
Perl version 5.20.1 documentation - I18N::LangTags

Page 1http://perldoc.perl.org

NAME
I18N::LangTags - functions for dealing with RFC3066-style language tags

SYNOPSIS
 use I18N::LangTags();

...or specify whichever of those functions you want to import, like so:

 use I18N::LangTags qw(implicate_supers similarity_language_tag);

All the exportable functions are listed below -- you're free to import
 only some, or none at all. By
default, none are imported. If you
 say:

 use I18N::LangTags qw(:ALL)

...then all are exported. (This saves you from having to use
 something less obvious like use
I18N::LangTags qw(/./).)

If you don't import any of these functions, assume a &I18N::LangTags::
 in front of all the function
names in the following examples.

DESCRIPTION
Language tags are a formalism, described in RFC 3066 (obsoleting
 1766), for declaring what
language form (language and possibly
 dialect) a given chunk of information is in.

This library provides functions for common tasks involving language
 tags as they are needed in a
variety of protocols and applications.

Please see the "See Also" references for a thorough explanation
 of how to correctly use language
tags.

* the function is_language_tag($lang1)

Returns true iff $lang1 is a formally valid language tag.

 is_language_tag("fr") is TRUE
 is_language_tag("x-jicarilla") is FALSE
 (Subtags can be 8 chars long at most -- 'jicarilla' is 9)

 is_language_tag("sgn-US") is TRUE
 (That's American Sign Language)

 is_language_tag("i-Klikitat") is TRUE
 (True without regard to the fact noone has actually
 registered Klikitat -- it's a formally valid tag)

 is_language_tag("fr-patois") is TRUE
 (Formally valid -- altho descriptively weak!)

 is_language_tag("Spanish") is FALSE
 is_language_tag("french-patois") is FALSE
 (No good -- first subtag has to match
 /^([xXiI]|[a-zA-Z]{2,3})$/ -- see RFC3066)

 is_language_tag("x-borg-prot2532") is TRUE
 (Yes, subtags can contain digits, as of RFC3066)

* the function extract_language_tags($whatever)

Perl version 5.20.1 documentation - I18N::LangTags

Page 2http://perldoc.perl.org

Returns a list of whatever looks like formally valid language tags
 in $whatever. Not very smart,
so don't get too creative with
 what you want to feed it.

 extract_language_tags("fr, fr-ca, i-mingo")
 returns: ('fr', 'fr-ca', 'i-mingo')

 extract_language_tags("It's like this: I'm in fr -- French!")
 returns: ('It', 'in', 'fr')
 (So don't just feed it any old thing.)

The output is untainted. If you don't know what tainting is,
 don't worry about it.

* the function same_language_tag($lang1, $lang2)

Returns true iff $lang1 and $lang2 are acceptable variant tags
 representing the same
language-form.

 same_language_tag('x-kadara', 'i-kadara') is TRUE
 (The x/i- alternation doesn't matter)
 same_language_tag('X-KADARA', 'i-kadara') is TRUE
 (...and neither does case)
 same_language_tag('en', 'en-US') is FALSE
 (all-English is not the SAME as US English)
 same_language_tag('x-kadara', 'x-kadar') is FALSE
 (these are totally unrelated tags)
 same_language_tag('no-bok', 'nb') is TRUE
 (no-bok is a legacy tag for nb (Norwegian Bokmal))

same_language_tag works by just seeing whether encode_language_tag($lang1) is
the same as encode_language_tag($lang2).

(Yes, I know this function is named a bit oddly. Call it historic
 reasons.)

* the function similarity_language_tag($lang1, $lang2)

Returns an integer representing the degree of similarity between
 tags $lang1 and $lang2 (the
order of which does not matter), where
 similarity is the number of common elements on the
left,
 without regard to case and to x/i- alternation.

 similarity_language_tag('fr', 'fr-ca') is 1
 (one element in common)
 similarity_language_tag('fr-ca', 'fr-FR') is 1
 (one element in common)

 similarity_language_tag('fr-CA-joual',
 'fr-CA-PEI') is 2
 similarity_language_tag('fr-CA-joual', 'fr-CA') is 2
 (two elements in common)

 similarity_language_tag('x-kadara', 'i-kadara') is 1
 (x/i- doesn't matter)

 similarity_language_tag('en', 'x-kadar') is 0
 similarity_language_tag('x-kadara', 'x-kadar') is 0
 (unrelated tags -- no similarity)

 similarity_language_tag('i-cree-syllabic',
 'i-cherokee-syllabic') is 0
 (no B<leftmost> elements in common!)

Perl version 5.20.1 documentation - I18N::LangTags

Page 3http://perldoc.perl.org

* the function is_dialect_of($lang1, $lang2)

Returns true iff language tag $lang1 represents a subform of
 language tag $lang2.

Get the order right! It doesn't work the other way around!

 is_dialect_of('en-US', 'en') is TRUE
 (American English IS a dialect of all-English)

 is_dialect_of('fr-CA-joual', 'fr-CA') is TRUE
 is_dialect_of('fr-CA-joual', 'fr') is TRUE
 (Joual is a dialect of (a dialect of) French)

 is_dialect_of('en', 'en-US') is FALSE
 (all-English is a NOT dialect of American English)

 is_dialect_of('fr', 'en-CA') is FALSE

 is_dialect_of('en', 'en') is TRUE
 is_dialect_of('en-US', 'en-US') is TRUE
 (B<Note:> these are degenerate cases)

 is_dialect_of('i-mingo-tom', 'x-Mingo') is TRUE
 (the x/i thing doesn't matter, nor does case)

 is_dialect_of('nn', 'no') is TRUE
 (because 'nn' (New Norse) is aliased to 'no-nyn',
 as a special legacy case, and 'no-nyn' is a
 subform of 'no' (Norwegian))

* the function super_languages($lang1)

Returns a list of language tags that are superordinate tags to $lang1
 -- it gets this by removing
subtags from the end of $lang1 until
 nothing (or just "i" or "x") is left.

 super_languages("fr-CA-joual") is ("fr-CA", "fr")

 super_languages("en-AU") is ("en")

 super_languages("en") is empty-list, ()

 super_languages("i-cherokee") is empty-list, ()
 ...not ("i"), which would be illegal as well as pointless.

If $lang1 is not a valid language tag, returns empty-list in
 a list context, undef in a scalar
context.

A notable and rather unavoidable problem with this method:
 "x-mingo-tom" has an "x"
because the whole tag isn't an
 IANA-registered tag -- but super_languages('x-mingo-tom') is

('x-mingo') -- which isn't really right, since 'i-mingo' is
 registered. But this module has no way of
knowing that. (But note
 that same_language_tag('x-mingo', 'i-mingo') is TRUE.)

More importantly, you assume at your peril that superordinates of
 $lang1 are mutually
intelligible with $lang1. Consider this
 carefully.

* the function locale2language_tag($locale_identifier)

This takes a locale name (like "en", "en_US", or "en_US.ISO8859-1")
 and maps it to a
language tag. If it's not mappable (as with,
 notably, "C" and "POSIX"), this returns empty-list in
a list context,
 or undef in a scalar context.

 locale2language_tag("en") is "en"

Perl version 5.20.1 documentation - I18N::LangTags

Page 4http://perldoc.perl.org

 locale2language_tag("en_US") is "en-US"

 locale2language_tag("en_US.ISO8859-1") is "en-US"

 locale2language_tag("C") is undef or ()

 locale2language_tag("POSIX") is undef or ()

 locale2language_tag("POSIX") is undef or ()

I'm not totally sure that locale names map satisfactorily to language
 tags. Think REAL hard
about how you use this. YOU HAVE BEEN WARNED.

The output is untainted. If you don't know what tainting is,
 don't worry about it.

* the function encode_language_tag($lang1)

This function, if given a language tag, returns an encoding of it such
 that:

* tags representing different languages never get the same encoding.

* tags representing the same language always get the same encoding.

* an encoding of a formally valid language tag always is a string
 value that is defined, has
length, and is true if considered as a
 boolean.

Note that the encoding itself is not a formally valid language tag.
 Note also that you cannot,
currently, go from an encoding back to a
 language tag that it's an encoding of.

Note also that you must consider the encoded value as atomic; i.e.,
 you should not consider it
as anything but an opaque, unanalysable
 string value. (The internals of the encoding method
may change in
 future versions, as the language tagging standard changes over time.)

encode_language_tag returns undef if given anything other than a
 formally valid language
tag.

The reason encode_language_tag exists is because different language
 tags may represent
the same language; this is normally treatable with same_language_tag, but consider this
situation:

You have a data file that expresses greetings in different languages.
 Its format is "[language
tag]=[how to say 'Hello']", like:

 en-US=Hiho
 fr=Bonjour
 i-mingo=Hau'

And suppose you write a program that reads that file and then runs as
 a daemon, answering
client requests that specify a language tag and
 then expect the string that says how to greet in
that language. So an
 interaction looks like:

 greeting-client asks: fr
 greeting-server answers: Bonjour

So far so good. But suppose the way you're implementing this is:

 my %greetings;
 die unless open(IN, "<in.dat");
 while(<IN>) {
 chomp;
 next unless /^([^=]+)=(.+)/s;
 my($lang, $expr) = ($1, $2);
 $greetings{$lang} = $expr;
 }
 close(IN);

Perl version 5.20.1 documentation - I18N::LangTags

Page 5http://perldoc.perl.org

at which point %greetings has the contents:

 "en-US" => "Hiho"
 "fr" => "Bonjour"
 "i-mingo" => "Hau'"

And suppose then that you answer client requests for language $wanted
 by just looking up
$greetings{$wanted}.

If the client asks for "fr", that will look up successfully in
 %greetings, to the value "Bonjour".
And if the client asks for
 "i-mingo", that will look up successfully in %greetings, to the value

"Hau'".

But if the client asks for "i-Mingo" or "x-mingo", or "Fr", then the
 lookup in %greetings fails.
That's the Wrong Thing.

You could instead do lookups on $wanted with:

 use I18N::LangTags qw(same_language_tag);
 my $response = '';
 foreach my $l2 (keys %greetings) {
 if(same_language_tag($wanted, $l2)) {
 $response = $greetings{$l2};
 last;
 }
 }

But that's rather inefficient. A better way to do it is to start your
 program with:

 use I18N::LangTags qw(encode_language_tag);
 my %greetings;
 die unless open(IN, "<in.dat");
 while(<IN>) {
 chomp;
 next unless /^([^=]+)=(.+)/s;
 my($lang, $expr) = ($1, $2);
 $greetings{
 encode_language_tag($lang)
 } = $expr;
 }
 close(IN);

and then just answer client requests for language $wanted by just
 looking up

 $greetings{encode_language_tag($wanted)}

And that does the Right Thing.

* the function alternate_language_tags($lang1)

This function, if given a language tag, returns all language tags that
 are alternate forms of this
language tag. (I.e., tags which refer to
 the same language.) This is meant to handle legacy
tags caused by
 the minor changes in language tag standards over the years; and
 the x-/i-
alternation is also dealt with.

Note that this function does not try to equate new (and never-used,
 and unusable)
 ISO639-2
three-letter tags to old (and still in use) ISO639-1
 two-letter equivalents -- like "ara" -> "ar" --
because
 "ara" has never been in use as an Internet language tag,
 and RFC 3066 stipulates
that it never should be, since a shorter
 tag ("ar") exists.

Examples:

 alternate_language_tags('no-bok') is ('nb')
 alternate_language_tags('nb') is ('no-bok')

Perl version 5.20.1 documentation - I18N::LangTags

Page 6http://perldoc.perl.org

 alternate_language_tags('he') is ('iw')
 alternate_language_tags('iw') is ('he')
 alternate_language_tags('i-hakka') is ('zh-hakka', 'x-hakka')
 alternate_language_tags('zh-hakka') is ('i-hakka', 'x-hakka')
 alternate_language_tags('en') is ()
 alternate_language_tags('x-mingo-tom') is ('i-mingo-tom')
 alternate_language_tags('x-klikitat') is ('i-klikitat')
 alternate_language_tags('i-klikitat') is ('x-klikitat')

This function returns empty-list if given anything other than a formally
 valid language tag.

* the function @langs = panic_languages(@accept_languages)

This function takes a list of 0 or more language
 tags that constitute a given user's
Accept-Language list, and
 returns a list of tags for other (non-super)
 languages that are
probably acceptable to the user, to be
 used if all else fails.

For example, if a user accepts only 'ca' (Catalan) and
 'es' (Spanish), and the
documents/interfaces you have
 available are just in German, Italian, and Chinese, then
 the
user will most likely want the Italian one (and not
 the Chinese or German one!), instead of
getting
 nothing. So panic_languages('ca', 'es') returns
 a list containing 'it' (Italian).

English ('en') is always in the return list, but
 whether it's at the very end or not depends
 on the
input languages. This function works by consulting
 an internal table that stipulates what
common
 languages are "close" to each other.

A useful construct you might consider using is:

 @fallbacks = super_languages(@accept_languages);
 push @fallbacks, panic_languages(
 @accept_languages, @fallbacks,
);

* the function implicate_supers(...languages...)

This takes a list of strings (which are presumed to be language-tags;
 strings that aren't, are
ignored); and after each one, this function
 inserts super-ordinate forms that don't already
appear in the list.
 The original list, plus these insertions, is returned.

In other words, it takes this:

 pt-br de-DE en-US fr pt-br-janeiro

and returns this:

 pt-br pt de-DE de en-US en fr pt-br-janeiro

This function is most useful in the idiom

 implicate_supers(I18N::LangTags::Detect::detect());

(See I18N::LangTags::Detect.)

* the function implicate_supers_strictly(...languages...)

This works like implicate_supers except that the implicated
 forms are added to the end of
the return list.

In other words, implicate_supers_strictly takes a list of strings
 (which are presumed to be
language-tags; strings that aren't, are
 ignored) and after the whole given list, it inserts the
super-ordinate forms of all given tags, minus any tags that already appear in the input list.

In other words, it takes this:

 pt-br de-DE en-US fr pt-br-janeiro

Perl version 5.20.1 documentation - I18N::LangTags

Page 7http://perldoc.perl.org

and returns this:

 pt-br de-DE en-US fr pt-br-janeiro pt de en

The reason this function has "_strictly" in its name is that when
 you're processing an
Accept-Language list according to the RFCs, if
 you interpret the RFCs quite strictly, then you
would use
 implicate_supers_strictly, but for normal use (i.e., common-sense use,
 as far as I'm
concerned) you'd use implicate_supers.

ABOUT LOWERCASING
I've considered making all the above functions that output language
 tags return all those tags strictly
in lowercase. Having all your
 language tags in lowercase does make some things easier. But you

might as well just lowercase as you like, or call encode_language_tag($lang1) where
appropriate.

ABOUT UNICODE PLAINTEXT LANGUAGE TAGS
In some future version of I18N::LangTags, I plan to include support
 for RFC2482-style language tags
-- which are basically just normal
 language tags with their ASCII characters shifted into Plane 14.

SEE ALSO
* I18N::LangTags::List

* RFC 3066, http://www.ietf.org/rfc/rfc3066.txt, "Tags for the
 Identification of
Languages". (Obsoletes RFC 1766)

* RFC 2277, http://www.ietf.org/rfc/rfc2277.txt, "IETF Policy on
 Character Sets and
Languages".

* RFC 2231, http://www.ietf.org/rfc/rfc2231.txt, "MIME Parameter
 Value and Encoded
Word Extensions: Character Sets, Languages, and
 Continuations".

* RFC 2482, http://www.ietf.org/rfc/rfc2482.txt,
 "Language Tagging in Unicode Plain
Text".

* Locale::Codes, in http://www.perl.com/CPAN/modules/by-module/Locale/

* ISO 639-2, "Codes for the representation of names of languages",
 including two-letter and
three-letter codes, http://www.loc.gov/standards/iso639-2/php/code_list.php

* The IANA list of registered languages (hopefully up-to-date),
http://www.iana.org/assignments/language-tags

COPYRIGHT
Copyright (c) 1998+ Sean M. Burke. All rights reserved.

This library is free software; you can redistribute it and/or
 modify it under the same terms as Perl
itself.

The programs and documentation in this dist are distributed in
 the hope that they will be useful, but
without any warranty; without
 even the implied warranty of merchantability or fitness for a
 particular
purpose.

AUTHOR
Sean M. Burke sburke@cpan.org

