
Perl version 5.20.1 documentation - mro

Page 1http://perldoc.perl.org

NAME
mro - Method Resolution Order

SYNOPSIS
 use mro; # enables next::method and friends globally

 use mro 'dfs'; # enable DFS MRO for this class (Perl default)
 use mro 'c3'; # enable C3 MRO for this class

DESCRIPTION
The "mro" namespace provides several utilities for dealing
 with method resolution order and method
caching in general.

These interfaces are only available in Perl 5.9.5 and higher.
 See MRO::Compat on CPAN for a mostly
forwards compatible
 implementation for older Perls.

OVERVIEW
It's possible to change the MRO of a given class either by using use
 mro as shown in the synopsis,
or by using the mro::set_mro function
 below.

The special methods next::method, next::can, and maybe::next::method are not available
until this mro module
 has been loaded via use or require.

The C3 MRO
In addition to the traditional Perl default MRO (depth first
 search, called DFS here), Perl now offers the
C3 MRO as
 well. Perl's support for C3 is based on the work done in
 Stevan Little's module Class::C3,
and most of the C3-related
 documentation here is ripped directly from there.

What is C3?
C3 is the name of an algorithm which aims to provide a sane method
 resolution order under multiple
inheritance. It was first introduced in
 the language Dylan (see links in the SEE ALSO section), and
then
 later adopted as the preferred MRO (Method Resolution Order) for the
 new-style classes in
Python 2.3. Most recently it has been adopted as the
 "canonical" MRO for Perl 6 classes, and the
default MRO for Parrot objects
 as well.

How does C3 work
C3 works by always preserving local precedence ordering. This essentially
 means that no class will
appear before any of its subclasses. Take, for
 instance, the classic diamond inheritance pattern:

 <A>
 / \
 <C>
 \ /
 <D>

The standard Perl 5 MRO would be (D, B, A, C). The result being that A
 appears before C, even
though C is the subclass of A. The C3 MRO
 algorithm however, produces the following order: (D, B,
C, A), which does
 not have this issue.

This example is fairly trivial; for more complex cases and a deeper
 explanation, see the links in the
SEE ALSO section.

Functions

Perl version 5.20.1 documentation - mro

Page 2http://perldoc.perl.org

mro::get_linear_isa($classname[, $type])
Returns an arrayref which is the linearized MRO of the given class.
 Uses whichever MRO is currently
in effect for that class by default,
 or the given MRO (either c3 or dfs if specified as $type).

The linearized MRO of a class is an ordered array of all of the
 classes one would search when
resolving a method on that class,
 starting with the class itself.

If the requested class doesn't yet exist, this function will still
 succeed, and return [$classname]

Note that UNIVERSAL (and any members of UNIVERSAL's MRO) are not
 part of the MRO of a class,
even though all classes implicitly inherit
 methods from UNIVERSAL and its parents.

mro::set_mro ($classname, $type)
Sets the MRO of the given class to the $type argument (either c3 or dfs).

mro::get_mro($classname)
Returns the MRO of the given class (either c3 or dfs).

mro::get_isarev($classname)
Gets the mro_isarev for this class, returned as an
 arrayref of class names. These are every class
that "isa"
 the given class name, even if the isa relationship is
 indirect. This is used internally by the
MRO code to
 keep track of method/MRO cache invalidations.

As with mro::get_linear_isa above, UNIVERSAL is special. UNIVERSAL (and parents') isarev
lists do not include
 every class in existence, even though all classes are
 effectively descendants for
method inheritance purposes.

mro::is_universal($classname)
Returns a boolean status indicating whether or not
 the given classname is either UNIVERSAL itself,
 or
one of UNIVERSAL's parents by @ISA inheritance.

Any class for which this function returns true is
 "universal" in the sense that all classes potentially

inherit methods from it.

mro::invalidate_all_method_caches()
Increments PL_sub_generation, which invalidates method
 caching in all packages.

mro::method_changed_in($classname)
Invalidates the method cache of any classes dependent on the
 given class. This is not normally
necessary. The only
 known case where pure perl code can confuse the method
 cache is when you
manually install a new constant
 subroutine by using a readonly scalar value, like the
 internals of
constant do. If you find another case,
 please report it so we can either fix it or document
 the exception
here.

mro::get_pkg_gen($classname)
Returns an integer which is incremented every time a
 real local method in the package $classname
changes,
 or the local @ISA of $classname is modified.

This is intended for authors of modules which do lots
 of class introspection, as it allows them to very
quickly
 check if anything important about the local properties
 of a given class have changed since the
last time they
 looked. It does not increment on method/@ISA
 changes in superclasses.

It's still up to you to seek out the actual changes,
 and there might not actually be any. Perhaps all
 of
the changes since you last checked cancelled each
 other out and left the package in the state it was
in
 before.

This integer normally starts off at a value of 1
 when a package stash is instantiated. Calling it
 on
packages whose stashes do not exist at all will
 return 0. If a package stash is completely
 deleted (not

Perl version 5.20.1 documentation - mro

Page 3http://perldoc.perl.org

a normal occurrence, but it can happen
 if someone does something like undef %PkgName::),
 the
number will be reset to either 0 or 1,
 depending on how completely the package was wiped out.

next::method
This is somewhat like SUPER, but it uses the C3 method
 resolution order to get better consistency in
multiple
 inheritance situations. Note that while inheritance in
 general follows whichever MRO is in
effect for the
 given class, next::method only uses the C3 MRO.

One generally uses it like so:

 sub some_method {
 my $self = shift;
 my $superclass_answer = $self->next::method(@_);
 return $superclass_answer + 1;
 }

Note that you don't (re-)specify the method name.
 It forces you to always use the same method name
as the method you started in.

It can be called on an object or a class, of course.

The way it resolves which actual method to call is:

1 First, it determines the linearized C3 MRO of
 the object or class it is being called on.

2 Then, it determines the class and method name
 of the context it was invoked from.

3 Finally, it searches down the C3 MRO list until
 it reaches the contextually enclosing class,
then
 searches further down the MRO list for the next
 method with the same name as the
contextually
 enclosing method.

Failure to find a next method will result in an
 exception being thrown (see below for alternatives).

This is substantially different than the behavior
 of SUPER under complex multiple inheritance.
 (This
becomes obvious when one realizes that the
 common superclasses in the C3 linearizations of
 a given
class and one of its parents will not
 always be ordered the same for both.)

Caveat: Calling next::method from methods defined outside the class:

There is an edge case when using next::method from within a subroutine
 which was created in a
different module than the one it is called from. It
 sounds complicated, but it really isn't. Here is an
example which will not
 work correctly:

 *Foo::foo = sub { (shift)->next::method(@_) };

The problem exists because the anonymous subroutine being assigned to the *Foo::foo glob will
show up in the call stack as being called __ANON__ and not foo as you might expect. Since
next::method uses caller to find the name of the method it was called in, it will fail in
 this case.

But fear not, there's a simple solution. The module Sub::Name will
 reach into the perl internals and
assign a name to an anonymous subroutine
 for you. Simply do this:

 use Sub::Name 'subname';
 *Foo::foo = subname 'Foo::foo' => sub { (shift)->next::method(@_) };

and things will Just Work.

next::can
This is similar to next::method, but just returns either a code
 reference or undef to indicate that no
further methods of this name
 exist.

Perl version 5.20.1 documentation - mro

Page 4http://perldoc.perl.org

maybe::next::method
In simple cases, it is equivalent to:

 $self->next::method(@_) if $self->next::can;

But there are some cases where only this solution
 works (like goto &maybe::next::method);

SEE ALSO
The original Dylan paper

http://haahr.tempdomainname.com/dylan/linearization-oopsla96.html

Pugs
The Pugs prototype Perl 6 Object Model uses C3

Parrot
Parrot now uses C3

http://use.perl.org/~autrijus/journal/25768

Python 2.3 MRO related links
http://www.python.org/2.3/mro.html

http://www.python.org/2.2.2/descrintro.html#mro

Class::C3
Class::C3

AUTHOR
Brandon L. Black, <blblack@gmail.com>

Based on Stevan Little's Class::C3

