
Perl version 5.20.1 documentation - DynaLoader

Page 1http://perldoc.perl.org

NAME
DynaLoader - Dynamically load C libraries into Perl code

SYNOPSIS
 package YourPackage;
 require DynaLoader;
 @ISA = qw(... DynaLoader ...);
 bootstrap YourPackage;

 # optional method for 'global' loading
 sub dl_load_flags { 0x01 }

DESCRIPTION
This document defines a standard generic interface to the dynamic
 linking mechanisms available on
many platforms. Its primary purpose is
 to implement automatic dynamic loading of Perl modules.

This document serves as both a specification for anyone wishing to
 implement the DynaLoader for a
new platform and as a guide for
 anyone wishing to use the DynaLoader directly in an application.

The DynaLoader is designed to be a very simple high-level
 interface that is sufficiently general to
cover the requirements
 of SunOS, HP-UX, NeXT, Linux, VMS and other platforms.

It is also hoped that the interface will cover the needs of OS/2, NT
 etc and also allow pseudo-dynamic
linking (using ld -A at runtime).

It must be stressed that the DynaLoader, by itself, is practically
 useless for accessing non-Perl
libraries because it provides almost no
 Perl-to-C 'glue'. There is, for example, no mechanism for
calling a C
 library function or supplying arguments. A C::DynaLib module
 is available from CPAN sites
which performs that function for some
 common system types. And since the year 2000, there's also
Inline::C,
 a module that allows you to write Perl subroutines in C. Also available
 from your local CPAN
site.

DynaLoader Interface Summary

 @dl_library_path
 @dl_resolve_using
 @dl_require_symbols
 $dl_debug
 $dl_dlext
 @dl_librefs
 @dl_modules
 @dl_shared_objects
 Implemented in:
 bootstrap($modulename) Perl
 @filepaths = dl_findfile(@names) Perl
 $flags = $modulename->dl_load_flags Perl
 $symref = dl_find_symbol_anywhere($symbol) Perl

 $libref = dl_load_file($filename, $flags) C
 $status = dl_unload_file($libref) C
 $symref = dl_find_symbol($libref, $symbol) C
 @symbols = dl_undef_symbols() C
 dl_install_xsub($name, $symref [, $filename]) C
 $message = dl_error C

@dl_library_path

Perl version 5.20.1 documentation - DynaLoader

Page 2http://perldoc.perl.org

The standard/default list of directories in which dl_findfile() will
 search for libraries etc.
Directories are searched in order:
 $dl_library_path[0], [1], ... etc

@dl_library_path is initialised to hold the list of 'normal' directories
 (/usr/lib, etc) determined by
Configure ($Config{'libpth'}). This should
 ensure portability across a wide range of
platforms.

@dl_library_path should also be initialised with any other directories
 that can be determined
from the environment at runtime (such as
 LD_LIBRARY_PATH for SunOS).

After initialisation @dl_library_path can be manipulated by an
 application using push and
unshift before calling dl_findfile().
 Unshift can be used to add directories to the front of the
search order
 either to save search time or to override libraries with the same name
 in the
'normal' directories.

The load function that dl_load_file() calls may require an absolute
 pathname. The dl_findfile()
function and @dl_library_path can be
 used to search for and return the absolute pathname for
the
 library/object that you wish to load.

@dl_resolve_using

A list of additional libraries or other shared objects which can be
 used to resolve any
undefined symbols that might be generated by a
 later call to load_file().

This is only required on some platforms which do not handle dependent
 libraries
automatically. For example the Socket Perl extension
 library (auto/Socket/Socket.so) contains
references to many socket
 functions which need to be resolved when it's loaded. Most
platforms
 will automatically know where to find the 'dependent' library (e.g.,
/usr/lib/libsocket.so). A few platforms need to be told the
 location of the dependent library
explicitly. Use @dl_resolve_using
 for this.

Example usage:

 @dl_resolve_using = dl_findfile('-lsocket');

@dl_require_symbols

A list of one or more symbol names that are in the library/object file
 to be dynamically loaded.
This is only required on some platforms.

@dl_librefs

An array of the handles returned by successful calls to dl_load_file(),
 made by bootstrap, in
the order in which they were loaded.
 Can be used with dl_find_symbol() to look for a symbol in
any of
 the loaded files.

@dl_modules

An array of module (package) names that have been bootstrap'ed.

@dl_shared_objects

An array of file names for the shared objects that were loaded.

dl_error()

Syntax:

 $message = dl_error();

Error message text from the last failed DynaLoader function. Note
 that, similar to errno in unix,
a successful function call does not
 reset this message.

Implementations should detect the error as soon as it occurs in any of
 the other functions and
save the corresponding message for later
 retrieval. This will avoid problems on some
platforms (such as SunOS)
 where the error message is very temporary (e.g., dlerror()).

$dl_debug

Perl version 5.20.1 documentation - DynaLoader

Page 3http://perldoc.perl.org

Internal debugging messages are enabled when $dl_debug is set true.
 Currently setting
$dl_debug only affects the Perl side of the
 DynaLoader. These messages should help an
application developer to
 resolve any DynaLoader usage problems.

$dl_debug is set to $ENV{'PERL_DL_DEBUG'} if defined.

For the DynaLoader developer/porter there is a similar debugging
 variable added to the C
code (see dlutils.c) and enabled if Perl was
 built with the -DDEBUGGING flag. This can also
be set via the
 PERL_DL_DEBUG environment variable. Set to 1 for minimal information or

higher for more.

$dl_dlext

When specified (localised) in a module's .pm file, indicates the extension
 which the module's
loadable object will have. For example:

 local $DynaLoader::dl_dlext = 'unusual_ext';

would indicate that the module's loadable object has an extension of unusual_ext instead of
the more usual $Config{dlext}. NOTE: This also
 requires that the module's Makefile.PL
specify (in WriteMakefile()):

 DLEXT => 'unusual_ext',

dl_findfile()

Syntax:

 @filepaths = dl_findfile(@names)

Determine the full paths (including file suffix) of one or more
 loadable files given their generic
names and optionally one or more
 directories. Searches directories in @dl_library_path by
default and
 returns an empty list if no files were found.

Names can be specified in a variety of platform independent forms. Any
 names in the form
-lname are converted into libname.*, where .* is
 an appropriate suffix for the platform.

If a name does not already have a suitable prefix and/or suffix then
 the corresponding file will
be searched for by trying combinations of
 prefix and suffix appropriate to the platform:
"$name.o", "lib$name.*"
 and "$name".

If any directories are included in @names they are searched before
 @dl_library_path.
Directories may be specified as -Ldir. Any other
 names are treated as filenames to be
searched for.

Using arguments of the form -Ldir and -lname is recommended.

Example:

 @dl_resolve_using = dl_findfile(qw(-L/usr/5lib -lposix));

dl_expandspec()

Syntax:

 $filepath = dl_expandspec($spec)

Some unusual systems, such as VMS, require special filename handling in
 order to deal with
symbolic names for files (i.e., VMS's Logical Names).

To support these systems a dl_expandspec() function can be implemented
 either in the
dl_*.xs file or code can be added to the dl_expandspec()
 function in DynaLoader.pm. See
DynaLoader_pm.PL for more information.

dl_load_file()

Syntax:

Perl version 5.20.1 documentation - DynaLoader

Page 4http://perldoc.perl.org

 $libref = dl_load_file($filename, $flags)

Dynamically load $filename, which must be the path to a shared object
 or library. An opaque
'library reference' is returned as a handle for
 the loaded object. Returns undef on error.

The $flags argument to alters dl_load_file behaviour. Assigned bits:

 0x01 make symbols available for linking later dl_load_file's.
 (only known to work on Solaris 2 using dlopen(RTLD_GLOBAL))
 (ignored under VMS; this is a normal part of image linking)

(On systems that provide a handle for the loaded object such as SunOS
 and HPUX, $libref will
be that handle. On other systems $libref will
 typically be $filename or a pointer to a buffer
containing $filename.
 The application should not examine or alter $libref in any way.)

This is the function that does the real work. It should use the
 current values of
@dl_require_symbols and @dl_resolve_using if required.

 SunOS: dlopen($filename)
 HP-UX: shl_load($filename)
 Linux: dld_create_reference(@dl_require_symbols);
dld_link($filename)
 NeXT: rld_load($filename, @dl_resolve_using)
 VMS: lib$find_image_symbol($filename,$dl_require_symbols[0])

(The dlopen() function is also used by Solaris and some versions of
 Linux, and is a common
choice when providing a "wrapper" on other
 mechanisms as is done in the OS/2 port.)

dl_unload_file()

Syntax:

 $status = dl_unload_file($libref)

Dynamically unload $libref, which must be an opaque 'library reference' as
 returned from
dl_load_file. Returns one on success and zero on failure.
 This function is optional and may not
necessarily be provided on all platforms.

If it is defined and perl is compiled with the C macro DL_UNLOAD_ALL_AT_EXIT
 defined,
then it is called automatically when the interpreter exits for
 every shared object or library
loaded by DynaLoader::bootstrap. All such
 library references are stored in @dl_librefs by
DynaLoader::Bootstrap as it
 loads the libraries. The files are unloaded in last-in, first-out order.

This unloading is usually necessary when embedding a shared-object perl (e.g.
 one
configured with -Duseshrplib) within a larger application, and the perl
 interpreter is created and
destroyed several times within the lifetime of the
 application. In this case it is possible that the
system dynamic linker will
 unload and then subsequently reload the shared libperl without
relocating any
 references to it from any files DynaLoaded by the previous incarnation of the

interpreter. As a result, any shared objects opened by DynaLoader may point to
 a now invalid
'ghost' of the libperl shared object, causing apparently random
 memory corruption and
crashes. This behaviour is most commonly seen when using
 Apache and mod_perl built with
the APXS mechanism.

 SunOS: dlclose($libref)
 HP-UX: ???
 Linux: ???
 NeXT: ???
 VMS: ???

(The dlclose() function is also used by Solaris and some versions of
 Linux, and is a common
choice when providing a "wrapper" on other
 mechanisms as is done in the OS/2 port.)

dl_load_flags()

Perl version 5.20.1 documentation - DynaLoader

Page 5http://perldoc.perl.org

Syntax:

 $flags = dl_load_flags $modulename;

Designed to be a method call, and to be overridden by a derived class
 (i.e. a class which has
DynaLoader in its @ISA). The definition in
 DynaLoader itself returns 0, which produces
standard behavior from
 dl_load_file().

dl_find_symbol()

Syntax:

 $symref = dl_find_symbol($libref, $symbol)

Return the address of the symbol $symbol or undef if not found. If the
 target system has
separate functions to search for symbols of different
 types then dl_find_symbol() should
search for function symbols first and
 then other types.

The exact manner in which the address is returned in $symref is not
 currently defined. The
only initial requirement is that $symref can
 be passed to, and understood by, dl_install_xsub().

 SunOS: dlsym($libref, $symbol)
 HP-UX: shl_findsym($libref, $symbol)
 Linux: dld_get_func($symbol) and/or dld_get_symbol($symbol)
 NeXT: rld_lookup("_$symbol")
 VMS: lib$find_image_symbol($libref,$symbol)

dl_find_symbol_anywhere()

Syntax:

 $symref = dl_find_symbol_anywhere($symbol)

Applies dl_find_symbol() to the members of @dl_librefs and returns
 the first match found.

dl_undef_symbols()

Example

 @symbols = dl_undef_symbols()

Return a list of symbol names which remain undefined after load_file().
 Returns () if not
known. Don't worry if your platform does not provide
 a mechanism for this. Most do not need it
and hence do not provide it,
 they just return an empty list.

dl_install_xsub()

Syntax:

 dl_install_xsub($perl_name, $symref [, $filename])

Create a new Perl external subroutine named $perl_name using $symref as
 a pointer to the
function which implements the routine. This is simply
 a direct call to newXSUB(). Returns a
reference to the installed
 function.

The $filename parameter is used by Perl to identify the source file for
 the function if required
by die(), caller() or the debugger. If
 $filename is not defined then "DynaLoader" will be used.

bootstrap()

Syntax:

bootstrap($module [...])

This is the normal entry point for automatic dynamic loading in Perl.

It performs the following actions:

Perl version 5.20.1 documentation - DynaLoader

Page 6http://perldoc.perl.org

locates an auto/$module directory by searching @INC

uses dl_findfile() to determine the filename to load

sets @dl_require_symbols to ("boot_$module")

executes an auto/$module/$module.bs file if it exists
 (typically used to add to
@dl_resolve_using any files which
 are required to load the module on the
current platform)

calls dl_load_flags() to determine how to load the file.

calls dl_load_file() to load the file

calls dl_undef_symbols() and warns if any symbols are undefined

calls dl_find_symbol() for "boot_$module"

calls dl_install_xsub() to install it as "${module}::bootstrap"

calls &{"${module}::bootstrap"} to bootstrap the module (actually
 it uses the
function reference returned by dl_install_xsub for speed)

All arguments to bootstrap() are passed to the module's bootstrap function.
 The default code
generated by xsubpp expects $module [, $version]
 If the optional $version argument is not
given, it defaults to $XS_VERSION // $VERSION in the module's symbol table. The default
code
 compares the Perl-space version with the version of the compiled XS code,
 and croaks
with an error if they do not match.

AUTHOR
Tim Bunce, 11 August 1994.

This interface is based on the work and comments of (in no particular
 order): Larry Wall, Robert
Sanders, Dean Roehrich, Jeff Okamoto, Anno
 Siegel, Thomas Neumann, Paul Marquess, Charles
Bailey, myself and others.

Larry Wall designed the elegant inherited bootstrap mechanism and
 implemented the first Perl 5
dynamic loader using it.

Solaris global loading added by Nick Ing-Simmons with design/coding
 assistance from Tim Bunce,
January 1996.

