
Perl version 5.20.1 documentation - CORE

Page 1http://perldoc.perl.org

NAME
CORE - Namespace for Perl's core routines

SYNOPSIS
 BEGIN {
 *CORE::GLOBAL::hex = sub { 1; };
 }

 print hex("0x50"),"\n";			 # prints 1
 print CORE::hex("0x50"),"\n";		 # prints 80
 CORE::say "yes";				 # prints yes

 BEGIN { *shove = \&CORE::push; }
 shove @array, 1,2,3;			 # pushes on to @array

DESCRIPTION
The CORE namespace gives access to the original built-in functions of
 Perl. The CORE package is built
into
 Perl, and therefore you do not need to use or
 require a hypothetical "CORE" module prior to
accessing routines in this
 namespace.

A list of the built-in functions in Perl can be found in perlfunc.

For all Perl keywords, a CORE:: prefix will force the built-in function
 to be used, even if it has been
overridden or would normally require the feature pragma. Despite appearances, this has nothing to do
with the
 CORE package, but is part of Perl's syntax.

For many Perl functions, the CORE package contains real subroutines. This
 feature is new in Perl
5.16. You can take references to these and make
 aliases. However, some can only be called as
barewords; i.e., you cannot
 use ampersand syntax (&foo) or call them through references. See the
shove example above. These subroutines exist for all keywords except the following:

__DATA__, __END__, and, cmp, default, do, dump, else, elsif, eq, eval, for, foreach,
format, ge, given, goto, grep, gt, if, last, le, local, lt, m, map, my, ne, next, no, or, our,
package, print, printf, q, qq, qr, qw, qx, redo, require, return, s, say, sort, state, sub,
tr, unless, until, use, when, while, x, xor, y

Calling with
 ampersand syntax and through references does not work for the following
 functions, as
they have special syntax that cannot always be translated
 into a simple list (e.g., eof vs eof()):

chdir, chomp, chop, defined, delete, each, eof, exec, exists, keys, lstat, pop, push,
shift, splice, split, stat, system, truncate, unlink, unshift, values

OVERRIDING CORE FUNCTIONS
To override a Perl built-in routine with your own version, you need to
 import it at compile-time. This
can be conveniently achieved with the subs pragma. This will affect only the package in which you've
imported
 the said subroutine:

 use subs 'chdir';
 sub chdir { ... }
 chdir $somewhere;

To override a built-in globally (that is, in all namespaces), you need to
 import your function into the
CORE::GLOBAL pseudo-namespace at compile
 time:

 BEGIN {
 *CORE::GLOBAL::hex = sub {
 # ... your code here

Perl version 5.20.1 documentation - CORE

Page 2http://perldoc.perl.org

 };
 }

The new routine will be called whenever a built-in function is called
 without a qualifying package:

 print hex("0x50"),"\n";			 # prints 1

In both cases, if you want access to the original, unaltered routine, use
 the CORE:: prefix:

 print CORE::hex("0x50"),"\n";		 # prints 80

AUTHOR
This documentation provided by Tels <nospam-abuse@bloodgate.com> 2007.

SEE ALSO
perlsub, perlfunc.

