
Perl version 5.20.1 documentation - TAP::Parser::IteratorFactory

Page 1http://perldoc.perl.org

NAME
TAP::Parser::IteratorFactory - Figures out which SourceHandler objects to use for a given Source

VERSION
Version 3.30

SYNOPSIS
 use TAP::Parser::IteratorFactory;
 my $factory = TAP::Parser::IteratorFactory->new({ %config });
 my $iterator = $factory->make_iterator($filename);

DESCRIPTION
This is a factory class that takes a TAP::Parser::Source and runs it through all the
 registered
TAP::Parser::SourceHandlers to see which one should handle the source.

If you're a plugin author, you'll be interested in how to register_handlers,
 how detect_source works.

METHODS
Class Methods
new

Creates a new factory class:

 my $sf = TAP::Parser::IteratorFactory->new($config);

$config is optional. If given, sets config and calls load_handlers.

register_handler

Registers a new TAP::Parser::SourceHandler with this factory.

 __PACKAGE__->register_handler($handler_class);

handlers

List of handlers that have been registered.

Instance Methods
config

 my $cfg = $sf->config;
 $sf->config({ Perl => { %config } });

Chaining getter/setter for the configuration of the available source handlers.
 This is a hashref keyed
on handler class whose values contain config to be passed
 onto the handlers during detection &
creation. Class names may be fully qualified
 or abbreviated, eg:

 # these are equivalent
 $sf->config({ 'TAP::Parser::SourceHandler::Perl' => { %config } });
 $sf->config({ 'Perl' => { %config } });

load_handlers

 $sf->load_handlers;

Loads the handler classes defined in config. For example, given a config:

 $sf->config({

Perl version 5.20.1 documentation - TAP::Parser::IteratorFactory

Page 2http://perldoc.perl.org

 MySourceHandler => { some => 'config' },
 });

load_handlers will attempt to load the MySourceHandler class by looking in @INC for it in this
order:

 TAP::Parser::SourceHandler::MySourceHandler
 MySourceHandler

croaks on error.

make_iterator

 my $iterator = $src_factory->make_iterator($source);

Given a TAP::Parser::Source, finds the most suitable TAP::Parser::SourceHandler
 to use to create a
TAP::Parser::Iterator (see detect_source). Dies on error.

detect_source

Given a TAP::Parser::Source, detects what kind of source it is and
 returns one
TAP::Parser::SourceHandler (the most confident one). Dies
 on error.

The detection algorithm works something like this:

 for (@registered_handlers) {
 # ask them how confident they are about handling this source
 $confidence{$handler} = $handler->can_handle($source)
 }
 # choose the most confident handler

Ties are handled by choosing the first handler.

SUBCLASSING
Please see "SUBCLASSING" in TAP::Parser for a subclassing overview.

Example
If we've done things right, you'll probably want to write a new source,
 rather than sub-classing this
(see TAP::Parser::SourceHandler for that).

But in case you find the need to...

 package MyIteratorFactory;

 use strict;

 use base 'TAP::Parser::IteratorFactory';

 # override source detection algorithm
 sub detect_source {
 my ($self, $raw_source_ref, $meta) = @_;
 # do detective work, using $meta and whatever else...
 }

 1;

Perl version 5.20.1 documentation - TAP::Parser::IteratorFactory

Page 3http://perldoc.perl.org

AUTHORS
Steve Purkis

ATTRIBUTION
Originally ripped off from Test::Harness.

Moved out of TAP::Parser & converted to a factory class to support
 extensible TAP source detective
work by Steve Purkis.

SEE ALSO
TAP::Object, TAP::Parser, TAP::Parser::SourceHandler, TAP::Parser::SourceHandler::File,
TAP::Parser::SourceHandler::Perl, TAP::Parser::SourceHandler::RawTAP,
TAP::Parser::SourceHandler::Handle, TAP::Parser::SourceHandler::Executable

