
Perl version 5.20.1 documentation - Pod::Simple

Page 1http://perldoc.perl.org

NAME
Pod::Simple - framework for parsing Pod

SYNOPSIS
 TODO

DESCRIPTION
Pod::Simple is a Perl library for parsing text in the Pod ("plain old
 documentation") markup language
that is typically used for writing
 documentation for Perl and for Perl modules. The Pod format is
explained perlpod; the most common formatter is called perldoc.

Be sure to read ENCODING if your Pod contains non-ASCII characters.

Pod formatters can use Pod::Simple to parse Pod documents and render them into
 plain text, HTML,
or any number of other formats. Typically, such formatters
 will be subclasses of Pod::Simple, and so
they will inherit its methods, like parse_file.

If you're reading this document just because you have a Pod-processing
 subclass that you want to
use, this document (plus the documentation for the
 subclass) is probably all you need to read.

If you're reading this document because you want to write a formatter
 subclass, continue reading it
and then read Pod::Simple::Subclassing, and
 then possibly even read perlpodspec (some of which is
for parser-writers,
 but much of which is notes to formatter-writers).

MAIN METHODS
$parser = SomeClass->new();

This returns a new parser object, where SomeClass is a subclass
 of Pod::Simple.

$parser->output_fh(*OUT);

This sets the filehandle that $parser's output will be written to.
 You can pass *STDOUT,
otherwise you should probably do something
 like this:

 my $outfile = "output.txt";
 open TXTOUT, ">$outfile" or die "Can't write to $outfile: $!";
 $parser->output_fh(*TXTOUT);

...before you call one of the $parser->parse_whatever methods.

$parser->output_string(\$somestring);

This sets the string that $parser's output will be sent to,
 instead of any filehandle.

$parser->parse_file($some_filename);

$parser->parse_file(*INPUT_FH);

This reads the Pod content of the file (or filehandle) that you specify,
 and processes it with that
$parser object, according to however $parser's class works, and according to whatever
parser options you
 have set up for this $parser object.

$parser->parse_string_document($all_content);

This works just like parse_file except that it reads the Pod
 content not from a file, but from
a string that you have already
 in memory.

$parser->parse_lines(...@lines..., undef);

This processes the lines in @lines (where each list item must be a
 defined value, and must
contain exactly one line of content -- so no
 items like "foo\nbar" are allowed). The final
undef is used to
 indicate the end of document being parsed.

The other parser_whatever methods are meant to be called only once
 per $parser

Perl version 5.20.1 documentation - Pod::Simple

Page 2http://perldoc.perl.org

object; but parse_lines can be called as many times per $parser object as you want, as
long as the last call (and only
 the last call) ends with an undef value.

$parser->content_seen

This returns true only if there has been any real content seen for this
 document. Returns false
in cases where the document contains content,
 but does not make use of any Pod markup.

SomeClass->filter($filename);

SomeClass->filter(*INPUT_FH);

SomeClass->filter(\$document_content);

This is a shortcut method for creating a new parser object, setting the
 output handle to
STDOUT, and then processing the specified file (or
 filehandle, or in-memory document). This
is handy for one-liners like
 this:

 perl -MPod::Simple::Text -e
"Pod::Simple::Text->filter('thingy.pod')"

SECONDARY METHODS
Some of these methods might be of interest to general users, as
 well as of interest to
formatter-writers.

Note that the general pattern here is that the accessor-methods
 read the attribute's value with
$value = $parser->attribute
 and set the attribute's value with $parser->attribute(
newvalue). For each accessor, I typically
 only mention one syntax or another, based on which I
think you are actually
 most likely to use.

$parser->parse_characters(SOMEVALUE)

The Pod parser normally expects to read octets and to convert those octets
 to characters
based on the =encoding declaration in the Pod source. Set
 this option to a true value to
indicate that the Pod source is already a Perl
 character stream. This tells the parser to ignore
any =encoding command
 and to skip all the code paths involving decoding octets.

$parser->no_whining(SOMEVALUE)

If you set this attribute to a true value, you will suppress the
 parser's complaints about
irregularities in the Pod coding. By default,
 this attribute's value is false, meaning that
irregularities will
 be reported.

Note that turning this attribute to true won't suppress one or two kinds
 of complaints about
rarely occurring unrecoverable errors.

$parser->no_errata_section(SOMEVALUE)

If you set this attribute to a true value, you will stop the parser from
 generating a "POD
ERRORS" section at the end of the document. By
 default, this attribute's value is false,
meaning that an errata section
 will be generated, as necessary.

$parser->complain_stderr(SOMEVALUE)

If you set this attribute to a true value, it will send reports of
 parsing errors to STDERR. By
default, this attribute's value is false,
 meaning that no output is sent to STDERR.

Setting complain_stderr also sets no_errata_section.

$parser->source_filename

This returns the filename that this parser object was set to read from.

$parser->doc_has_started

This returns true if $parser has read from a source, and has seen
 Pod content in it.

Perl version 5.20.1 documentation - Pod::Simple

Page 3http://perldoc.perl.org

$parser->source_dead

This returns true if $parser has read from a source, and come to the
 end of that source.

$parser->strip_verbatim_indent(SOMEVALUE)

The perlpod spec for a Verbatim paragraph is "It should be reproduced
 exactly...", which
means that the whitespace you've used to indent your
 verbatim blocks will be preserved in the
output. This can be annoying for
 outputs such as HTML, where that whitespace will remain in
front of every
 line. It's an unfortunate case where syntax is turned into semantics.

If the POD your parsing adheres to a consistent indentation policy, you can
 have such
indentation stripped from the beginning of every line of your
 verbatim blocks. This method tells
Pod::Simple what to strip. For two-space
 indents, you'd use:

 $parser->strip_verbatim_indent(' ');

For tab indents, you'd use a tab character:

 $parser->strip_verbatim_indent("\t");

If the POD is inconsistent about the indentation of verbatim blocks, but you
 have figured out a
heuristic to determine how much a particular verbatim block
 is indented, you can pass a code
reference instead. The code reference will be
 executed with one argument, an array reference
of all the lines in the
 verbatim block, and should return the value to be stripped from each line.
For
 example, if you decide that you're fine to use the first line of the verbatim
 block to set the
standard for indentation of the rest of the block, you can
 look at the first line and return the
appropriate value, like so:

 $new->strip_verbatim_indent(sub {
 my $lines = shift;
 (my $indent = $lines->[0]) =~ s/\S.*//;
 return $indent;
 });

If you'd rather treat each line individually, you can do that, too, by just
 transforming them
in-place in the code reference and returning undef. Say
 that you don't want any lines
indented. You can do something like this:

 $new->strip_verbatim_indent(sub {
 my $lines = shift;
 sub { s/^\s+// for @{ $lines },
 return undef;
 });

TERTIARY METHODS
$parser->abandon_output_fh()

Cancel output to the file handle. Any POD read by the $parser is not
 effected.

$parser->abandon_output_string()

Cancel output to the output string. Any POD read by the $parser is not
 effected.

$parser->accept_code(@codes)

Alias for accept_codes.

$parser->accept_codes(@codes)

Allows $parser to accept a list of "Formatting Codes" in perlpod. This can be
 used to
implement user-defined codes.

$parser->accept_directive_as_data(@directives)

Perl version 5.20.1 documentation - Pod::Simple

Page 4http://perldoc.perl.org

Allows $parser to accept a list of directives for data paragraphs. A
 directive is the label of a
"Command Paragraph" in perlpod. A data paragraph is
 one delimited by =begin/=for/=end
directives. This can be used to
 implement user-defined directives.

$parser->accept_directive_as_processed(@directives)

Allows $parser to accept a list of directives for processed paragraphs. A
 directive is the label
of a "Command Paragraph" in perlpod. A processed
 paragraph is also known as "Ordinary
Paragraph" in perlpod. This can be used to
 implement user-defined directives.

$parser->accept_directive_as_verbatim(@directives)

Allows $parser to accept a list of directives for "Verbatim Paragraph" in perlpod. A directive
is the label of a "Command Paragraph" in perlpod. This
 can be used to implement
user-defined directives.

$parser->accept_target(@targets)

Alias for accept_targets.

$parser->accept_target_as_text(@targets)

Alias for accept_targets_as_text.

$parser->accept_targets(@targets)

Accepts targets for =begin/=for/=end sections of the POD.

$parser->accept_targets_as_text(@targets)

Accepts targets for =begin/=for/=end sections that should be parsed as
 POD. For details,
see "About Data Paragraphs" in perlpodspec.

$parser->any_errata_seen()

Used to check if any errata was seen.

Example:

 die "too many errors\n" if $parser->any_errata_seen();

$parser->detected_encoding()

Return the encoding corresponding to =encoding, but only if the
 encoding was recognized
and handled.

$parser->encoding()

Return encoding of the document, even if the encoding is not correctly
 handled.

$parser->parse_from_file($source, $to)

Parses from $source file to $to file. Similar to "parse_from_file" in Pod::Parser.

$parser->scream(@error_messages)

Log an error that can't be ignored.

$parser->unaccept_code(@codes)

Alias for unaccept_codes.

$parser->unaccept_codes(@codes)

Removes @codes as valid codes for the parse.

$parser->unaccept_directive(@directives)

Alias for unaccept_directives.

$parser->unaccept_directives(@directives)

Perl version 5.20.1 documentation - Pod::Simple

Page 5http://perldoc.perl.org

Removes @directives as valid directives for the parse.

$parser->unaccept_target(@targets)

Alias for unaccept_targets.

$parser->unaccept_targets(@targets)

Removes @targets as valid targets for the parse.

$parser->version_report()

Returns a string describing the version.

$parser->whine(@error_messages)

Log an error unless $parser->no_whining(TRUE);.

ENCODING
The Pod::Simple parser expects to read octets. The parser will decode the
 octets into Perl's internal
character string representation using the value of
 the =encoding declaration in the POD source.

If the POD source does not include an =encoding declaration, the parser will
 attempt to guess the
encoding (selecting one of UTF-8 or Latin-1) by examining
 the first non-ASCII bytes and applying the
heuristic described in perlpodspec.

If you set the parse_characters option to a true value the parser will
 expect characters rather than
octets; will ignore any =encoding; and will
 make no attempt to decode the input.

CAVEATS
This is just a beta release -- there are a good number of things still
 left to do. Notably, support for
EBCDIC platforms is still half-done,
 an untested.

SEE ALSO
Pod::Simple::Subclassing

perlpod

perlpodspec

Pod::Escapes

perldoc

SUPPORT
Questions or discussion about POD and Pod::Simple should be sent to the
 pod-people@perl.org mail
list. Send an empty email to
 pod-people-subscribe@perl.org to subscribe.

This module is managed in an open GitHub repository, https://github.com/theory/pod-simple/. Feel
free to fork and contribute, or
 to clone git://github.com/theory/pod-simple.git and send patches!

Patches against Pod::Simple are welcome. Please send bug reports to

<bug-pod-simple@rt.cpan.org>.

COPYRIGHT AND DISCLAIMERS
Copyright (c) 2002 Sean M. Burke.

This library is free software; you can redistribute it and/or modify it
 under the same terms as Perl
itself.

This program is distributed in the hope that it will be useful, but
 without any warranty; without even the
implied warranty of
 merchantability or fitness for a particular purpose.

Perl version 5.20.1 documentation - Pod::Simple

Page 6http://perldoc.perl.org

AUTHOR
Pod::Simple was created by Sean M. Burke <sburke@cpan.org>.
 But don't bother him, he's retired.

Pod::Simple is maintained by:

* Allison Randal allison@perl.org

* Hans Dieter Pearcey hdp@cpan.org

* David E. Wheeler dwheeler@cpan.org

Documentation has been contributed by:

* Gabor Szabo szabgab@gmail.com

* Shawn H Corey SHCOREY at cpan.org

