
Perl version 5.20.1 documentation - Fatal

Page 1http://perldoc.perl.org

NAME
Fatal - Replace functions with equivalents which succeed or die

SYNOPSIS
 use Fatal qw(open close);

 open(my $fh, "<", $filename); # No need to check errors!

 use File::Copy qw(move);
 use Fatal qw(move);

 move($file1, $file2); # No need to check errors!

 sub juggle { . . . }
 Fatal->import('juggle');

BEST PRACTICE
Fatal has been obsoleted by the new autodie pragma. Please use autodie in preference to Fatal.
autodie supports lexical scoping,
 throws real exception objects, and provides much nicer error
messages.

The use of :void with Fatal is discouraged.

DESCRIPTION
Fatal provides a way to conveniently replace
 functions which normally return a false value when
they fail with
 equivalents which raise exceptions if they are not successful. This
 lets you use these
functions without having to test their return
 values explicitly on each call. Exceptions can be caught
using eval{}. See perlfunc and perlvar for details.

The do-or-die equivalents are set up simply by calling Fatal's import routine, passing it the names of
the functions to be
 replaced. You may wrap both user-defined functions and overridable
 CORE
operators (except exec, system, print, or any other
 built-in that cannot be expressed via
prototypes) in this way.

If the symbol :void appears in the import list, then functions
 named later in that import list raise an
exception only when
 these are called in void context--that is, when their return
 values are ignored. For
example

 use Fatal qw/:void open close/;

 # properly checked, so no exception raised on error
 if (not open(my $fh, '<', '/bogotic') {
 warn "Can't open /bogotic: $!";
 }

 # not checked, so error raises an exception
 close FH;

The use of :void is discouraged, as it can result in exceptions
 not being thrown if you accidentally
call a method without
 void context. Use autodie instead if you need to be able to
 disable
autodying/Fatal behaviour for a small block of code.

Perl version 5.20.1 documentation - Fatal

Page 2http://perldoc.perl.org

DIAGNOSTICS
Bad subroutine name for Fatal: %s

You've called Fatal with an argument that doesn't look like
 a subroutine name, nor a switch
that this version of Fatal
 understands.

%s is not a Perl subroutine

You've asked Fatal to try and replace a subroutine which does not
 exist, or has not yet been
defined.

%s is neither a builtin, nor a Perl subroutine

You've asked Fatal to replace a subroutine, but it's not a Perl
 built-in, and Fatal couldn't
find it as a regular subroutine.
 It either doesn't exist or has not yet been defined.

Cannot make the non-overridable %s fatal

You've tried to use Fatal on a Perl built-in that can't be
 overridden, such as print or
system, which means that Fatal can't help you, although some other modules might.
 See
the SEE ALSO section of this documentation.

Internal error: %s

You've found a bug in Fatal. Please report it using
 the perlbug command.

BUGS
Fatal clobbers the context in which a function is called and always
 makes it a scalar context, except
when the :void tag is used.
 This problem does not exist in autodie.

"Used only once" warnings can be generated when autodie or Fatal
 is used with package
filehandles (eg, FILE). It's strongly recommended
 you use scalar filehandles instead.

AUTHOR
Original module by Lionel Cons (CERN).

Prototype updates by Ilya Zakharevich <ilya@math.ohio-state.edu>.

autodie support, bugfixes, extended diagnostics, system
 support, and major overhauling by Paul
Fenwick <pjf@perltraining.com.au>

LICENSE
This module is free software, you may distribute it under the
 same terms as Perl itself.

SEE ALSO
autodie for a nicer way to use lexical Fatal.

IPC::System::Simple for a similar idea for calls to system()
 and backticks.

