
Perl version 5.20.1 documentation - Pod::Select

Page 1http://perldoc.perl.org

NAME
Pod::Select, podselect() - extract selected sections of POD from input

SYNOPSIS
 use Pod::Select;

 ## Select all the POD sections for each file in @filelist
 ## and print the result on standard output.
 podselect(@filelist);

 ## Same as above, but write to tmp.out
 podselect({-output => "tmp.out"}, @filelist):

 ## Select from the given filelist, only those POD sections that are
 ## within a 1st level section named any of: NAME, SYNOPSIS, OPTIONS.
 podselect({-sections => ["NAME|SYNOPSIS", "OPTIONS"]}, @filelist):

 ## Select the "DESCRIPTION" section of the PODs from STDIN and write
 ## the result to STDERR.
 podselect({-output => ">&STDERR", -sections => ["DESCRIPTION"]},
*STDIN);

or

 use Pod::Select;

 ## Create a parser object for selecting POD sections from the input
 $parser = new Pod::Select();

 ## Select all the POD sections for each file in @filelist
 ## and print the result to tmp.out.
 $parser->parse_from_file("<&STDIN", "tmp.out");

 ## Select from the given filelist, only those POD sections that are
 ## within a 1st level section named any of: NAME, SYNOPSIS, OPTIONS.
 $parser->select("NAME|SYNOPSIS", "OPTIONS");
 for (@filelist) { $parser->parse_from_file($_); }

 ## Select the "DESCRIPTION" and "SEE ALSO" sections of the PODs from
 ## STDIN and write the result to STDERR.
 $parser->select("DESCRIPTION");
 $parser->add_selection("SEE ALSO");
 $parser->parse_from_filehandle(*STDIN, *STDERR);

REQUIRES
perl5.005, Pod::Parser, Exporter, Carp

EXPORTS
podselect()

Perl version 5.20.1 documentation - Pod::Select

Page 2http://perldoc.perl.org

DESCRIPTION
NOTE: This module is considered legacy; modern Perl releases (5.18 and
 higher) are going to
remove Pod-Parser from core and use Pod-Simple
 for all things POD.

podselect() is a function which will extract specified sections of
 pod documentation from an input
stream. This ability is provided by the Pod::Select module which is a subclass of Pod::Parser.
Pod::Select provides a method named select() to specify the set of
 POD sections to select for
processing/printing. podselect() merely
 creates a Pod::Select object and then invokes the
podselect()
 followed by parse_from_file().

SECTION SPECIFICATIONS
podselect() and Pod::Select::select() may be given one or more
 "section specifications" to restrict
the text processed to only the
 desired set of sections and their corresponding subsections. A section

specification is a string containing one or more Perl-style regular
 expressions separated by forward
slashes ("/"). If you need to use a
 forward slash literally within a section title you can escape it with a

backslash ("\/").

The formal syntax of a section specification is:

head1-title-regex/head2-title-regex/...

Any omitted or empty regular expressions will default to ".*".
 Please note that each regular expression
given is implicitly
 anchored by adding "^" and "$" to the beginning and end. Also, if a
 given regular
expression starts with a "!" character, then the
 expression is negated (so !foo would match anything
except foo).

Some example section specifications follow.

Match the NAME and SYNOPSIS sections and all of their subsections:

NAME|SYNOPSIS

Match only the Question and Answer subsections of the DESCRIPTION
 section:

DESCRIPTION/Question|Answer

Match the Comments subsection of all sections:

/Comments

Match all subsections of DESCRIPTION except for Comments:

DESCRIPTION/!Comments

Match the DESCRIPTION section but do not match any of its subsections:

DESCRIPTION/!.+

Match all top level sections but none of their subsections:

/!.+

RANGE SPECIFICATIONS
podselect() and Pod::Select::select() may be given one or more
 "range specifications" to restrict the
text processed to only the
 desired ranges of paragraphs in the desired set of sections. A range

specification is a string containing a single Perl-style regular
 expression (a regex), or else two
Perl-style regular expressions
 (regexs) separated by a ".." (Perl's "range" operator is "..").
 The regexs
in a range specification are delimited by forward slashes
 ("/"). If you need to use a forward slash
literally within a regex you
 can escape it with a backslash ("\/").

The formal syntax of a range specification is:

/start-range-regex/[../end-range-regex/]

Perl version 5.20.1 documentation - Pod::Select

Page 3http://perldoc.perl.org

Where each the item inside square brackets (the ".." followed by the
 end-range-regex) is optional.
Each "range-regex" is of the form:

 =cmd-expr text-expr

Where cmd-expr is intended to match the name of one or more POD
 commands, and text-expr is
intended to match the paragraph text for
 the command. If a range-regex is supposed to match a POD
command, then
 the first character of the regex (the one after the initial '/')
 absolutely must be a single
'=' character; it may not be anything
 else (not even a regex meta-character) if it is supposed to match

against the name of a POD command.

If no =cmd-expr is given then the text-expr will be matched against
 plain textblocks unless it is
preceded by a space, in which case it is
 matched against verbatim text-blocks. If no text-expr is given
then
 only the command-portion of the paragraph is matched against.

Note that these two expressions are each implicitly anchored. This
 means that when matching against
the command-name, there will be an
 implicit '^' and '$' around the given =cmd-expr; and when
matching
 against the paragraph text there will be an implicit '\A' and '\Z'
 around the given text-expr.

Unlike with section-specs, the '!' character does not have any special
 meaning (negation or otherwise)
at the beginning of a range-spec!

Some example range specifications follow.

Match all =for html paragraphs:

/=for html/

Match all paragraphs between =begin html and =end html
 (note that this will not work correctly if
such sections
 are nested):

/=begin html/../=end html/

Match all paragraphs between the given =item name until the end of the
 current section:

/=item mine/../=head\d/

Match all paragraphs between the given =item until the next item, or
 until the end of the itemized list
(note that this will not work as
 desired if the item contains an itemized list nested within it):

/=item mine/../=(item|back)/

OBJECT METHODS
The following methods are provided in this module. Each one takes a
 reference to the object itself as
an implicit first parameter.

curr_headings()
 ($head1, $head2, $head3, ...) = $parser->curr_headings();
 $head1 = $parser->curr_headings(1);

This method returns a list of the currently active section headings and
 subheadings in the document
being parsed. The list of headings returned
 corresponds to the most recently parsed paragraph of the
input.

If an argument is given, it must correspond to the desired section
 heading number, in which case only
the specified section heading is
 returned. If there is no current section heading at the specified
 level,
then undef is returned.

select()
 $parser->select($section_spec1,$section_spec2,...);

Perl version 5.20.1 documentation - Pod::Select

Page 4http://perldoc.perl.org

This method is used to select the particular sections and subsections of
 POD documentation that are
to be printed and/or processed. The existing
 set of selected sections is replaced with the given set of
sections.
 See add_selection() for adding to the current set of selected
 sections.

Each of the $section_spec arguments should be a section specification
 as described in SECTION
SPECIFICATIONS. The section specifications
 are parsed by this method and the resulting regular
expressions are
 stored in the invoking object.

If no $section_spec arguments are given, then the existing set of
 selected sections is cleared out
(which means all sections will be
 processed).

This method should not normally be overridden by subclasses.

add_selection()
 $parser->add_selection($section_spec1,$section_spec2,...);

This method is used to add to the currently selected sections and
 subsections of POD documentation
that are to be printed and/or
 processed. See <select()> for replacing the currently selected sections.

Each of the $section_spec arguments should be a section specification
 as described in SECTION
SPECIFICATIONS. The section specifications
 are parsed by this method and the resulting regular
expressions are
 stored in the invoking object.

This method should not normally be overridden by subclasses.

clear_selections()
 $parser->clear_selections();

This method takes no arguments, it has the exact same effect as invoking
 <select()> with no
arguments.

match_section()
 $boolean = $parser->match_section($heading1,$heading2,...);

Returns a value of true if the given section and subsection heading
 titles match any of the currently
selected section specifications in
 effect from prior calls to select() and add_selection() (or if
 there are
no explicitly selected/deselected sections).

The arguments $heading1, $heading2, etc. are the heading titles of
 the corresponding sections,
subsections, etc. to try and match. If $headingN is omitted then it defaults to the current
corresponding
 section heading title in the input.

This method should not normally be overridden by subclasses.

is_selected()
 $boolean = $parser->is_selected($paragraph);

This method is used to determine if the block of text given in $paragraph falls within the currently
selected set of POD sections
 and subsections to be printed or processed. This method is also

responsible for keeping track of the current input section and
 subsections. It is assumed that
$paragraph is the most recently read
 (but not yet processed) input paragraph.

The value returned will be true if the $paragraph and the rest of the
 text in the same section as
$paragraph should be selected (included)
 for processing; otherwise a false value is returned.

Perl version 5.20.1 documentation - Pod::Select

Page 5http://perldoc.perl.org

EXPORTED FUNCTIONS
The following functions are exported by this module. Please note that
 these are functions (not
methods) and therefore do not take an
 implicit first argument.

podselect()
 podselect(\%options,@filelist);

podselect will print the raw (untranslated) POD paragraphs of all
 POD sections in the given input files
specified by @filelist
 according to the options given in \%options.

If any argument to podselect is a reference to a hash
 (associative array) then the values with the
following keys are
 processed as follows:

-output

A string corresponding to the desired output file (or ">&STDOUT"
 or ">&STDERR"), or a
filehandle to write on. The default is to use
 standard output.

-sections

A reference to an array of sections specifications (as described in SECTION
SPECIFICATIONS) which indicate the desired set of POD
 sections and subsections to be
selected from input. If no section
 specifications are given, then all sections of the PODs are
used.

-ranges

A reference to an array of range specifications (as described in RANGE SPECIFICATIONS)
which indicate the desired range of POD
 paragraphs to be selected from the desired input
sections. If no range
 specifications are given, then all paragraphs of the desired sections
 are
used.

All other arguments are optional and should correspond to filehandles to
 read from or the names of
input files containing POD sections. A file name
 of "", "-" or "<&STDIN" will be interpreted to mean
standard input (which
 is the default if no arguments are given).

PRIVATE METHODS AND DATA
Pod::Select makes uses a number of internal methods and data fields
 which clients should not need
to see or use. For the sake of avoiding
 name collisions with client data and methods, these methods
and fields
 are briefly discussed here. Determined hackers may obtain further
 information about them
by reading the Pod::Select source code.

Private data fields are stored in the hash-object whose reference is
 returned by the new() constructor
for this class. The names of all
 private methods and data-fields used by Pod::Select begin with a

prefix of "_" and match the regular expression /^_\w+$/.

_compile_section_spec()
 $listref = $parser->_compile_section_spec($section_spec);

This function (note it is a function and not a method) takes a
 section specification (as described in
SECTION SPECIFICATIONS)
 given in $section_sepc, and compiles it into a list of regular

expressions. If $section_spec has no syntax errors, then a reference
 to the list (array) of
corresponding regular expressions is returned;
 otherwise undef is returned and an error message is
printed (using carp) for each invalid regex.

$self->{_SECTION_HEADINGS}
A reference to an array of the current section heading titles for each
 heading level (note that the first
heading level title is at index 0).

Perl version 5.20.1 documentation - Pod::Select

Page 6http://perldoc.perl.org

$self->{_SELECTED_SECTIONS}
A reference to an array of references to arrays. Each subarray is a list
 of anchored regular
expressions (preceded by a "!" if the expression is to
 be negated). The index of the expression in the
subarray should correspond
 to the index of the heading title in $self->{_SECTION_HEADINGS}

that it is to be matched against.

SEE ALSO
Pod::Parser

AUTHOR
Please report bugs using http://rt.cpan.org.

Brad Appleton <bradapp@enteract.com>

Based on code for pod2text written by
 Tom Christiansen <tchrist@mox.perl.com>

Pod::Select is part of the Pod::Parser distribution.

