
Perl version 5.20.1 documentation - attributes

Page 1http://perldoc.perl.org

NAME
attributes - get/set subroutine or variable attributes

SYNOPSIS
 sub foo : method ;
 my ($x,@y,%z) : Bent = 1;
 my $s = sub : method { ... };

 use attributes ();	 # optional, to get subroutine declarations
 my @attrlist = attributes::get(\&foo);

 use attributes 'get'; # import the attributes::get subroutine
 my @attrlist = get \&foo;

DESCRIPTION
Subroutine declarations and definitions may optionally have attribute lists
 associated with them.
(Variable my declarations also may, but see the
 warning below.) Perl handles these declarations by
passing some information
 about the call site and the thing being declared along with the attribute
 list
to this module. In particular, the first example above is equivalent to
 the following:

 use attributes __PACKAGE__, \&foo, 'method';

The second example in the synopsis does something equivalent to this:

 use attributes ();
 my ($x,@y,%z);
 attributes::->import(__PACKAGE__, \$x, 'Bent');
 attributes::->import(__PACKAGE__, \@y, 'Bent');
 attributes::->import(__PACKAGE__, \%z, 'Bent');
 ($x,@y,%z) = 1;

Yes, that's a lot of expansion.

WARNING: attribute declarations for variables are still evolving.
 The semantics and interfaces of such
declarations could change in
 future versions. They are present for purposes of experimentation
 with
what the semantics ought to be. Do not rely on the current
 implementation of this feature.

There are only a few attributes currently handled by Perl itself (or
 directly by this module, depending
on how you look at it.) However,
 package-specific attributes are allowed by an extension mechanism.

(See Package-specific Attribute Handling below.)

The setting of subroutine attributes happens at compile time.
 Variable attributes in our declarations
are also applied at compile time.
 However, my variables get their attributes applied at run-time.
 This
means that you have to reach the run-time component of the my
 before those attributes will get
applied. For example:

 my $x : Bent = 42 if 0;

will neither assign 42 to $x nor will it apply the Bent attribute
 to the variable.

An attempt to set an unrecognized attribute is a fatal error. (The
 error is trappable, but it still stops the
compilation within that eval.) Setting an attribute with a name that's all lowercase
 letters that's not a
built-in attribute (such as "foo") will result in
 a warning with -w or use warnings 'reserved'.

Perl version 5.20.1 documentation - attributes

Page 2http://perldoc.perl.org

What import does
In the description it is mentioned that

 sub foo : method;

is equivalent to

 use attributes __PACKAGE__, \&foo, 'method';

As you might know this calls the import function of attributes at compile time with these
parameters: 'attributes', the caller's package name, the reference to the code and 'method'.

 attributes->import(__PACKAGE__, \&foo, 'method');

So you want to know what import actually does?

First of all import gets the type of the third parameter ('CODE' in this case). attributes.pm
checks if there is a subroutine called MODIFY_<reftype>_ATTRIBUTES
 in the caller's namespace
(here: 'main'). In this case a
 subroutine MODIFY_CODE_ATTRIBUTES is required. Then this
 method is
called to check if you have used a "bad attribute".
 The subroutine call in this example would look like

 MODIFY_CODE_ATTRIBUTES('main', \&foo, 'method');

MODIFY_<reftype>_ATTRIBUTES has to return a list of all "bad attributes".
 If there are any bad
attributes import croaks.

(See Package-specific Attribute Handling below.)

Built-in Attributes
The following are the built-in attributes for subroutines:

lvalue

Indicates that the referenced subroutine is a valid lvalue and can
 be assigned to. The
subroutine must return a modifiable value such
 as a scalar variable, as described in perlsub.

This module allows one to set this attribute on a subroutine that is
 already defined. For Perl
subroutines (XSUBs are fine), it may or may not
 do what you want, depending on the code
inside the subroutine, with details
 subject to change in future Perl versions. You may run into
problems with
 lvalue context not being propagated properly into the subroutine, or maybe

even assertion failures. For this reason, a warning is emitted if warnings
 are enabled. In other
words, you should only do this if you really know
 what you are doing. You have been warned.

method

Indicates that the referenced subroutine
 is a method. A subroutine so marked
 will not trigger
the "Ambiguous call resolved as CORE::%s" warning.

prototype(..)

The "prototype" attribute is an alternate means of specifying a prototype
 on a sub. The desired
prototype is within the parens.

The prototype from the attribute is assigned to the sub immediately after
 the prototype from
the sub, which means that if both are declared at the
 same time, the traditionally defined
prototype is ignored. In other words, sub foo($$) : prototype(@) {} is
indistinguishable from sub foo(@){}.

If illegalproto warnings are enabled, the prototype declared inside this
 attribute will be sanity
checked at compile time.

locked

Perl version 5.20.1 documentation - attributes

Page 3http://perldoc.perl.org

The "locked" attribute is deprecated, and has no effect in 5.10.0 and later.
 It was used as part
of the now-removed "Perl 5.005 threads".

The following are the built-in attributes for variables:

shared

Indicates that the referenced variable can be shared across different threads
 when used in
conjunction with the threads and threads::shared modules.

unique

The "unique" attribute is deprecated, and has no effect in 5.10.0 and later.
 It used to indicate
that a single copy of an our variable was to be used by
 all interpreters should the program
happen to be running in a
 multi-interpreter environment.

Available Subroutines
The following subroutines are available for general use once this module
 has been loaded:

get

This routine expects a single parameter--a reference to a
 subroutine or variable. It returns a
list of attributes, which may be
 empty. If passed invalid arguments, it uses die() (via
Carp::croak)
 to raise a fatal exception. If it can find an appropriate package name
 for a class
method lookup, it will include the results from a FETCH_type_ATTRIBUTES call in its return
list, as described in Package-specific Attribute Handling below.
 Otherwise, only built-in
attributes will be returned.

reftype

This routine expects a single parameter--a reference to a subroutine or
 variable. It returns the
built-in type of the referenced variable,
 ignoring any package into which it might have been
blessed.
 This can be useful for determining the type value which forms part of
 the method
names described in Package-specific Attribute Handling below.

Note that these routines are not exported by default.

Package-specific Attribute Handling
WARNING: the mechanisms described here are still experimental. Do not
 rely on the current
implementation. In particular, there is no provision
 for applying package attributes to 'cloned' copies of
subroutines used as
 closures. (See "Making References" in perlref for information on closures.)

Package-specific attribute handling may change incompatibly in a future
 release.

When an attribute list is present in a declaration, a check is made to see
 whether an attribute 'modify'
handler is present in the appropriate package
 (or its @ISA inheritance tree). Similarly, when
attributes::get is
 called on a valid reference, a check is made for an appropriate attribute
 'fetch'
handler. See EXAMPLES to see how the "appropriate package"
 determination works.

The handler names are based on the underlying type of the variable being
 declared or of the
reference passed. Because these attributes are
 associated with subroutine or variable declarations,
this deliberately
 ignores any possibility of being blessed into some package. Thus, a
 subroutine
declaration uses "CODE" as its type, and even a blessed
 hash reference uses "HASH" as its type.

The class methods invoked for modifying and fetching are these:

FETCH_type_ATTRIBUTES

This method is called with two arguments: the relevant package name,
 and a reference to a
variable or subroutine for which package-defined
 attributes are desired. The expected return
value is a list of
 associated attributes. This list may be empty.

MODIFY_type_ATTRIBUTES

This method is called with two fixed arguments, followed by the list of
 attributes from the

Perl version 5.20.1 documentation - attributes

Page 4http://perldoc.perl.org

relevant declaration. The two fixed arguments are
 the relevant package name and a reference
to the declared subroutine or
 variable. The expected return value is a list of attributes which
were
 not recognized by this handler. Note that this allows for a derived class
 to delegate a call
to its base class, and then only examine the attributes
 which the base class didn't already
handle for it.

The call to this method is currently made during the processing of the
 declaration. In
particular, this means that a subroutine reference will
 probably be for an undefined subroutine,
even if this declaration is
 actually part of the definition.

Calling attributes::get() from within the scope of a null package
 declaration package ; for an
unblessed variable reference will
 not provide any starting package name for the 'fetch' method lookup.
Thus, this circumstance will not result in a method call for package-defined
 attributes. A named
subroutine knows to which symbol table entry it belongs
 (or originally belonged), and it will use the
corresponding package.
 An anonymous subroutine knows the package name into which it was
compiled
 (unless it was also compiled with a null package declaration), and so it
 will use that package
name.

Syntax of Attribute Lists
An attribute list is a sequence of attribute specifications, separated by
 whitespace or a colon (with
optional whitespace).
 Each attribute specification is a simple
 name, optionally followed by a
parenthesised parameter list.
 If such a parameter list is present, it is scanned past as for the rules
 for
the q() operator. (See "Quote and Quote-like Operators" in perlop.)
 The parameter list is passed as it
was found, however, and not as per q().

Some examples of syntactically valid attribute lists:

 switch(10,foo(7,3)) : expensive
 Ugly('\(") :Bad
 _5x5
 lvalue method

Some examples of syntactically invalid attribute lists (with annotation):

 switch(10,foo()		 # ()-string not balanced
 Ugly('(')			 # ()-string not balanced
 5x5				 # "5x5" not a valid identifier
 Y2::north			 # "Y2::north" not a simple identifier
 foo + bar			 # "+" neither a colon nor whitespace

EXPORTS
Default exports

None.

Available exports
The routines get and reftype are exportable.

Export tags defined
The :ALL tag will get all of the above exports.

EXAMPLES
Here are some samples of syntactically valid declarations, with annotation
 as to how they resolve
internally into use attributes invocations by
 perl. These examples are primarily useful to see how
the "appropriate
 package" is found for the possible method lookups for package-defined
 attributes.

1. Code:

 package Canine;

Perl version 5.20.1 documentation - attributes

Page 5http://perldoc.perl.org

 package Dog;
 my Canine $spot : Watchful ;

Effect:

 use attributes ();
 attributes::->import(Canine => \$spot, "Watchful");

2. Code:

 package Felis;
 my $cat : Nervous;

Effect:

 use attributes ();
 attributes::->import(Felis => \$cat, "Nervous");

3. Code:

 package X;
 sub foo : lvalue ;

Effect:

 use attributes X => \&foo, "lvalue";

4. Code:

 package X;
 sub Y::x : lvalue { 1 }

Effect:

 use attributes Y => \&Y::x, "lvalue";

5. Code:

 package X;
 sub foo { 1 }

 package Y;
 BEGIN { *bar = \&X::foo; }

 package Z;
 sub Y::bar : lvalue ;

Effect:

 use attributes X => \&X::foo, "lvalue";

This last example is purely for purposes of completeness. You should not
 be trying to mess with the
attributes of something in a package that's
 not your own.

MORE EXAMPLES
1. sub MODIFY_CODE_ATTRIBUTES {

 my ($class,$code,@attrs) = @_;

 my $allowed = 'MyAttribute';
 my @bad = grep { $_ ne $allowed } @attrs;

Perl version 5.20.1 documentation - attributes

Page 6http://perldoc.perl.org

 return @bad;
 }

 sub foo : MyAttribute {
 print "foo\n";
 }

This example runs. At compile time MODIFY_CODE_ATTRIBUTES is called. In that
 subroutine,
we check if any attribute is disallowed and we return a list of
 these "bad attributes".

As we return an empty list, everything is fine.

2. sub MODIFY_CODE_ATTRIBUTES {
 my ($class,$code,@attrs) = @_;

 my $allowed = 'MyAttribute';
 my @bad = grep{ $_ ne $allowed }@attrs;

 return @bad;
 }

 sub foo : MyAttribute Test {
 print "foo\n";
 }

This example is aborted at compile time as we use the attribute "Test" which
 isn't allowed.
MODIFY_CODE_ATTRIBUTES
 returns a list that contains a single
 element ('Test').

SEE ALSO
"Private Variables via my()" in perlsub and "Subroutine Attributes" in perlsub for details on the basic
declarations; "use" in perlfunc for details on the normal invocation mechanism.

