
Perl version 5.20.1 documentation - Filter::Util::Call

Page 1http://perldoc.perl.org

NAME
Filter::Util::Call - Perl Source Filter Utility Module

SYNOPSIS
 use Filter::Util::Call ;

DESCRIPTION
This module provides you with the framework to write Source Filters
 in Perl.

An alternate interface to Filter::Util::Call is now available. See Filter::Simple for more details.

A Perl Source Filter is implemented as a Perl module. The structure
 of the module can take one of
two broadly similar formats. To
 distinguish between them, the first will be referred to as method
 filter
and the second as closure filter.

Here is a skeleton for the method filter:

 package MyFilter ;

 use Filter::Util::Call ;

 sub import
 {
 my($type, @arguments) = @_ ;
 filter_add([]) ;
 }

 sub filter
 {
 my($self) = @_ ;
 my($status) ;

 $status = filter_read() ;
 $status ;
 }

 1 ;

and this is the equivalent skeleton for the closure filter:

 package MyFilter ;

 use Filter::Util::Call ;

 sub import
 {
 my($type, @arguments) = @_ ;

 filter_add(
 sub
 {
 my($status) ;
 $status = filter_read() ;
 $status ;

Perl version 5.20.1 documentation - Filter::Util::Call

Page 2http://perldoc.perl.org

 })
 }

 1 ;

To make use of either of the two filter modules above, place the line
 below in a Perl source file.

 use MyFilter;

In fact, the skeleton modules shown above are fully functional Source
 Filters, albeit fairly useless
ones. All they does is filter the
 source stream without modifying it at all.

As you can see both modules have a broadly similar structure. They both
 make use of the
Filter::Util::Call module and both have an import
 method. The difference between them is
that the method filter
 requires a filter method, whereas the closure filter gets the
 equivalent of a filter
method with the anonymous sub passed to filter_add.

To make proper use of the closure filter shown above you need to
 have a good understanding of the
concept of a closure. See perlref for more details on the mechanics of closures.

use Filter::Util::Call
The following functions are exported by Filter::Util::Call:

 filter_add()
 filter_read()
 filter_read_exact()
 filter_del()

import()
The import method is used to create an instance of the filter. It is
 called indirectly by Perl when it
encounters the use MyFilter line
 in a source file (See "import" in perlfunc for more details on
import).

It will always have at least one parameter automatically passed by Perl
 - this corresponds to the name
of the package. In the example above it
 will be "MyFilter".

Apart from the first parameter, import can accept an optional list of
 parameters. These can be used to
pass parameters to the filter. For
 example:

 use MyFilter qw(a b c) ;

will result in the @_ array having the following values:

 @_ [0] => "MyFilter"
 @_ [1] => "a"
 @_ [2] => "b"
 @_ [3] => "c"

Before terminating, the import function must explicitly install the
 filter by calling filter_add.

filter_add()
The function, filter_add, actually installs the filter. It takes one
 parameter which should be a
reference. The kind of reference used will
 dictate which of the two filter types will be used.

If a CODE reference is used then a closure filter will be assumed.

If a CODE reference is not used, a method filter will be assumed.
 In a method filter, the reference can

Perl version 5.20.1 documentation - Filter::Util::Call

Page 3http://perldoc.perl.org

be used to store context
 information. The reference will be blessed into the package by filter_add.

See the filters at the end of this documents for examples of using
 context information using both
method filters and closure
 filters.

filter() and anonymous sub
Both the filter method used with a method filter and the
 anonymous sub used with a closure filter
is where the main
 processing for the filter is done.

The big difference between the two types of filter is that the method
 filter uses the object passed to
the method to store any context data,
 whereas the closure filter uses the lexical variables that are

maintained by the closure.

Note that the single parameter passed to the method filter, $self, is the same reference that was
passed to filter_add
 blessed into the filter's package. See the example filters later on for
 details of
using $self.

Here is a list of the common features of the anonymous sub and the filter() method.

$_

Although $_ doesn't actually appear explicitly in the sample filters
 above, it is implicitly used
in a number of places.

Firstly, when either filter or the anonymous sub are called, a local
 copy of $_ will
automatically be created. It will always contain the
 empty string at this point.

Next, both filter_read and filter_read_exact will append any
 source data that is
read to the end of $_.

Finally, when filter or the anonymous sub are finished processing,
 they are expected to
return the filtered source using $_.

This implicit use of $_ greatly simplifies the filter.

$status

The status value that is returned by the user's filter method or
 anonymous sub and the
filter_read and read_exact functions take
 the same set of values, namely:

 < 0 Error
 = 0 EOF
 > 0 OK

filter_read and filter_read_exact

These functions are used by the filter to obtain either a line or block
 from the next filter in the
chain or the actual source file if there
 aren't any other filters.

The function filter_read takes two forms:

 $status = filter_read() ;
 $status = filter_read($size) ;

The first form is used to request a line, the second requests a block.

In line mode, filter_read will append the next source line to the
 end of the $_ scalar.

In block mode, filter_read will append a block of data which is <= $size to the end of
the $_ scalar. It is important to emphasise
 the that filter_read will not necessarily read a
block which is precisely $size bytes.

If you need to be able to read a block which has an exact size, you can
 use the function
filter_read_exact. It works identically to filter_read in block mode, except it will try
to read a block which
 is exactly $size bytes in length. The only circumstances when it
 will
not return a block which is $size bytes long is on EOF or
 error.

Perl version 5.20.1 documentation - Filter::Util::Call

Page 4http://perldoc.perl.org

It is very important to check the value of $status after every
 call to filter_read or
filter_read_exact.

filter_del

The function, filter_del, is used to disable the current filter. It
 does not affect the running
of the filter. All it does is tell Perl not
 to call filter any more.

See Example 4: Using filter_del for details.

real_import

Internal function which adds the filter, based on the filter_add
 argument type.

EXAMPLES
Here are a few examples which illustrate the key concepts - as such
 most of them are of little practical
use.

The examples sub-directory has copies of all these filters
 implemented both as method filters and as
closure filters.

Example 1: A simple filter.
Below is a method filter which is hard-wired to replace all
 occurrences of the string "Joe" to "Jim".
Not particularly
 Useful, but it is the first example and I wanted to keep it simple.

 package Joe2Jim ;

 use Filter::Util::Call ;

 sub import
 {
 my($type) = @_ ;

 filter_add(bless []) ;
 }

 sub filter
 {
 my($self) = @_ ;
 my($status) ;

 s/Joe/Jim/g
 if ($status = filter_read()) > 0 ;
 $status ;
 }

 1 ;

Here is an example of using the filter:

 use Joe2Jim ;
 print "Where is Joe?\n" ;

And this is what the script above will print:

 Where is Jim?

Perl version 5.20.1 documentation - Filter::Util::Call

Page 5http://perldoc.perl.org

Example 2: Using the context
The previous example was not particularly useful. To make it more
 general purpose we will make use
of the context data and allow any
 arbitrary from and to strings to be used. This time we will use a
closure filter. To reflect its enhanced role, the filter is called Subst.

 package Subst ;

 use Filter::Util::Call ;
 use Carp ;

 sub import
 {
 croak("usage: use Subst qw(from to)")
 unless @_ == 3 ;
 my ($self, $from, $to) = @_ ;
 filter_add(
 sub
 {
 my ($status) ;
 s/$from/$to/
 if ($status = filter_read()) > 0 ;
 $status ;
 })
 }
 1 ;

and is used like this:

 use Subst qw(Joe Jim) ;
 print "Where is Joe?\n" ;

Example 3: Using the context within the filter
Here is a filter which a variation of the Joe2Jim filter. As well as
 substituting all occurrences of
"Joe" to "Jim" it keeps a count
 of the number of substitutions made in the context object.

Once EOF is detected ($status is zero) the filter will insert an
 extra line into the source stream.
When this extra line is executed it
 will print a count of the number of substitutions actually made.
 Note
that $status is set to 1 in this case.

 package Count ;

 use Filter::Util::Call ;

 sub filter
 {
 my ($self) = @_ ;
 my ($status) ;

 if (($status = filter_read()) > 0) {
 s/Joe/Jim/g ;
	 ++ $$self ;
 }
	 elsif ($$self >= 0) { # EOF
 $_ = "print q[Made ${$self} substitutions\n]" ;

Perl version 5.20.1 documentation - Filter::Util::Call

Page 6http://perldoc.perl.org

 $status = 1 ;
	 $$self = -1 ;
 }

 $status ;
 }

 sub import
 {
 my ($self) = @_ ;
 my ($count) = 0 ;
 filter_add(\$count) ;
 }

 1 ;

Here is a script which uses it:

 use Count ;
 print "Hello Joe\n" ;
 print "Where is Joe\n" ;

Outputs:

 Hello Jim
 Where is Jim
 Made 2 substitutions

Example 4: Using filter_del
Another variation on a theme. This time we will modify the Subst
 filter to allow a starting and stopping
pattern to be specified as well
 as the from and to patterns. If you know the vi editor, it is
 the equivalent
of this command:

 :/start/,/stop/s/from/to/

When used as a filter we want to invoke it like this:

 use NewSubst qw(start stop from to) ;

Here is the module.

 package NewSubst ;

 use Filter::Util::Call ;
 use Carp ;

 sub import
 {
 my ($self, $start, $stop, $from, $to) = @_ ;
 my ($found) = 0 ;
 croak("usage: use Subst qw(start stop from to)")
 unless @_ == 5 ;

 filter_add(

Perl version 5.20.1 documentation - Filter::Util::Call

Page 7http://perldoc.perl.org

 sub
 {
 my ($status) ;

 if (($status = filter_read()) > 0) {

 $found = 1
 if $found == 0 and /$start/ ;

 if ($found) {
 s/$from/$to/ ;
 filter_del() if /$stop/ ;
 }

 }
 $status ;
 })

 }

 1 ;

Filter::Simple
If you intend using the Filter::Call functionality, I would strongly
 recommend that you check out
Damian Conway's excellent Filter::Simple
 module. Damian's module provides a much cleaner
interface than
 Filter::Util::Call. Although it doesn't allow the fine control that
 Filter::Util::Call does, it
should be adequate for the majority of
 applications. It's available at

 http://search.cpan.org/dist/Filter-Simple/

AUTHOR
Paul Marquess

DATE
26th January 1996

