl version 5.18.2 documentation - perlvar

Page 3http://perldoc.perl.org

See perlsub.

$LIST_SEPARATOR

$"

When an array or an array slice is interpolated into a double-quoted
 string or a similar
context such as /.../, its elements are
 separated by this value. Default is a space.
For example, this:

 print "The array is: @array\n";

is equivalent to this:

 print "The array is: " . join($", @array) . "\n";

Mnemonic: works in double-quoted context.

$PROCESS_ID

$PID

$$

The process number of the Perl running this script. Though you can set
 this variable,
doing so is generally discouraged, although it can be
 invaluable for some testing
purposes. It will be reset automatically
 across fork() calls.

Note for Linux and Debian GNU/kFreeBSD users: Before Perl v5.16.0 perl
 would
emulate POSIX semantics on Linux systems using LinuxThreads, a
 partial
implementation of POSIX Threads that has since been superseded
 by the Native
POSIX Thread Library (NPTL).

LinuxThreads is now obsolete on Linux, and caching getpid()
 like this made
embedding perl unnecessarily complex (since you'd have
 to manually update the value
of $$), so now $$ and getppid()
 will always return the same values as the
underlying C library.

Debian GNU/kFreeBSD systems also used LinuxThreads up until and
 including the 6.0
release, but after that moved to FreeBSD thread
 semantics, which are POSIX-like.

To see if your system is affected by this discrepancy check if getconf
GNU_LIBPTHREAD_VERSION | grep -q NPTL returns a false
 value. NTPL threads
preserve the POSIX semantics.

Mnemonic: same as shells.

$PROGRAM_NAME

$0

Contains the name of the program being executed.

On some (but not all) operating systems assigning to $0 modifies
 the argument area
that the ps program sees. On some platforms you
 may have to use special ps options
or a different ps to see the
 changes. Modifying the $0 is more useful as a way of
indicating the
 current program state than it is for hiding the program you're
 running.

Note that there are platform-specific limitations on the maximum
 length of $0. In the
most extreme case it may be limited to the
 space occupied by the original $0.

In some platforms there may be arbitrary amount of padding, for
 example space
characters, after the modified name as shown by ps.
 In some platforms this padding
may extend all the way to the original
 length of the argument area, no matter what you
do (this is the case
 for example with Linux 2.2).

Note for BSD users: setting $0 does not completely remove "perl"
 from the ps(1)
output. For example, setting $0 to "foobar" may
 result in "perl: foobar
(perl)" (whether both the "perl: " prefix
 and the " (perl)" suffix are shown

Perl version 5.18.2 documentation - perlvar

Page 4http://perldoc.perl.org

depends on your exact BSD variant
 and version). This is an operating system feature,
Perl cannot help it.

In multithreaded scripts Perl coordinates the threads so that any
 thread may modify its
copy of the $0 and the change becomes visible
 to ps(1) (assuming the operating
system plays along). Note that
 the view of $0 the other threads have will not change
since they
 have their own copies of it.

If the program has been given to perl via the switches -e or -E, $0 will contain the
string "-e".

On Linux as of perl v5.14.0 the legacy process name will be set with prctl(2), in
addition to altering the POSIX name via argv[0] as
 perl has done since version
4.000. Now system utilities that read the
 legacy process name such as ps, top and
killall will recognize the
 name you set when assigning to $0. The string you supply will
be
 cut off at 16 bytes, this is a limitation imposed by Linux.

Mnemonic: same as sh and ksh.

$REAL_GROUP_ID

$GID

$(

The real gid of this process. If you are on a machine that supports
 membership in
multiple groups simultaneously, gives a space separated
 list of groups you are in. The
first number is the one returned by getgid(), and the subsequent ones by
getgroups(), one of which may be
 the same as the first number.

However, a value assigned to $(must be a single number used to
 set the real gid. So
the value given by $(should not be assigned
 back to $(without being forced numeric,
such as by adding zero. Note
 that this is different to the effective gid ($)) which does
take a
 list.

You can change both the real gid and the effective gid at the same
 time by using
POSIX::setgid(). Changes
 to $(require a check to $!
 to detect any possible
errors after an attempted change.

Mnemonic: parentheses are used to group things. The real gid is the
 group you left, if
you're running setgid.

$EFFECTIVE_GROUP_ID

$EGID

$)

The effective gid of this process. If you are on a machine that
 supports membership in
multiple groups simultaneously, gives a space
 separated list of groups you are in. The
first number is the one
 returned by getegid(), and the subsequent ones by
getgroups(),
 one of which may be the same as the first number.

Similarly, a value assigned to $) must also be a space-separated
 list of numbers. The
first number sets the effective gid, and
 the rest (if any) are passed to setgroups().
To get the effect of an
 empty list for setgroups(), just repeat the new effective gid;
that is,
 to force an effective gid of 5 and an effectively empty setgroups()
 list, say
$) = "5 5" .

You can change both the effective gid and the real gid at the same
 time by using
POSIX::setgid() (use only a single numeric argument).
 Changes to $) require a
check to $! to detect any possible errors
 after an attempted change.

$<, $>, $(and $) can be set only on
 machines that support the corresponding
set[re][ug]id() routine. $(
 and $) can be swapped only on machines supporting
setregid().

Mnemonic: parentheses are used to group things. The effective gid
 is the group that's

Perl version 5.18.2 documentation - perlvar

Page 5http://perldoc.perl.org

right for you, if you're running setgid.

$REAL_USER_ID

$UID

$<

The real uid of this process. You can change both the real uid and the
 effective uid at
the same time by using POSIX::setuid(). Since
 changes to $< require a system
call, check $! after a change
 attempt to detect any possible errors.

Mnemonic: it's the uid you came from, if you're running setuid.

$EFFECTIVE_USER_ID

$EUID

$>

The effective uid of this process. For example:

 $< = $>; # set real to effective uid
 ($<,$>) = ($>,$<); # swap real and effective uids

You can change both the effective uid and the real uid at the same
 time by using
POSIX::setuid(). Changes to $> require a check
 to $! to detect any possible
errors after an attempted change.

$< and $> can be swapped only on machines
 supporting setreuid().

Mnemonic: it's the uid you went to, if you're running setuid.

$SUBSCRIPT_SEPARATOR

$SUBSEP

$;

The subscript separator for multidimensional array emulation. If you
 refer to a hash
element as

 $foo{$a,$b,$c}

it really means

 $foo{join($;, $a, $b, $c)}

But don't put

 @foo{$a,$b,$c}	 # a slice--note the @

which means

 ($foo{$a},$foo{$b},$foo{$c})

Default is "\034", the same as SUBSEP in awk. If your keys contain
 binary data there
might not be any safe value for $;.

Consider using "real" multidimensional arrays as described
 in perllol.

Mnemonic: comma (the syntactic subscript separator) is a semi-semicolon.

$a

$b

Special package variables when using sort(), see "sort" in perlfunc.
 Because of this
specialness $a and $b don't need to be declared
 (using use vars, or our()) even
when using the strict 'vars'
 pragma. Don't lexicalize them with my $a or my $b
if you want to
 be able to use them in the sort() comparison block or function.

Perl version 5.18.2 documentation - perlvar

Page 6http://perldoc.perl.org

%ENV

The hash %ENV contains your current environment. Setting a
 value in ENV changes the
environment for any child processes
 you subsequently fork() off.

$SYSTEM_FD_MAX

$^F

The maximum system file descriptor, ordinarily 2. System file
 descriptors are passed to
exec()ed processes, while higher file
 descriptors are not. Also, during an open(),
system file descriptors are
 preserved even if the open() fails (ordinary file descriptors
are
 closed before the open() is attempted). The close-on-exec
 status of a file
descriptor will be decided according to the value of $^F when the corresponding file,
pipe, or socket was opened, not the
 time of the exec().

@F

The array @F contains the fields of each line read in when autosplit
 mode is turned on.
See perlrun for the -a switch. This array
 is package-specific, and must be declared or
given a full package name
 if not in package main when running under strict
'vars'.

@INC

The array @INC contains the list of places that the do EXPR, require, or use
constructs look for their library files. It
 initially consists of the arguments to any -I
command-line
 switches, followed by the default Perl library, probably /usr/local/lib/perl,
followed by ".", to represent the current
 directory. ("." will not be appended if taint
checks are enabled,
 either by -T or by -t.) If you need to modify this at runtime,
 you
should use the use lib pragma to get the machine-dependent
 library properly loaded
also:

 use lib '/mypath/libdir/';
 use SomeMod;

You can also insert hooks into the file inclusion system by putting Perl
 code directly
into @INC. Those hooks may be subroutine references,
 array references or blessed
objects. See "require" in perlfunc for details.

%INC

The hash %INC contains entries for each filename included via the do, require, or
use operators. The key is the filename
 you specified (with module names converted to
pathnames), and the
 value is the location of the file found. The require
 operator
uses this hash to determine whether a particular file has
 already been included.

If the file was loaded via a hook (e.g. a subroutine reference, see "require" in perlfunc
for a description of these hooks), this hook is
 by default inserted into %INC in place of
a filename. Note, however,
 that the hook may have set the %INC entry by itself to
provide some more
 specific info.

$INPLACE_EDIT

$^I

The current value of the inplace-edit extension. Use undef to disable
 inplace editing.

Mnemonic: value of -i switch.

$^M

By default, running out of memory is an untrappable, fatal error.
 However, if suitably
built, Perl can use the contents of $^M
 as an emergency memory pool after die()ing.
Suppose that your Perl
 were compiled with -DPERL_EMERGENCY_SBRK and used
Perl's malloc.
 Then

Perl version 5.18.2 documentation - perlvar

Page 7http://perldoc.perl.org

 $^M = 'a' x (1 << 16);

would allocate a 64K buffer for use in an emergency. See the INSTALL file in the Perl
distribution for information on how to
 add custom C compilation flags when compiling
perl. To discourage casual
 use of this advanced feature, there is no English long name
for
 this variable.

This variable was added in Perl 5.004.

$OSNAME

$^O

The name of the operating system under which this copy of Perl was
 built, as
determined during the configuration process. For examples
 see "PLATFORMS" in
perlport.

The value is identical to $Config{'osname'}. See also Config
 and the -V
command-line switch documented in perlrun.

In Windows platforms, $^O is not very helpful: since it is always MSWin32, it doesn't
tell the difference between
 95/98/ME/NT/2000/XP/CE/.NET. Use
Win32::GetOSName() or
 Win32::GetOSVersion() (see Win32 and perlport) to
distinguish
 between the variants.

This variable was added in Perl 5.003.

%SIG

The hash %SIG contains signal handlers for signals. For example:

 sub handler { # 1st argument is signal name
	 my($sig) = @_;
	 print "Caught a SIG$sig--shutting down\n";
	 close(LOG);
	 exit(0);
	 }

 $SIG{'INT'} = \&handler;
 $SIG{'QUIT'} = \&handler;
 ...
 $SIG{'INT'} = 'DEFAULT'; # restore default action
 $SIG{'QUIT'} = 'IGNORE'; # ignore SIGQUIT

Using a value of 'IGNORE' usually has the effect of ignoring the
 signal, except for the
CHLD signal. See perlipc for more about
 this special case.

Here are some other examples:

 $SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not
				 # recommended)
 $SIG{"PIPE"} = \&Plumber; # just fine; assume current
				 # Plumber
 $SIG{"PIPE"} = *Plumber; # somewhat esoteric
 $SIG{"PIPE"} = Plumber(); # oops, what did Plumber()
				 # return??

Be sure not to use a bareword as the name of a signal handler,
 lest you inadvertently
call it.

If your system has the sigaction() function then signal handlers
 are installed using
it. This means you get reliable signal handling.

The default delivery policy of signals changed in Perl v5.8.0 from
 immediate (also
known as "unsafe") to deferred, also known as "safe
 signals". See perlipc for more

Perl version 5.18.2 documentation - perlvar

Page 8http://perldoc.perl.org

information.Certain internal hooks can be also set using the %SIG hash. The
 routine
indicated by $SIG{__WARN__} is called when a warning
 message is about to be
printed. The warning message is passed as the
 first argument. The presence of a
__WARN__ hook causes the
 ordinary printing of warnings to STDERR to be suppressed.
You can
 use this to save warnings in a variable, or turn warnings into fatal
 errors, like
this:

 local $SIG{__WARN__} = sub { die $_[0] };
 eval $proggie;

As the 'IGNORE' hook is not supported by __WARN__, you can
 disable warnings
using the empty subroutine:

 local $SIG{__WARN__} = sub {};

The routine indicated by $SIG{__DIE__} is called when a fatal
 exception is about to
be thrown. The error message is passed as the
 first argument. When a __DIE__ hook
routine returns, the exception
 processing continues as it would have in the absence of
the hook,
 unless the hook routine itself exits via a goto &sub, a loop exit,
 or a die().
The __DIE__ handler is explicitly disabled during
 the call, so that you can die from a
__DIE__ handler. Similarly
 for __WARN__.

Due to an implementation glitch, the $SIG{__DIE__} hook is called
 even inside an
eval(). Do not use this to rewrite a pending
 exception in $@, or as a bizarre
substitute for overriding CORE::GLOBAL::die(). This strange action at a distance
may be fixed
 in a future release so that $SIG{__DIE__} is only called if your
 program
is about to exit, as was the original intent. Any other use is
 deprecated.

__DIE__/__WARN__ handlers are very special in one respect: they
 may be called to
report (probable) errors found by the parser. In such
 a case the parser may be in
inconsistent state, so any attempt to
 evaluate Perl code from such a handler will
probably result in a
 segfault. This means that warnings or errors that result from
parsing
 Perl should be used with extreme caution, like this:

 require Carp if defined $^S;
 Carp::confess("Something wrong") if defined &Carp::confess;
 die "Something wrong, but could not load Carp to give "
 . "backtrace...\n\t"
 . "To see backtrace try starting Perl with -MCarp switch";

Here the first line will load Carp unless it is the parser who
 called the handler. The
second line will print backtrace and die if Carp was available. The third line will be
executed only if Carp was
 not available.

Having to even think about the $^S variable in your exception
 handlers is simply
wrong. $SIG{__DIE__} as currently implemented
 invites grievous and difficult to
track down errors. Avoid it
 and use an END{} or CORE::GLOBAL::die override
instead.

See "die" in perlfunc, "warn" in perlfunc, "eval" in perlfunc, and warnings for additional
information.

$BASETIME

$^T

The time at which the program began running, in seconds since the
 epoch (beginning
of 1970). The values returned by the -M, -A,
 and -C filetests are based on this value.

$PERL_VERSION

$^V

The revision, version, and subversion of the Perl interpreter,
 represented as a

Perl version 5.18.2 documentation - perlvar

Page 9http://perldoc.perl.org

version object.

This variable first appeared in perl v5.6.0; earlier versions of perl
 will see an undefined
value. Before perl v5.10.0 $^V was represented
 as a v-string.

$^V can be used to determine whether the Perl interpreter executing
 a script is in the
right range of versions. For example:

 warn "Hashes not randomized!\n" if !$^V or $^V lt v5.8.1

To convert $^V into its string representation use sprintf()'s "%vd" conversion:

 printf "version is v%vd\n", $^V; # Perl's version

See the documentation of use VERSION and require VERSION
 for a convenient
way to fail if the running Perl interpreter is too old.

See also $] for an older representation of the Perl version.

This variable was added in Perl v5.6.0.

Mnemonic: use ^V for Version Control.

${^WIN32_SLOPPY_STAT}

If this variable is set to a true value, then stat() on Windows will
 not try to open the
file. This means that the link count cannot be
 determined and file attributes may be out
of date if additional
 hardlinks to the file exist. On the other hand, not opening the file
 is
considerably faster, especially for files on network drives.

This variable could be set in the sitecustomize.pl file to
 configure the local Perl
installation to use "sloppy" stat() by
 default. See the documentation for -f in perlrun
for more information about site
 customization.

This variable was added in Perl v5.10.0.

$EXECUTABLE_NAME

$^X

The name used to execute the current copy of Perl, from C's argv[0] or (where
supported) /proc/self/exe.

Depending on the host operating system, the value of $^X may be
 a relative or
absolute pathname of the perl program file, or may
 be the string used to invoke perl
but not the pathname of the
 perl program file. Also, most operating systems permit
invoking
 programs that are not in the PATH environment variable, so there
 is no
guarantee that the value of $^X is in PATH. For VMS, the
 value may or may not
include a version number.

You usually can use the value of $^X to re-invoke an independent
 copy of the same
perl that is currently running, e.g.,

 @first_run = `$^X -le "print int rand 100 for 1..100"`;

But recall that not all operating systems support forking or
 capturing of the output of
commands, so this complex statement
 may not be portable.

It is not safe to use the value of $^X as a path name of a file,
 as some operating
systems that have a mandatory suffix on
 executable files do not require use of the
suffix when invoking
 a command. To convert the value of $^X to a path name, use the

following statements:

 # Build up a set of file names (not command names).
 use Config;
 my $this_perl = $^X;
 if ($^O ne 'VMS') {
	 $this_perl .= $Config{_exe}

Perl version 5.18.2 documentation - perlvar

Page 10http://perldoc.perl.org

	 unless $this_perl =~ m/$Config{_exe}$/i;
	 }

Because many operating systems permit anyone with read access to
 the Perl program
file to make a copy of it, patch the copy, and
 then execute the copy, the
security-conscious Perl programmer
 should take care to invoke the installed copy of
perl, not the
 copy referenced by $^X. The following statements accomplish
 this goal,
and produce a pathname that can be invoked as a
 command or referenced as a file.

 use Config;
 my $secure_perl_path = $Config{perlpath};
 if ($^O ne 'VMS') {
	 $secure_perl_path .= $Config{_exe}
	 unless $secure_perl_path =~ m/$Config{_exe}$/i;
	 }

Variables related to regular expressions
Most of the special variables related to regular expressions are side
 effects. Perl sets these variables
when it has a successful match, so
 you should check the match result before using them. For
instance:

 if(/P(A)TT(ER)N/) {
	 print "I found $1 and $2\n";
	 }

These variables are read-only and dynamically-scoped, unless we note
 otherwise.

The dynamic nature of the regular expression variables means that
 their value is limited to the block
that they are in, as demonstrated
 by this bit of code:

 my $outer = 'Wallace and Grommit';
 my $inner = 'Mutt and Jeff';

 my $pattern = qr/(\S+) and (\S+)/;

 sub show_n { print "\$1 is $1; \$2 is $2\n" }

 {
 OUTER:
	 show_n() if $outer =~ m/$pattern/;

	 INNER: {
	 show_n() if $inner =~ m/$pattern/;
	 }

	 show_n();
 }

The output shows that while in the OUTER block, the values of $1
 and $2 are from the match against
$outer. Inside the INNER
 block, the values of $1 and $2 are from the match against $inner, but
only until the end of the block (i.e. the dynamic
 scope). After the INNER block completes, the values
of $1 and $2 return to the values for the match against $outer even though
 we have not made
another match:

 $1 is Wallace; $2 is Grommit

Perl version 5.18.2 documentation - perlvar

Page 11http://perldoc.perl.org

 $1 is Mutt; $2 is Jeff
 $1 is Wallace; $2 is Grommit

Due to an unfortunate accident of Perl's implementation, use
 English imposes a considerable
performance penalty on all regular
 expression matches in a program because it uses the $`, $&, and
$', regardless of whether they occur in the scope of use
 English. For that reason, saying use
English in libraries is
 strongly discouraged unless you import it without the match variables:

 use English '-no_match_vars'

The Devel::NYTProf and Devel::FindAmpersand
 modules can help you find uses of these

problematic match variables in your code.

Since Perl v5.10.0, you can use the /p match operator flag and the ${^PREMATCH}, ${^MATCH},
and ${^POSTMATCH} variables instead
 so you only suffer the performance penalties.

$<digits> ($1, $2, ...)

Contains the subpattern from the corresponding set of capturing
 parentheses from the
last successful pattern match, not counting patterns
 matched in nested blocks that
have been exited already.

These variables are read-only and dynamically-scoped.

Mnemonic: like \digits.

$MATCH

$&

The string matched by the last successful pattern match (not counting
 any matches
hidden within a BLOCK or eval() enclosed by the current
 BLOCK).

The use of this variable anywhere in a program imposes a considerable
 performance
penalty on all regular expression matches. To avoid this
 penalty, you can extract the
same substring by using @-. Starting
 with Perl v5.10.0, you can use the /p match flag
and the ${^MATCH}
 variable to do the same thing for particular match operations.

This variable is read-only and dynamically-scoped.

Mnemonic: like & in some editors.

${^MATCH}

This is similar to $& ($MATCH) except that it does not incur the
 performance penalty
associated with that variable, and is only guaranteed
 to return a defined value when
the pattern was compiled or executed with
 the /p modifier.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$PREMATCH

$`

The string preceding whatever was matched by the last successful
 pattern match, not
counting any matches hidden within a BLOCK or eval
 enclosed by the current
BLOCK.

The use of this variable anywhere in a program imposes a considerable
 performance
penalty on all regular expression matches. To avoid this
 penalty, you can extract the
same substring by using @-. Starting
 with Perl v5.10.0, you can use the /p match flag
and the ${^PREMATCH} variable to do the same thing for particular match
 operations.

This variable is read-only and dynamically-scoped.

Mnemonic: ` often precedes a quoted string.

Perl version 5.18.2 documentation - perlvar

Page 12http://perldoc.perl.org

${^PREMATCH}

This is similar to $` ($PREMATCH) except that it does not incur the
 performance
penalty associated with that variable, and is only guaranteed
 to return a defined value
when the pattern was compiled or executed with
 the /p modifier.

This variable was added in Perl v5.10.0

This variable is read-only and dynamically-scoped.

$POSTMATCH

$'

The string following whatever was matched by the last successful
 pattern match (not
counting any matches hidden within a BLOCK or eval()
 enclosed by the current
BLOCK). Example:

 local $_ = 'abcdefghi';
 /def/;
 print "$`:$&:$'\n"; 	 # prints abc:def:ghi

The use of this variable anywhere in a program imposes a considerable
 performance
penalty on all regular expression matches.
 To avoid this penalty, you can extract the
same substring by
 using @-. Starting with Perl v5.10.0, you can use the /p match flag

and the ${^POSTMATCH} variable to do the same thing for particular
 match
operations.

This variable is read-only and dynamically-scoped.

Mnemonic: ' often follows a quoted string.

${^POSTMATCH}

This is similar to $' ($POSTMATCH) except that it does not incur the
 performance
penalty associated with that variable, and is only guaranteed
 to return a defined value
when the pattern was compiled or executed with
 the /p modifier.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$LAST_PAREN_MATCH

$+

The text matched by the last bracket of the last successful search pattern.
 This is
useful if you don't know which one of a set of alternative patterns
 matched. For
example:

 /Version: (.*)|Revision: (.*)/ && ($rev = $+);

This variable is read-only and dynamically-scoped.

Mnemonic: be positive and forward looking.

$LAST_SUBMATCH_RESULT

$^N

The text matched by the used group most-recently closed (i.e. the group
 with the
rightmost closing parenthesis) of the last successful search
 pattern.

This is primarily used inside (?{...}) blocks for examining text
 recently matched.
For example, to effectively capture text to a variable
 (in addition to $1, $2, etc.),
replace (...) with

 (?:(...)(?{ $var = $^N }))

By setting and then using $var in this way relieves you from having to
 worry about

Perl version 5.18.2 documentation - perlvar

Page 13http://perldoc.perl.org

exactly which numbered set of parentheses they are.

This variable was added in Perl v5.8.0.

Mnemonic: the (possibly) Nested parenthesis that most recently closed.

@LAST_MATCH_END

@+

This array holds the offsets of the ends of the last successful
 submatches in the
currently active dynamic scope. $+[0] is
 the offset into the string of the end of the
entire match. This
 is the same value as what the pos function returns when called
 on
the variable that was matched against. The nth element
 of this array holds the offset of
the nth submatch, so $+[1] is the offset past where $1 ends, $+[2] the offset
 past
where $2 ends, and so on. You can use $#+ to determine
 how many subgroups were
in the last successful match. See the
 examples given for the @- variable.

This variable was added in Perl v5.6.0.

%LAST_PAREN_MATCH

%+

Similar to @+, the %+ hash allows access to the named capture
 buffers, should they
exist, in the last successful match in the
 currently active dynamic scope.

For example, $+{foo} is equivalent to $1 after the following match:

 'foo' =~ /(?<foo>foo)/;

The keys of the %+ hash list only the names of buffers that have
 captured (and that are
thus associated to defined values).

The underlying behaviour of %+ is provided by the Tie::Hash::NamedCapture module.

Note: %- and %+ are tied views into a common internal hash
 associated with the last
successful regular expression. Therefore mixing
 iterative access to them via each may
have unpredictable results.
 Likewise, if the last successful match changes, then the
results may be
 surprising.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

@LAST_MATCH_START

@-

$-[0] is the offset of the start of the last successful match. $-[n] is the offset of the
start of the substring matched by n-th subpattern, or undef if the subpattern did not
match.

Thus, after a match against $_, $& coincides with substr $_, $-[0],
 $+[0] -
$-[0]. Similarly, $n coincides with substr $_, $-[n],
 $+[n] - $-[n] if
$-[n] is defined, and $+ coincides with substr $_, $-[$#-], $+[$#-] -
$-[$#-]. One can use $#- to find the
 last matched subgroup in the last successful
match. Contrast with $#+, the number of subgroups in the regular expression.
Compare
 with @+.

This array holds the offsets of the beginnings of the last
 successful submatches in the
currently active dynamic scope. $-[0] is the offset into the string of the beginning of
the
 entire match. The nth element of this array holds the offset
 of the nth submatch, so
$-[1] is the offset where $1
 begins, $-[2] the offset where $2 begins, and so on.

After a match against some variable $var:

$` is the same as substr($var, 0, $-[0])

$& is the same as substr($var, $-[0], $+[0] - $-[0])

Perl version 5.18.2 documentation - perlvar

Page 14http://perldoc.perl.org

$' is the same as substr($var, $+[0])

$1 is the same as substr($var, $-[1], $+[1] - $-[1])

$2 is the same as substr($var, $-[2], $+[2] - $-[2])

$3 is the same as substr($var, $-[3], $+[3] - $-[3])

This variable was added in Perl v5.6.0.

%LAST_MATCH_START

%-

Similar to %+, this variable allows access to the named capture groups
 in the last
successful match in the currently active dynamic scope. To
 each capture group name
found in the regular expression, it associates a
 reference to an array containing the list
of values captured by all
 buffers with that name (should there be several of them), in
the order
 where they appear.

Here's an example:

 if ('1234' =~ /(?<A>1)(?2)(?<A>3)(?4)/) {
 foreach my $bufname (sort keys %-) {
 my $ary = $-{$bufname};
 foreach my $idx (0..$#$ary) {
 print "\$-{$bufname}[$idx] : ",
 (defined($ary->[$idx])
 ? "'$ary->[$idx]'"
 : "undef"),
 "\n";
 }
 }
 }

would print out:

 $-{A}[0] : '1'
 $-{A}[1] : '3'
 $-{B}[0] : '2'
 $-{B}[1] : '4'

The keys of the %- hash correspond to all buffer names found in
 the regular
expression.

The behaviour of %- is implemented via the Tie::Hash::NamedCapture module.

Note: %- and %+ are tied views into a common internal hash
 associated with the last
successful regular expression. Therefore mixing
 iterative access to them via each may
have unpredictable results.
 Likewise, if the last successful match changes, then the
results may be
 surprising.

This variable was added in Perl v5.10.0.

This variable is read-only and dynamically-scoped.

$LAST_REGEXP_CODE_RESULT

$^R

The result of evaluation of the last successful (?{ code })
 regular expression
assertion (see perlre). May be written to.

This variable was added in Perl 5.005.

${^RE_DEBUG_FLAGS}

The current value of the regex debugging flags. Set to 0 for no debug output
 even

Perl version 5.18.2 documentation - perlvar

Page 15http://perldoc.perl.org

when the re 'debug' module is loaded. See re for details.

This variable was added in Perl v5.10.0.

${^RE_TRIE_MAXBUF}

Controls how certain regex optimisations are applied and how much memory they

utilize. This value by default is 65536 which corresponds to a 512kB
 temporary cache.
Set this to a higher value to trade
 memory for speed when matching large alternations.
Set
 it to a lower value if you want the optimisations to
 be as conservative of memory
as possible but still occur, and set it to a
 negative value to prevent the optimisation and
conserve the most memory.
 Under normal situations this variable should be of no
interest to you.

This variable was added in Perl v5.10.0.

Variables related to filehandles
Variables that depend on the currently selected filehandle may be set
 by calling an appropriate object
method on the IO::Handle object,
 although this is less efficient than using the regular built-in

variables. (Summary lines below for this contain the word HANDLE.)
 First you must say

 use IO::Handle;

after which you may use either

 method HANDLE EXPR

or more safely,

 HANDLE->method(EXPR)

Each method returns the old value of the IO::Handle attribute. The
 methods each take an optional
EXPR, which, if supplied, specifies the
 new value for the IO::Handle attribute in question. If not

supplied, most methods do nothing to the current value--except for autoflush(), which will assume
a 1 for you, just to be different.

Because loading in the IO::Handle class is an expensive operation,
 you should learn how to use
the regular built-in variables.

A few of these variables are considered "read-only". This means that
 if you try to assign to this
variable, either directly or indirectly
 through a reference, you'll raise a run-time exception.

You should be very careful when modifying the default values of most
 special variables described in
this document. In most cases you want
 to localize these variables before changing them, since if you
don't,
 the change may affect other modules which rely on the default values
 of the special variables
that you have changed. This is one of the
 correct ways to read the whole file at once:

 open my $fh, "<", "foo" or die $!;
 local $/; # enable localized slurp mode
 my $content = <$fh>;
 close $fh;

But the following code is quite bad:

 open my $fh, "<", "foo" or die $!;
 undef $/; # enable slurp mode
 my $content = <$fh>;
 close $fh;

Perl version 5.18.2 documentation - perlvar

Page 16http://perldoc.perl.org

since some other module, may want to read data from some file in the
 default "line mode", so if the
code we have just presented has been
 executed, the global value of $/ is now changed for any other
code
 running inside the same Perl interpreter.

Usually when a variable is localized you want to make sure that this
 change affects the shortest scope
possible. So unless you are already
 inside some short {} block, you should create one yourself. For

example:

 my $content = '';
 open my $fh, "<", "foo" or die $!;
 {
	 local $/;
	 $content = <$fh>;
 }
 close $fh;

Here is an example of how your own code can go broken:

 for (1..3){
	 $\ = "\r\n";
	 nasty_break();
	 print "$_";
 }

 sub nasty_break {
	 $\ = "\f";
	 # do something with $_
 }

You probably expect this code to print the equivalent of

 "1\r\n2\r\n3\r\n"

but instead you get:

 "1\f2\f3\f"

Why? Because nasty_break() modifies $\ without localizing it
 first. The value you set in
nasty_break() is still there when you
 return. The fix is to add local() so the value doesn't leak
out of nasty_break():

 local $\ = "\f";

It's easy to notice the problem in such a short example, but in more
 complicated code you are looking
for trouble if you don't localize
 changes to the special variables.

$ARGV

Contains the name of the current file when reading from <>.

@ARGV

The array @ARGV contains the command-line arguments intended for
 the script.
$#ARGV is generally the number of arguments minus
 one, because $ARGV[0] is the
first argument, not the program's
 command name itself. See $0 for the command
name.

ARGV

Perl version 5.18.2 documentation - perlvar

Page 17http://perldoc.perl.org

The special filehandle that iterates over command-line filenames in @ARGV. Usually
written as the null filehandle in the angle operator <>. Note that currently ARGV only
has its magical effect
 within the <> operator; elsewhere it is just a plain filehandle

corresponding to the last file opened by <>. In particular,
 passing *ARGV as a
parameter to a function that expects a filehandle
 may not cause your function to
automatically read the contents of all the
 files in @ARGV.

ARGVOUT

The special filehandle that points to the currently open output file
 when doing
edit-in-place processing with -i. Useful when you have
 to do a lot of inserting and don't
want to keep modifying $_. See perlrun for the -i switch.

IO::Handle->output_field_separator(EXPR)

$OUTPUT_FIELD_SEPARATOR

$OFS

$,

The output field separator for the print operator. If defined, this
 value is printed
between each of print's arguments. Default is undef.

You cannot call output_field_separator() on a handle, only as a
 static method.
See IO::Handle.

Mnemonic: what is printed when there is a "," in your print statement.

HANDLE->input_line_number(EXPR)

$INPUT_LINE_NUMBER

$NR

$.

Current line number for the last filehandle accessed.

Each filehandle in Perl counts the number of lines that have been read
 from it.
(Depending on the value of $/, Perl's idea of what
 constitutes a line may not match
yours.) When a line is read from a
 filehandle (via readline() or <>), or when
tell() or seek() is called on it, $. becomes an alias to the line counter
 for that
filehandle.

You can adjust the counter by assigning to $., but this will not
 actually move the seek
pointer. Localizing $. will not localize
 the filehandle's line count. Instead, it will localize
perl's notion
 of which filehandle $. is currently aliased to.

$. is reset when the filehandle is closed, but not when an open
 filehandle is reopened
without an intervening close(). For more
 details, see "I/O Operators" in perlop.
Because <> never does
 an explicit close, line numbers increase across ARGV files (but
see
 examples in "eof" in perlfunc).

You can also use HANDLE->input_line_number(EXPR) to access the
 line counter
for a given filehandle without having to worry about
 which handle you last accessed.

Mnemonic: many programs use "." to mean the current line number.

IO::Handle->input_record_separator(EXPR)

$INPUT_RECORD_SEPARATOR

$RS

$/

The input record separator, newline by default. This influences Perl's
 idea of what a
"line" is. Works like awk's RS variable, including
 treating empty lines as a terminator if
set to the null string (an
 empty line cannot contain any spaces or tabs). You may set it
to a
 multi-character string to match a multi-character terminator, or to undef to read

Perl version 5.18.2 documentation - perlvar

Page 18http://perldoc.perl.org

through the end of file. Setting it to "\n\n"
 means something slightly different than
setting to "", if the file
 contains consecutive empty lines. Setting to "" will treat two or

more consecutive empty lines as a single empty line. Setting to "\n\n" will blindly
assume that the next input character belongs to
 the next paragraph, even if it's a
newline.

 local $/; # enable "slurp" mode
 local $_ = <FH>; # whole file now here
 s/\n[\t]+/ /g;

Remember: the value of $/ is a string, not a regex. awk has to
 be better for
something. :-)

Setting $/ to a reference to an integer, scalar containing an
 integer, or scalar that's
convertible to an integer will attempt to
 read records instead of lines, with the
maximum record size being the
 referenced integer number of characters. So this:

 local $/ = \32768; # or \"32768", or \$var_containing_32768
 open my $fh, "<", $myfile or die $!;
 local $_ = <$fh>;

will read a record of no more than 32768 characters from $fh. If you're
 not reading
from a record-oriented file (or your OS doesn't have
 record-oriented files), then you'll
likely get a full chunk of data
 with every read. If a record is larger than the record size
you've
 set, you'll get the record back in pieces. Trying to set the record
 size to zero or
less will cause reading in the (rest of the) whole file.

On VMS only, record reads bypass PerlIO layers and any associated
 buffering, so you
must not mix record and non-record reads on the
 same filehandle. Record mode mixes
with line mode only when the
 same buffering layer is in use for both modes.

You cannot call input_record_separator() on a handle, only as a
 static method.
See IO::Handle.

See also "Newlines" in perlport. Also see $..

Mnemonic: / delimits line boundaries when quoting poetry.

IO::Handle->output_record_separator(EXPR)

$OUTPUT_RECORD_SEPARATOR

$ORS

$\

The output record separator for the print operator. If defined, this
 value is printed after
the last of print's arguments. Default is undef.

You cannot call output_record_separator() on a handle, only as a
 static
method. See IO::Handle.

Mnemonic: you set $\ instead of adding "\n" at the end of the print.
 Also, it's just like
$/, but it's what you get "back" from Perl.

HANDLE->autoflush(EXPR)

$OUTPUT_AUTOFLUSH

$|

If set to nonzero, forces a flush right away and after every write or
 print on the currently
selected output channel. Default is 0
 (regardless of whether the channel is really
buffered by the system or
 not; $| tells you only whether you've asked Perl explicitly to

flush after each write). STDOUT will typically be line buffered if
 output is to the terminal
and block buffered otherwise. Setting this
 variable is useful primarily when you are
outputting to a pipe or
 socket, such as when you are running a Perl program under rsh

Perl version 5.18.2 documentation - perlvar

Page 19http://perldoc.perl.org

and
 want to see the output as it's happening. This has no effect on input
 buffering. See
"getc" in perlfunc for that. See "select" in perlfunc on
 how to select the output channel.
See also IO::Handle.

Mnemonic: when you want your pipes to be piping hot.

${^LAST_FH}

This read-only variable contains a reference to the last-read filehandle.
 This is set by
<HANDLE>, readline, tell, eof and seek.
 This is the same handle that $. and
tell and eof without arguments
 use. It is also the handle used when Perl appends ",
<STDIN> line 1" to
 an error or warning message.

This variable was added in Perl v5.18.0.

Variables related to formats

The special variables for formats are a subset of those for
 filehandles. See perlform for more
information about Perl's
 formats.

$ACCUMULATOR

$^A

The current value of the write() accumulator for format() lines.
 A format contains
formline() calls that put their result into $^A. After calling its format, write()
prints out the contents
 of $^A and empties. So you never really see the contents of
$^A
 unless you call formline() yourself and then look at it. See perlform and
"formline PICTURE,LIST" in perlfunc.

IO::Handle->format_formfeed(EXPR)

$FORMAT_FORMFEED

$^L

What formats output as a form feed. The default is \f.

You cannot call format_formfeed() on a handle, only as a static
 method. See
IO::Handle.

HANDLE->format_page_number(EXPR)

$FORMAT_PAGE_NUMBER

$%

The current page number of the currently selected output channel.

Mnemonic: % is page number in nroff.

HANDLE->format_lines_left(EXPR)

$FORMAT_LINES_LEFT

$-

The number of lines left on the page of the currently selected output
 channel.

Mnemonic: lines_on_page - lines_printed.

IO::Handle->format_line_break_characters EXPR

$FORMAT_LINE_BREAK_CHARACTERS

$:

The current set of characters after which a string may be broken to
 fill continuation
fields (starting with ^) in a format. The default is " \n-", to break on a space, newline, or
a hyphen.

You cannot call format_line_break_characters() on a handle, only as
 a static
method. See IO::Handle.

Perl version 5.18.2 documentation - perlvar

Page 20http://perldoc.perl.org

Mnemonic: a "colon" in poetry is a part of a line.

HANDLE->format_lines_per_page(EXPR)

$FORMAT_LINES_PER_PAGE

$=

The current page length (printable lines) of the currently selected
 output channel. The
default is 60.

Mnemonic: = has horizontal lines.

HANDLE->format_top_name(EXPR)

$FORMAT_TOP_NAME

$^

The name of the current top-of-page format for the currently selected
 output channel.
The default is the name of the filehandle with _TOP
 appended. For example, the
default format top name for the STDOUT
 filehandle is STDOUT_TOP.

Mnemonic: points to top of page.

HANDLE->format_name(EXPR)

$FORMAT_NAME

$~

The name of the current report format for the currently selected
 output channel. The
default format name is the same as the filehandle
 name. For example, the default
format name for the STDOUT
 filehandle is just STDOUT.

Mnemonic: brother to $^.

Error Variables
The variables $@, $!, $^E, and $? contain information
 about different types of error conditions that
may appear during
 execution of a Perl program. The variables are shown ordered by
 the "distance"
between the subsystem which reported the error and
 the Perl process. They correspond to errors
detected by the Perl
 interpreter, C library, operating system, or an external program,
 respectively.

To illustrate the differences between these variables, consider the
 following Perl expression, which
uses a single-quoted string. After
 execution of this statement, perl may have set all four special error

variables:

 eval q{
	 open my $pipe, "/cdrom/install |" or die $!;
	 my @res = <$pipe>;
	 close $pipe or die "bad pipe: $?, $!";
 };

When perl executes the eval() expression, it translates the open(), <PIPE>, and close calls in
the C run-time library
 and thence to the operating system kernel. perl sets $! to
 the C library's errno
if one of these calls fails.

$@ is set if the string to be eval-ed did not compile (this may
 happen if open or close were imported
with bad prototypes), or
 if Perl code executed during evaluation die()d. In these cases the
 value of
$@ is the compile error, or the argument to die (which
 will interpolate $! and $?). (See also Fatal,
though.)

Under a few operating systems, $^E may contain a more verbose error
 indicator, such as in this case,
"CDROM tray not closed." Systems that
 do not support extended error messages leave $^E the same
as $!.

Perl version 5.18.2 documentation - perlvar

Page 21http://perldoc.perl.org

Finally, $? may be set to non-0 value if the external program /cdrom/install fails. The upper eight bits
reflect specific error
 conditions encountered by the program (the program's exit() value).
 The lower
eight bits reflect mode of failure, like signal death and
 core dump information. See wait(2) for details.
In contrast to $! and $^E, which are set only if error condition is detected,
 the variable $? is set on
each wait or pipe close,
 overwriting the old value. This is more like $@, which on every eval() is
always set on failure and cleared on success.

For more details, see the individual descriptions at $@, $!, $^E, and $?.

${^CHILD_ERROR_NATIVE}

The native status returned by the last pipe close, backtick (``)
 command, successful
call to wait() or waitpid(), or from the system() operator. On POSIX-like
systems this value can be decoded
 with the WIFEXITED, WEXITSTATUS,
WIFSIGNALED, WTERMSIG, WIFSTOPPED,
 WSTOPSIG and WIFCONTINUED
functions provided by the POSIX module.

Under VMS this reflects the actual VMS exit status; i.e. it is the
 same as $? when the
pragma use vmsish 'status' is in effect.

This variable was added in Perl v5.10.0.

$EXTENDED_OS_ERROR

$^E

Error information specific to the current operating system. At the
 moment, this differs
from $! under only VMS, OS/2, and Win32 (and
 for MacPerl). On all other platforms,
$^E is always just the same
 as $!.

Under VMS, $^E provides the VMS status value from the last system
 error. This is
more specific information about the last system error
 than that provided by $!. This is
particularly important when $!
 is set to EVMSERR.

Under OS/2, $^E is set to the error code of the last call to OS/2
 API either via CRT, or
directly from perl.

Under Win32, $^E always returns the last error information reported
 by the Win32 call
GetLastError() which describes the last error
 from within the Win32 API. Most
Win32-specific code will report errors
 via $^E. ANSI C and Unix-like calls set errno
and so most
 portable Perl code will report errors via $!.

Caveats mentioned in the description of $! generally apply to $^E, also.

This variable was added in Perl 5.003.

Mnemonic: Extra error explanation.

$EXCEPTIONS_BEING_CAUGHT

$^S

Current state of the interpreter.

	 $^S State
	 --------- -------------------------------------
	 undef Parsing module, eval, or main program
	 true (1) Executing an eval
	 false (0) Otherwise

The first state may happen in $SIG{__DIE__} and $SIG{__WARN__}
 handlers.

The English name $EXCEPTIONS_BEING_CAUGHT is slightly misleading, because

the undef value does not indicate whether exceptions are being caught,
 since
compilation of the main program does not catch exceptions.

This variable was added in Perl 5.004.

Perl version 5.18.2 documentation - perlvar

Page 22http://perldoc.perl.org

$WARNING

$^W

The current value of the warning switch, initially true if -w was
 used, false otherwise,
but directly modifiable.

See also warnings.

Mnemonic: related to the -w switch.

${^WARNING_BITS}

The current set of warning checks enabled by the use warnings pragma.
 It has the
same scoping as the $^H and %^H variables. The exact
 values are considered internal
to the warnings pragma and may change
 between versions of Perl.

This variable was added in Perl v5.6.0.

$OS_ERROR

$ERRNO

$!

When referenced, $! retrieves the current value
 of the C errno integer variable.
 If $!
is assigned a numerical value, that value is stored in errno.
 When referenced as a
string, $! yields the system error string
 corresponding to errno.

Many system or library calls set errno if they fail,
 to indicate the cause of failure. They
usually do not
 set errno to zero if they succeed. This means errno,
 hence $!, is
meaningful only immediately after a failure:

 if (open my $fh, "<", $filename) {
		 # Here $! is meaningless.
		 ...
 }
 else {
		 # ONLY here is $! meaningful.
		 ...
		 # Already here $! might be meaningless.
 }
 # Since here we might have either success or failure,
 # $! is meaningless.

Here, meaningless means that $! may be unrelated to the outcome
 of the open()
operator. Assignment to $! is similarly ephemeral.
 It can be used immediately before
invoking the die() operator,
 to set the exit value, or to inspect the system error string

corresponding to error n, or to restore $! to a meaningful state.

Mnemonic: What just went bang?

%OS_ERROR

%ERRNO

%!

Each element of %! has a true value only if $! is set to that
 value. For example,
$!{ENOENT} is true if and only if the current
 value of $! is ENOENT; that is, if the most
recent error was "No
 such file or directory" (or its moral equivalent: not all operating

systems give that exact error, and certainly not all languages). To
 check if a particular
key is meaningful on your system, use exists
 $!{the_key}; for a list of legal keys,
use keys %!. See Errno
 for more information, and also see $!.

This variable was added in Perl 5.005.

$CHILD_ERROR

Perl version 5.18.2 documentation - perlvar

Page 23http://perldoc.perl.org

$?

The status returned by the last pipe close, backtick (``) command,
 successful call to
wait() or waitpid(), or from the system()
 operator. This is just the 16-bit status
word returned by the
 traditional Unix wait() system call (or else is made up to look

like it). Thus, the exit value of the subprocess is really ($? >>
 8), and $? & 127
gives which signal, if any, the process died
 from, and $? & 128 reports whether there
was a core dump.

Additionally, if the h_errno variable is supported in C, its value
 is returned via $? if
any gethost*() function fails.

If you have installed a signal handler for SIGCHLD, the
 value of $? will usually be
wrong outside that handler.

Inside an END subroutine $? contains the value that is going to be
 given to exit().
You can modify $? in an END subroutine to
 change the exit status of your program. For
example:

 END {
	 $? = 1 if $? == 255; # die would make it 255
 }

Under VMS, the pragma use vmsish 'status' makes $? reflect the
 actual VMS
exit status, instead of the default emulation of POSIX
 status; see "$?" in perlvms for
details.

Mnemonic: similar to sh and ksh.

$EVAL_ERROR

$@

The Perl syntax error message from the
 last eval() operator. If $@ is
 the null string,
the last eval() parsed and executed correctly
 (although the operations you invoked
may have failed in the normal
 fashion).

Warning messages are not collected in this variable. You can, however,
 set up a
routine to process warnings by setting $SIG{__WARN__} as
 described in %SIG.

Mnemonic: Where was the syntax error "at"?

Variables related to the interpreter state
These variables provide information about the current interpreter state.

$COMPILING

$^C

The current value of the flag associated with the -c switch.
 Mainly of use with -MO=...
to allow code to alter its behavior
 when being compiled, such as for example to
AUTOLOAD at compile
 time rather than normal, deferred loading. Setting $^C = 1 is
similar to calling B::minus_c.

This variable was added in Perl v5.6.0.

$DEBUGGING

$^D

The current value of the debugging flags. May be read or set. Like its
 command-line
equivalent, you can use numeric or symbolic values, eg $^D = 10 or $^D = "st".

Mnemonic: value of -D switch.

${^ENCODING}

The object reference to the Encode object that is used to convert
 the source code to
Unicode. Thanks to this variable your Perl script
 does not have to be written in UTF-8.

Perl version 5.18.2 documentation - perlvar

Page 24http://perldoc.perl.org

Default is undef. The direct
 manipulation of this variable is highly discouraged.

This variable was added in Perl 5.8.2.

${^GLOBAL_PHASE}

The current phase of the perl interpreter.

Possible values are:

CONSTRUCT

The PerlInterpreter* is being constructed via perl_construct.
This
 value is mostly there for completeness and for use via the

underlying C variable PL_phase. It's not really possible for Perl
 code to
be executed unless construction of the interpreter is
 finished.

START

This is the global compile-time. That includes, basically, every BEGIN
block executed directly or indirectly from during the
 compile-time of the
top-level program.

This phase is not called "BEGIN" to avoid confusion with BEGIN-blocks,
as those are executed during compile-time of any
 compilation unit, not
just the top-level program. A new, localised
 compile-time entered at
run-time, for example by constructs as eval "use SomeModule" are
not global interpreter phases, and
 therefore aren't reflected by
${^GLOBAL_PHASE}.

CHECK

Execution of any CHECK blocks.

INIT

Similar to "CHECK", but for INIT-blocks, not CHECK blocks.

RUN

The main run-time, i.e. the execution of PL_main_root.

END

Execution of any END blocks.

DESTRUCT

Global destruction.

Also note that there's no value for UNITCHECK-blocks. That's because
 those are run
for each compilation unit individually, and therefore is
 not a global interpreter phase.

Not every program has to go through each of the possible phases, but
 transition from
one phase to another can only happen in the order
 described in the above list.

An example of all of the phases Perl code can see:

 BEGIN { print "compile-time: ${^GLOBAL_PHASE}\n" }

 INIT { print "init-time: ${^GLOBAL_PHASE}\n" }

 CHECK { print "check-time: ${^GLOBAL_PHASE}\n" }

 {
 package Print::Phase;

 sub new {
 my ($class, $time) = @_;

Perl version 5.18.2 documentation - perlvar

Page 25http://perldoc.perl.org

 return bless \$time, $class;
 }

 sub DESTROY {
 my $self = shift;
 print "$$self: ${^GLOBAL_PHASE}\n";
 }
 }

 print "run-time: ${^GLOBAL_PHASE}\n";

 my $runtime = Print::Phase->new(
 "lexical variables are garbage collected before END"
);

 END { print "end-time: ${^GLOBAL_PHASE}\n" }

 our $destruct = Print::Phase->new(
 "package variables are garbage collected after END"
);

This will print out

 compile-time: START
 check-time: CHECK
 init-time: INIT
 run-time: RUN
 lexical variables are garbage collected before END: RUN
 end-time: END
 package variables are garbage collected after END: DESTRUCT

This variable was added in Perl 5.14.0.

$^H

WARNING: This variable is strictly for
 internal use only. Its availability,
 behavior, and
contents are subject to change without notice.

This variable contains compile-time hints for the Perl interpreter. At the
 end of
compilation of a BLOCK the value of this variable is restored to the
 value when the
interpreter started to compile the BLOCK.

When perl begins to parse any block construct that provides a lexical scope
 (e.g., eval
body, required file, subroutine body, loop body, or conditional
 block), the existing value
of $^H is saved, but its value is left unchanged.
 When the compilation of the block is
completed, it regains the saved value.
 Between the points where its value is saved and
restored, code that
 executes within BEGIN blocks is free to change the value of $^H.

This behavior provides the semantic of lexical scoping, and is used in,
 for instance, the
use strict pragma.

The contents should be an integer; different bits of it are used for
 different pragmatic
flags. Here's an example:

 sub add_100 { $^H |= 0x100 }

 sub foo {
	 BEGIN { add_100() }
	 bar->baz($boon);
 }

Perl version 5.18.2 documentation - perlvar

Page 26http://perldoc.perl.org

Consider what happens during execution of the BEGIN block. At this point
 the BEGIN
block has already been compiled, but the body of foo() is still
 being compiled. The
new value of $^H
 will therefore be visible only while
 the body of foo() is being
compiled.

Substitution of BEGIN { add_100() } block with:

 BEGIN { require strict; strict->import('vars') }

demonstrates how use strict 'vars' is implemented. Here's a conditional

version of the same lexical pragma:

 BEGIN {
	 require strict; strict->import('vars') if $condition
 }

This variable was added in Perl 5.003.

%^H

The %^H hash provides the same scoping semantic as $^H. This makes
 it useful for
implementation of lexically scoped pragmas. See perlpragma.

When putting items into %^H, in order to avoid conflicting with other
 users of the hash
there is a convention regarding which keys to use.
 A module should use only keys that
begin with the module's name (the
 name of its main package) and a "/" character. For
example, a module Foo::Bar should use keys such as Foo::Bar/baz.

This variable was added in Perl v5.6.0.

${^OPEN}

An internal variable used by PerlIO. A string in two parts, separated
 by a \0 byte, the
first part describes the input layers, the second
 part describes the output layers.

This variable was added in Perl v5.8.0.

$PERLDB

$^P

The internal variable for debugging support. The meanings of the
 various bits are
subject to change, but currently indicate:

0x01

Debug subroutine enter/exit.

0x02

Line-by-line debugging. Causes DB::DB() subroutine to be called for
 each
statement executed. Also causes saving source code lines (like
 0x400).

0x04

Switch off optimizations.

0x08

Preserve more data for future interactive inspections.

0x10

Keep info about source lines on which a subroutine is defined.

0x20

Start with single-step on.

0x40

Perl version 5.18.2 documentation - perlvar

Page 27http://perldoc.perl.org

Use subroutine address instead of name when reporting.

0x80

Report goto &subroutine as well.

0x100

Provide informative "file" names for evals based on the place they were
compiled.

0x200

Provide informative names to anonymous subroutines based on the place
they
 were compiled.

0x400

Save source code lines into @{"_<$filename"}.

Some bits may be relevant at compile-time only, some at
 run-time only. This is a new
mechanism and the details may change.
 See also perldebguts.

${^TAINT}

Reflects if taint mode is on or off. 1 for on (the program was run with -T), 0 for off, -1
when only taint warnings are enabled (i.e. with -t or -TU).

This variable is read-only.

This variable was added in Perl v5.8.0.

${^UNICODE}

Reflects certain Unicode settings of Perl. See perlrun
 documentation for the -C switch
for more information about
 the possible values.

This variable is set during Perl startup and is thereafter read-only.

This variable was added in Perl v5.8.2.

${^UTF8CACHE}

This variable controls the state of the internal UTF-8 offset caching code.
 1 for on (the
default), 0 for off, -1 to debug the caching code by checking
 all its results against linear
scans, and panicking on any discrepancy.

This variable was added in Perl v5.8.9. It is subject to change or
 removal without
notice, but is currently used to avoid recalculating the
 boundaries of multi-byte
UTF-8-encoded characters.

${^UTF8LOCALE}

This variable indicates whether a UTF-8 locale was detected by perl at
 startup. This
information is used by perl when it's in
 adjust-utf8ness-to-locale mode (as when run
with the -CL command-line
 switch); see perlrun for more info on this.

This variable was added in Perl v5.8.8.

Deprecated and removed variables
Deprecating a variable announces the intent of the perl maintainers to
 eventually remove the variable
from the language. It may still be
 available despite its status. Using a deprecated variable triggers
 a
warning.

Once a variable is removed, its use triggers an error telling you
 the variable is unsupported.

See perldiag for details about error messages.

$OFMT

Perl version 5.18.2 documentation - perlvar

Page 28http://perldoc.perl.org

$#

$# was a variable that could be used to format printed numbers.
 After a deprecation
cycle, its magic was removed in Perl v5.10.0 and
 using it now triggers a warning: $#
is no longer supported.

This is not the sigil you use in front of an array name to get the
 last index, like
$#array. That's still how you get the last index
 of an array in Perl. The two have
nothing to do with each other.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$*

$* was a variable that you could use to enable multiline matching.
 After a deprecation
cycle, its magic was removed in Perl v5.10.0.
 Using it now triggers a warning: $* is
no longer supported.
 You should use the /s and /m regexp modifiers instead.

Deprecated in Perl 5.

Removed in Perl v5.10.0.

$ARRAY_BASE

$[

This variable stores the index of the first element in an array, and
 of the first character
in a substring. The default is 0, but you could
 theoretically set it to 1 to make Perl
behave more like awk (or Fortran)
 when subscripting and when evaluating the index()
and substr() functions.

As of release 5 of Perl, assignment to $[is treated as a compiler
 directive, and cannot
influence the behavior of any other file.
 (That's why you can only assign compile-time
constants to it.)
 Its use is highly discouraged.

Prior to Perl v5.10.0, assignment to $[could be seen from outer lexical
 scopes in the
same file, unlike other compile-time directives (such as strict). Using local() on it would
bind its value strictly to a lexical
 block. Now it is always lexically scoped.

As of Perl v5.16.0, it is implemented by the arybase module. See arybase for more
details on its behaviour.

Under use v5.16, or no feature "array_base", $[no longer has any
 effect,
and always contains 0. Assigning 0 to it is permitted, but any
 other value will produce
an error.

Mnemonic: [begins subscripts.

Deprecated in Perl v5.12.0.

$OLD_PERL_VERSION

$]

See $^V for a more modern representation of the Perl version that allows
 accurate
string comparisons.

The version + patchlevel / 1000 of the Perl interpreter. This variable
 can be used to
determine whether the Perl interpreter executing a
 script is in the right range of
versions:

 warn "No checksumming!\n" if $] < 3.019;

The floating point representation can sometimes lead to inaccurate
 numeric
comparisons.

See also the documentation of use VERSION and require VERSION
 for a
convenient way to fail if the running Perl interpreter is too old.

Perl version 5.18.2 documentation - perlvar

Page 29http://perldoc.perl.org

Mnemonic: Is this version of perl in the right bracket?

