
Perl version 5.20.1 documentation - bytes

Page 1http://perldoc.perl.org

NAME
bytes - Perl pragma to force byte semantics rather than character semantics

NOTICE
This pragma reflects early attempts to incorporate Unicode into perl and
 has since been superseded.
It breaks encapsulation (i.e. it exposes the
 innards of how the perl executable currently happens to
store a string),
 and use of this module for anything other than debugging purposes is
 strongly
discouraged. If you feel that the functions here within might be
 useful for your application, this
possibly indicates a mismatch between
 your mental model of Perl Unicode and the current reality. In
that case,
 you may wish to read some of the perl Unicode documentation: perluniintro, perlunitut,
perlunifaq and perlunicode.

SYNOPSIS
 use bytes;
 ... chr(...); # or bytes::chr
 ... index(...); # or bytes::index
 ... length(...); # or bytes::length
 ... ord(...); # or bytes::ord
 ... rindex(...); # or bytes::rindex
 ... substr(...); # or bytes::substr
 no bytes;

DESCRIPTION
The use bytes pragma disables character semantics for the rest of the
 lexical scope in which it
appears. no bytes can be used to reverse
 the effect of use bytes within the current lexical scope.

Perl normally assumes character semantics in the presence of character
 data (i.e. data that has come
from a source that has been marked as
 being of a particular character encoding). When use bytes
is in
 effect, the encoding is temporarily ignored, and each string is treated
 as a series of bytes.

As an example, when Perl sees $x = chr(400), it encodes the character
 in UTF-8 and stores it in
$x. Then it is marked as character data, so,
 for instance, length $x returns 1. However, in the
scope of the bytes pragma, $x is treated as a series of bytes - the bytes that make
 up the UTF8
encoding - and length $x returns 2:

 $x = chr(400);
 print "Length is ", length $x, "\n"; # "Length is 1"
 printf "Contents are %vd\n", $x; # "Contents are 400"
 {
 use bytes; # or "require bytes; bytes::length()"
 print "Length is ", length $x, "\n"; # "Length is 2"
 printf "Contents are %vd\n", $x; # "Contents are 198.144"
 }

chr(), ord(), substr(), index() and rindex() behave similarly.

For more on the implications and differences between character
 semantics and byte semantics, see
perluniintro and perlunicode.

LIMITATIONS
bytes::substr() does not work as an lvalue().

SEE ALSO
perluniintro, perlunicode, utf8

