
Perl version 5.20.1 documentation - Encode

Page 1http://perldoc.perl.org

NAME
Encode - character encodings in Perl

SYNOPSIS
 use Encode qw(decode encode);
 $characters = decode('UTF-8', $octets, Encode::FB_CROAK);
 $octets = encode('UTF-8', $characters, Encode::FB_CROAK);

Table of Contents
Encode consists of a collection of modules whose details are too extensive
 to fit in one document.
This one itself explains the top-level APIs
 and general topics at a glance. For other topics and more
details,
 see the documentation for these modules:

Encode::Alias - Alias definitions to encodings

Encode::Encoding - Encode Implementation Base Class

Encode::Supported - List of Supported Encodings

Encode::CN - Simplified Chinese Encodings

Encode::JP - Japanese Encodings

Encode::KR - Korean Encodings

Encode::TW - Traditional Chinese Encodings

DESCRIPTION
The Encode module provides the interface between Perl strings
 and the rest of the system. Perl
strings are sequences of characters.

The repertoire of characters that Perl can represent is a superset of those
 defined by the Unicode
Consortium. On most platforms the ordinal
 values of a character as returned by ord(S) is the
Unicode
 codepoint for that character. The exceptions are platforms where
 the legacy encoding is
some variant of EBCDIC rather than a superset
 of ASCII; see perlebcdic.

During recent history, data is moved around a computer in 8-bit chunks,
 often called "bytes" but also
known as "octets" in standards documents.
 Perl is widely used to manipulate data of many types: not
only strings of
 characters representing human or computer languages, but also "binary"
 data, being
the machine's representation of numbers, pixels in an image, or
 just about anything.

When Perl is processing "binary data", the programmer wants Perl to
 process "sequences of bytes".
This is not a problem for Perl: because a
 byte has 256 possible values, it easily fits in Perl's much
larger
 "logical character".

This document mostly explains the how. perlunitut and perlunifaq
 explain the why.

TERMINOLOGY
character

A character in the range 0 .. 2**32-1 (or more);
 what Perl's strings are made of.

byte

A character in the range 0..255;
 a special case of a Perl character.

octet

8 bits of data, with ordinal values 0..255;
 term for bytes passed to or from a non-Perl context, such as
a disk file,
 standard I/O stream, database, command-line argument, environment variable,
 socket etc.

Perl version 5.20.1 documentation - Encode

Page 2http://perldoc.perl.org

THE PERL ENCODING API
Basic methods
encode

 $octets = encode(ENCODING, STRING[, CHECK])

Encodes the scalar value STRING from Perl's internal form into ENCODING and returns a sequence
of octets. ENCODING can be either a
 canonical name or an alias. For encoding names and aliases,
see Defining Aliases. For CHECK, see Handling Malformed Data.

For example, to convert a string from Perl's internal format into
 ISO-8859-1, also known as Latin1:

 $octets = encode("iso-8859-1", $string);

CAVEAT: When you run $octets = encode("utf8", $string), then
 $octets might not be
equal to $string. Though both contain the
 same data, the UTF8 flag for $octets is always off. When
you
 encode anything, the UTF8 flag on the result is always off, even when it
 contains a completely
valid utf8 string. See The UTF8 flag below.

If the $string is undef, then undef is returned.

decode

 $string = decode(ENCODING, OCTETS[, CHECK])

This function returns the string that results from decoding the scalar
 value OCTETS, assumed to be a
sequence of octets in ENCODING, into
 Perl's internal form. The returns the resulting string. As with
encode(), ENCODING can be either a canonical name or an alias. For encoding names
 and aliases,
see Defining Aliases; for CHECK, see Handling Malformed Data.

For example, to convert ISO-8859-1 data into a string in Perl's
 internal format:

 $string = decode("iso-8859-1", $octets);

CAVEAT: When you run $string = decode("utf8", $octets), then $string might not be
equal to $octets. Though both contain the same data, the
 UTF8 flag for $string is on. See The UTF8
flag
 below.

If the $string is undef, then undef is returned.

find_encoding

 [$obj =] find_encoding(ENCODING)

Returns the encoding object corresponding to ENCODING. Returns undef if no matching
ENCODING is find. The returned object is
 what does the actual encoding or decoding.

 $utf8 = decode($name, $bytes);

is in fact

 $utf8 = do {
 $obj = find_encoding($name);
 croak qq(encoding "$name" not found) unless ref $obj;
 $obj->decode($bytes);
 };

with more error checking.

Perl version 5.20.1 documentation - Encode

Page 3http://perldoc.perl.org

You can therefore save time by reusing this object as follows;

 my $enc = find_encoding("iso-8859-1");
 while(<>) {
 my $utf8 = $enc->decode($_);
 ... # now do something with $utf8;
 }

Besides decode and encode, other methods are
 available as well. For instance, name() returns the
canonical
 name of the encoding object.

 find_encoding("latin1")->name; # iso-8859-1

See Encode::Encoding for details.

from_to

 [$length =] from_to($octets, FROM_ENC, TO_ENC [, CHECK])

Converts in-place data between two encodings. The data in $octets
 must be encoded as octets and
not as characters in Perl's internal
 format. For example, to convert ISO-8859-1 data into Microsoft's
CP1250
 encoding:

 from_to($octets, "iso-8859-1", "cp1250");

and to convert it back:

 from_to($octets, "cp1250", "iso-8859-1");

Because the conversion happens in place, the data to be
 converted cannot be a string constant: it
must be a scalar variable.

from_to() returns the length of the converted string in octets on success,
 and undef on error.

CAVEAT: The following operations may look the same, but are not:

 from_to($data, "iso-8859-1", "utf8"); #1
 $data = decode("iso-8859-1", $data); #2

Both #1 and #2 make $data consist of a completely valid UTF-8 string,
 but only #2 turns the UTF8
flag on. #1 is equivalent to:

 $data = encode("utf8", decode("iso-8859-1", $data));

See The UTF8 flag below.

Also note that:

 from_to($octets, $from, $to, $check);

is equivalent t:o

 $octets = encode($to, decode($from, $octets), $check);

Yes, it does not respect the $check during decoding. It is
 deliberately done that way. If you need
minute control, use decode
 followed by encode as follows:

 $octets = encode($to, decode($from, $octets, $check_from), $check_to);

Perl version 5.20.1 documentation - Encode

Page 4http://perldoc.perl.org

encode_utf8

 $octets = encode_utf8($string);

Equivalent to $octets = encode("utf8", $string). The characters in
 $string are encoded in
Perl's internal format, and the result is returned
 as a sequence of octets. Because all possible
characters in Perl have a
 (loose, not strict) UTF-8 representation, this function cannot fail.

decode_utf8

 $string = decode_utf8($octets [, CHECK]);

Equivalent to $string = decode("utf8", $octets [, CHECK]).
 The sequence of octets
represented by $octets is decoded
 from UTF-8 into a sequence of logical characters.
 Because not all
sequences of octets are valid UTF-8,
 it is quite possible for this function to fail.
 For CHECK, see
Handling Malformed Data.

Listing available encodings
 use Encode;
 @list = Encode->encodings();

Returns a list of canonical names of available encodings that have already
 been loaded. To get a list
of all available encodings including those that
 have not yet been loaded, say:

 @all_encodings = Encode->encodings(":all");

Or you can give the name of a specific module:

 @with_jp = Encode->encodings("Encode::JP");

When "::" is not in the name, "Encode::" is assumed.

 @ebcdic = Encode->encodings("EBCDIC");

To find out in detail which encodings are supported by this package,
 see Encode::Supported.

Defining Aliases
To add a new alias to a given encoding, use:

 use Encode;
 use Encode::Alias;
 define_alias(NEWNAME => ENCODING);

After that, NEWNAME can be used as an alias for ENCODING. ENCODING may be either the name
of an encoding or an encoding object.

Before you do that, first make sure the alias is nonexistent using resolve_alias(), which returns
the canonical name thereof.
 For example:

 Encode::resolve_alias("latin1") eq "iso-8859-1" # true
 Encode::resolve_alias("iso-8859-12") # false; nonexistent
 Encode::resolve_alias($name) eq $name # true if $name is canonical

resolve_alias() does not need use Encode::Alias; it can be
 imported via use Encode
qw(resolve_alias).

See Encode::Alias for details.

Perl version 5.20.1 documentation - Encode

Page 5http://perldoc.perl.org

Finding IANA Character Set Registry names
The canonical name of a given encoding does not necessarily agree with
 IANA Character Set
Registry, commonly seen as Content-Type:
 text/plain; charset=WHATEVER. For most
cases, the canonical name
 works, but sometimes it does not, most notably with "utf-8-strict".

As of Encode version 2.21, a new method mime_name() is therefore added.

 use Encode;
 my $enc = find_encoding("UTF-8");
 warn $enc->name; # utf-8-strict
 warn $enc->mime_name; # UTF-8

See also: Encode::Encoding

Encoding via PerlIO
If your perl supports PerlIO (which is the default), you can use a PerlIO layer to decode and
encode directly via a filehandle. The
 following two examples are fully identical in functionality:

 ### Version 1 via PerlIO
 open(INPUT, "< :encoding(shiftjis)", $infile)
 || die "Can't open < $infile for reading: $!";
 open(OUTPUT, "> :encoding(euc-jp)", $outfile)
 || die "Can't open > $output for writing: $!";
 while (<INPUT>) { # auto decodes $_
 print OUTPUT; # auto encodes $_
 }
 close(INPUT) || die "can't close $infile: $!";
 close(OUTPUT) || die "can't close $outfile: $!";

 ### Version 2 via from_to()
 open(INPUT, "< :raw", $infile)
 || die "Can't open < $infile for reading: $!";
 open(OUTPUT, "> :raw", $outfile)
 || die "Can't open > $output for writing: $!";

 while (<INPUT>) {
 from_to($_, "shiftjis", "euc-jp", 1); # switch encoding
 print OUTPUT; # emit raw (but properly encoded) data
 }
 close(INPUT) || die "can't close $infile: $!";
 close(OUTPUT) || die "can't close $outfile: $!";

In the first version above, you let the appropriate encoding layer
 handle the conversion. In the second,
you explicitly translate
 from one encoding to the other.

Unfortunately, it may be that encodings are PerlIO-savvy. You can check
 to see whether your
encoding is supported by PerlIO by invoking the perlio_ok method on it:

 Encode::perlio_ok("hz"); # false
 find_encoding("euc-cn")->perlio_ok; # true wherever PerlIO is available

 use Encode qw(perlio_ok); # imported upon request
 perlio_ok("euc-jp")

Fortunately, all encodings that come with Encode core are PerlIO-savvy
 except for hz and

Perl version 5.20.1 documentation - Encode

Page 6http://perldoc.perl.org

ISO-2022-kr. For the gory details, see Encode::Encoding and Encode::PerlIO.

Handling Malformed Data
The optional CHECK argument tells Encode what to do when
 encountering malformed data. Without
CHECK, Encode::FB_DEFAULT
 (== 0) is assumed.

As of version 2.12, Encode supports coderef values for CHECK;
 see below.

NOTE: Not all encodings support this feature.
 Some encodings ignore the CHECK argument. For
example, Encode::Unicode ignores CHECK and it always croaks on error.

List of CHECK values
FB_DEFAULT

 I<CHECK> = Encode::FB_DEFAULT (== 0)

If CHECK is 0, encoding and decoding replace any malformed character
 with a substitution character.
When you encode, SUBCHAR is used.
 When you decode, the Unicode REPLACEMENT
CHARACTER, code point U+FFFD, is
 used. If the data is supposed to be UTF-8, an optional lexical
warning of
 warning category "utf8" is given.

FB_CROAK

 I<CHECK> = Encode::FB_CROAK (== 1)

If CHECK is 1, methods immediately die with an error
 message. Therefore, when CHECK is 1, you
should trap
 exceptions with eval{}, unless you really want to let it die.

FB_QUIET

 I<CHECK> = Encode::FB_QUIET

If CHECK is set to Encode::FB_QUIET, encoding and decoding immediately
 return the portion of
the data that has been processed so far when an
 error occurs. The data argument is overwritten with
everything
 after that point; that is, the unprocessed portion of the data. This is
 handy when you have
to call decode repeatedly in the case where your
 source data may contain partial multi-byte character
sequences,
 (that is, you are reading with a fixed-width buffer). Here's some sample
 code to do exactly
that:

 my($buffer, $string) = ("", "");
 while (read($fh, $buffer, 256, length($buffer))) {
 $string .= decode($encoding, $buffer, Encode::FB_QUIET);
 # $buffer now contains the unprocessed partial character
 }

FB_WARN

 I<CHECK> = Encode::FB_WARN

This is the same as FB_QUIET above, except that instead of being silent
 on errors, it issues a
warning. This is handy for when you are debugging.

FB_PERLQQ FB_HTMLCREF FB_XMLCREF

perlqq mode (CHECK = Encode::FB_PERLQQ)

HTML charref mode (CHECK = Encode::FB_HTMLCREF)

XML charref mode (CHECK = Encode::FB_XMLCREF)

For encodings that are implemented by the Encode::XS module, CHECK == Encode::FB_PERLQQ

Perl version 5.20.1 documentation - Encode

Page 7http://perldoc.perl.org

puts encode and decode into perlqq fallback mode.

When you decode, \xHH is inserted for a malformed character, where HH is the hex representation of
the octet that could not be decoded to
 utf8. When you encode, \x{HHHH} will be inserted, where
HHHH is
 the Unicode code point (in any number of hex digits) of the character that
 cannot be found in
the character repertoire of the encoding.

The HTML/XML character reference modes are about the same. In place of \x{HHHH}, HTML uses
&#NNN; where NNN is a decimal number, and
 XML uses &#xHHHH; where HHHH is the hexadecimal
number.

In Encode 2.10 or later, LEAVE_SRC is also implied.

The bitmask

These modes are all actually set via a bitmask. Here is how the FB_XXX
 constants are laid out. You
can import the FB_XXX constants via use Encode qw(:fallbacks), and you can import the
generic bitmask
 constants via use Encode qw(:fallback_all).

 FB_DEFAULT FB_CROAK FB_QUIET FB_WARN FB_PERLQQ
 DIE_ON_ERR 0x0001 X
 WARN_ON_ERR 0x0002 X
 RETURN_ON_ERR 0x0004 X X
 LEAVE_SRC 0x0008 X
 PERLQQ 0x0100 X
 HTMLCREF 0x0200
 XMLCREF 0x0400

LEAVE_SRC

 Encode::LEAVE_SRC

If the Encode::LEAVE_SRC bit is not set but CHECK is set, then the
 source string to encode() or
decode() will be overwritten in place.
 If you're not interested in this, then bitwise-OR it with the
bitmask.

coderef for CHECK
As of Encode 2.12, CHECK can also be a code reference which takes the
 ordinal value of the
unmapped character as an argument and returns
 octets that represent the fallback character. For
instance:

 $ascii = encode("ascii", $utf8, sub{ sprintf "<U+%04X>", shift });

Acts like FB_PERLQQ but U+XXXX is used instead of \x{XXXX}.

Even the fallback for decode must return octets, which are
 then decoded with the character encoding
that decode accepts. So for
 example if you wish to decode octests as UTF-8, and use ISO-8859-15
as
 a fallback for bytes that are not valid UTF-8, you could write

 $str = decode 'UTF-8', $octets, sub {
 my $tmp = chr shift;
 from_to $tmp, 'ISO-8859-15', 'UTF-8';
 return $tmp;
 };

Defining Encodings
To define a new encoding, use:

 use Encode qw(define_encoding);

Perl version 5.20.1 documentation - Encode

Page 8http://perldoc.perl.org

 define_encoding($object, CANONICAL_NAME [, alias...]);

CANONICAL_NAME will be associated with $object. The object
 should provide the interface
described in Encode::Encoding.
 If more than two arguments are provided, additional
 arguments are
considered aliases for $object.

See Encode::Encoding for details.

The UTF8 flag
Before the introduction of Unicode support in Perl, The eq operator
 just compared the strings
represented by two scalars. Beginning with
 Perl 5.8, eq compares two strings with simultaneous
consideration of the UTF8 flag. To explain why we made it so, I quote from page 402 of Programming
Perl, 3rd ed.

Goal #1:

Old byte-oriented programs should not spontaneously break on the old
 byte-oriented data they
used to work on.

Goal #2:

Old byte-oriented programs should magically start working on the new
 character-oriented data
when appropriate.

Goal #3:

Programs should run just as fast in the new character-oriented mode
 as in the old byte-oriented
mode.

Goal #4:

Perl should remain one language, rather than forking into a
 byte-oriented Perl and a
character-oriented Perl.

When Programming Perl, 3rd ed. was written, not even Perl 5.6.0 had been
 born yet, many features
documented in the book remained unimplemented for a
 long time. Perl 5.8 corrected much of this,
and the introduction of the
 UTF8 flag is one of them. You can think of there being two fundamentally

different kinds of strings and string-operations in Perl: one a
 byte-oriented mode for when the internal
UTF8 flag is off, and the other a
 character-oriented mode for when the internal UTF8 flag is on.

Here is how Encode handles the UTF8 flag.

When you encode, the resulting UTF8 flag is always off.

When you decode, the resulting UTF8 flag is on--unless you can
 unambiguously represent data.
Here is what we mean by "unambiguously".
 After $utf8 = decode("foo", $octet),

 When $octet is... The UTF8 flag in $utf8 is

 In ASCII only (or EBCDIC only) OFF
 In ISO-8859-1 ON
 In any other Encoding ON

As you see, there is one exception: in ASCII. That way you can assume
 Goal #1. And with
Encode, Goal #2 is assumed but you still have to be
 careful in the cases mentioned in the
CAVEAT paragraphs above.

This UTF8 flag is not visible in Perl scripts, exactly for the same reason
 you cannot (or rather, you
don't have to) see whether a scalar contains
 a string, an integer, or a floating-point number. But
you can still peek
 and poke these if you will. See the next section.

Perl version 5.20.1 documentation - Encode

Page 9http://perldoc.perl.org

Messing with Perl's Internals
The following API uses parts of Perl's internals in the current
 implementation. As such, they are
efficient but may change in a future
 release.

is_utf8

 is_utf8(STRING [, CHECK])

[INTERNAL] Tests whether the UTF8 flag is turned on in the STRING.
 If CHECK is true, also checks
whether STRING contains well-formed
 UTF-8. Returns true if successful, false otherwise.

As of Perl 5.8.1, utf8 also has the utf8::is_utf8 function.

_utf8_on

 _utf8_on(STRING)

[INTERNAL] Turns the STRING's internal UTF8 flag on. The STRING
 is not checked for containing
only well-formed UTF-8. Do not use this
 unless you know with absolute certainty that the STRING
holds only
 well-formed UTF-8. Returns the previous state of the UTF8 flag (so please
 don't treat the
return value as indicating success or failure), or undef
 if STRING is not a string.

NOTE: For security reasons, this function does not work on tainted values.

_utf8_off

 _utf8_off(STRING)

[INTERNAL] Turns the STRING's internal UTF8 flag off. Do not use
 frivolously. Returns the previous
state of the UTF8 flag, or undef if STRING is not a string. Do not treat the return value as indicative
of
 success or failure, because that isn't what it means: it is only the
 previous setting.

NOTE: For security reasons, this function does not work on tainted values.

UTF-8 vs. utf8 vs. UTF8
 We now view strings not as sequences of bytes, but as sequences
 of numbers in the range 0 .. 2**32-1 (or in the case of 64-bit
 computers, 0 .. 2**64-1) -- Programming Perl, 3rd ed.

That has historically been Perl's notion of UTF-8, as that is how UTF-8 was
 first conceived by Ken
Thompson when he invented it. However, thanks to
 later revisions to the applicable standards, official
UTF-8 is now rather
 stricter than that. For example, its range is much narrower (0 .. 0x10_FFFF
 to
cover only 21 bits instead of 32 or 64 bits) and some sequences
 are not allowed, like those used in
surrogate pairs, the 31 non-character
 code points 0xFDD0 .. 0xFDEF, the last two code points in any
plane
 (0xXX_FFFE and 0xXX_FFFF), all non-shortest encodings, etc.

The former default in which Perl would always use a loose interpretation of
 UTF-8 has now been
overruled:

 From: Larry Wall <larry@wall.org>
 Date: December 04, 2004 11:51:58 JST
 To: perl-unicode@perl.org
 Subject: Re: Make Encode.pm support the real UTF-8
 Message-Id: <20041204025158.GA28754@wall.org>

 On Fri, Dec 03, 2004 at 10:12:12PM +0000, Tim Bunce wrote:
 : I've no problem with 'utf8' being perl's unrestricted uft8 encoding,
 : but "UTF-8" is the name of the standard and should give the
 : corresponding behaviour.

Perl version 5.20.1 documentation - Encode

Page 10http://perldoc.perl.org

 For what it's worth, that's how I've always kept them straight in my
 head.

 Also for what it's worth, Perl 6 will mostly default to strict but
 make it easy to switch back to lax.

 Larry

Got that? As of Perl 5.8.7, "UTF-8" means UTF-8 in its current
 sense, which is conservative and strict
and security-conscious, whereas "utf8" means UTF-8 in its former sense, which was liberal and
loose and
 lax. Encode version 2.10 or later thus groks this subtle but critically
 important distinction
between "UTF-8" and "utf8".

 encode("utf8", "\x{FFFF_FFFF}", 1); # okay
 encode("UTF-8", "\x{FFFF_FFFF}", 1); # croaks

In the Encode module, "UTF-8" is actually a canonical name for "utf-8-strict". That hyphen
between the "UTF" and the "8" is
 critical; without it, Encode goes "liberal" and (perhaps
overly-)permissive:

 find_encoding("UTF-8")->name # is 'utf-8-strict'
 find_encoding("utf-8")->name # ditto. names are case insensitive
 find_encoding("utf_8")->name # ditto. "_" are treated as "-"
 find_encoding("UTF8")->name # is 'utf8'.

Perl's internal UTF8 flag is called "UTF8", without a hyphen. It indicates
 whether a string is internally
encoded as "utf8", also without a hyphen.

SEE ALSO
Encode::Encoding, Encode::Supported, Encode::PerlIO, encoding, perlebcdic, "open" in perlfunc,
perlunicode, perluniintro, perlunifaq, perlunitut utf8,
 the Perl Unicode Mailing List
http://lists.perl.org/list/perl-unicode.html

MAINTAINER
This project was originated by the late Nick Ing-Simmons and later
 maintained by Dan Kogai
<dankogai@cpan.org>. See AUTHORS
 for a full list of people involved. For any questions, send mail
to <perl-unicode@perl.org> so that we can all share.

While Dan Kogai retains the copyright as a maintainer, credit
 should go to all those involved. See
AUTHORS for a list of those
 who submitted code to the project.

COPYRIGHT
Copyright 2002-2013 Dan Kogai <dankogai@cpan.org>.

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

