
Perl version 5.20.1 documentation - perlapi

Page 1http://perldoc.perl.org

NAME
perlapi - autogenerated documentation for the perl public API

DESCRIPTION
This file contains the documentation of the perl public API generated by embed.pl, specifically a listing
of functions, macros, flags, and variables
 that may be used by extension writers. At the end
 is a list of
functions which have yet to be documented. The interfaces of
 those are subject to change without
notice. Anything not listed here is
 not part of the public API, and should not be used by extension
writers at
 all. For these reasons, blindly using functions listed in proto.h is to be
 avoided when writing
extensions.

Note that all Perl API global variables must be referenced with the PL_
 prefix. Again, those not listed
here are not to be used by extension writers,
 and can be changed or removed without notice; same
with macros.
 Some macros are provided for compatibility with the older,
 unadorned names, but this
support may be disabled in a future release.

Perl was originally written to handle US-ASCII only (that is characters
 whose ordinal numbers are in
the range 0 - 127).
 And documentation and comments may still use the term ASCII, when
 sometimes
in fact the entire range from 0 - 255 is meant.

Note that Perl can be compiled and run under EBCDIC (See perlebcdic)
 or ASCII. Most of the
documentation (and even comments in the code)
 ignore the EBCDIC possibility. For almost all
purposes the differences are transparent.
 As an example, under EBCDIC,
 instead of UTF-8,
UTF-EBCDIC is used to encode Unicode strings, and so
 whenever this documentation refers to utf8

(and variants of that name, including in function names),
 it also (essentially transparently) means
UTF-EBCDIC.
 But the ordinals of characters differ between ASCII, EBCDIC, and
 the UTF- encodings,
and a string encoded in UTF-EBCDIC may occupy more bytes
 than in UTF-8.

The listing below is alphabetical, case insensitive.

"Gimme" Values
GIMME

A backward-compatible version of GIMME_V which can only return G_SCALAR or
G_ARRAY; in a void context, it returns G_SCALAR.
 Deprecated. Use GIMME_V instead.

	 U32	 GIMME

GIMME_V

The XSUB-writer's equivalent to Perl's wantarray. Returns G_VOID, G_SCALAR or
G_ARRAY for void, scalar or list context,
 respectively. See perlcall for a usage example.

	 U32	 GIMME_V

G_ARRAY

Used to indicate list context. See GIMME_V, GIMME and perlcall.

G_DISCARD

Indicates that arguments returned from a callback should be discarded. See perlcall.

G_EVAL

Used to force a Perl eval wrapper around a callback. See perlcall.

G_NOARGS

Indicates that no arguments are being sent to a callback. See perlcall.

G_SCALAR

Used to indicate scalar context. See GIMME_V, GIMME, and perlcall.

Perl version 5.20.1 documentation - perlapi

Page 2http://perldoc.perl.org

G_VOID

Used to indicate void context. See GIMME_V and perlcall.

Array Manipulation Functions
AvFILL

Same as av_top_index(). Deprecated, use av_top_index() instead.

	 int	 AvFILL(AV* av)

av_clear

Clears an array, making it empty. Does not free the memory the av uses to
 store its list
of scalars. If any destructors are triggered as a result,
 the av itself may be freed when
this function returns.

Perl equivalent: @myarray = ();.

	 void	 av_clear(AV *av)

av_create_and_push

NOTE: this function is experimental and may change or be
 removed without notice.

Push an SV onto the end of the array, creating the array if necessary.
 A small internal
helper function to remove a commonly duplicated idiom.

	 void	 av_create_and_push(AV **const avp,
		 SV *const val)

av_create_and_unshift_one

NOTE: this function is experimental and may change or be
 removed without notice.

Unshifts an SV onto the beginning of the array, creating the array if
 necessary.
 A small
internal helper function to remove a commonly duplicated idiom.

	 SV**	 av_create_and_unshift_one(AV **const avp,
		 SV *const val)

av_delete

Deletes the element indexed by key from the array, makes the element mortal,
 and
returns it. If flags equals G_DISCARD, the element is freed and null
 is returned. Perl
equivalent: my $elem = delete($myarray[$idx]); for the
 non-G_DISCARD
version and a void-context delete($myarray[$idx]); for the G_DISCARD version.

	 SV*	 av_delete(AV *av, SSize_t key, I32 flags)

av_exists

Returns true if the element indexed by key has been initialized.

This relies on the fact that uninitialized array elements are set to
 NULL.

Perl equivalent: exists($myarray[$key]).

	 bool	 av_exists(AV *av, SSize_t key)

av_extend

Pre-extend an array. The key is the index to which the array should be
 extended.

	 void	 av_extend(AV *av, SSize_t key)

av_fetch

Perl version 5.20.1 documentation - perlapi

Page 3http://perldoc.perl.org

Returns the SV at the specified index in the array. The key is the
 index. If lval is true,
you are guaranteed to get a real SV back (in case
 it wasn't real before), which you can
then modify. Check that the return
 value is non-null before dereferencing it to a SV*.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for
 more
information on how to use this function on tied arrays.

The rough perl equivalent is $myarray[$idx].

	 SV**	 av_fetch(AV *av, SSize_t key, I32 lval)

av_fill

Set the highest index in the array to the given number, equivalent to
 Perl's $#array =
 $fill;.

The number of elements in the array will be fill + 1 after
 av_fill() returns. If the
array was previously shorter, then the
 additional elements appended are set to NULL.
If the array
 was longer, then the excess elements are freed. av_fill(av, -1) is
 the
same as av_clear(av).

	 void	 av_fill(AV *av, SSize_t fill)

av_len

Same as av_top_index. Note that, unlike what the name implies, it returns
 the highest
index in the array, so to get the size of the array you need to use av_len(av) + 1.
This is unlike sv_len, which returns what you would
 expect.

	 SSize_t	 av_len(AV *av)

av_make

Creates a new AV and populates it with a list of SVs. The SVs are copied
 into the
array, so they may be freed after the call to av_make. The new AV
 will have a
reference count of 1.

Perl equivalent: my @new_array = ($scalar1, $scalar2, $scalar3...);

	 AV*	 av_make(SSize_t size, SV **strp)

av_pop

Removes one SV from the end of the array, reducing its size by one and
 returning the
SV (transferring control of one reference count) to the
 caller. Returns &PL_sv_undef
if the array is empty.

Perl equivalent: pop(@myarray);

	 SV*	 av_pop(AV *av)

av_push

Pushes an SV onto the end of the array. The array will grow automatically
 to
accommodate the addition. This takes ownership of one reference count.

Perl equivalent: push @myarray, $elem;.

	 void	 av_push(AV *av, SV *val)

av_shift

Removes one SV from the start of the array, reducing its size by one and
 returning the
SV (transferring control of one reference count) to the
 caller. Returns &PL_sv_undef
if the array is empty.

Perl equivalent: shift(@myarray);

Perl version 5.20.1 documentation - perlapi

Page 4http://perldoc.perl.org

	 SV*	 av_shift(AV *av)

av_store

Stores an SV in an array. The array index is specified as key. The
 return value will be
NULL if the operation failed or if the value did not
 need to be actually stored within the
array (as in the case of tied
 arrays). Otherwise, it can be dereferenced
 to get the SV*
that was stored
 there (= val)).

Note that the caller is responsible for suitably incrementing the reference
 count of val
before the call, and decrementing it if the function
 returned NULL.

Approximate Perl equivalent: $myarray[$key] = $val;.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for
 more
information on how to use this function on tied arrays.

	 SV**	 av_store(AV *av, SSize_t key, SV *val)

av_tindex

Same as av_top_index().

	 int	 av_tindex(AV* av)

av_top_index

Returns the highest index in the array. The number of elements in the
 array is
av_top_index(av) + 1. Returns -1 if the array is empty.

The Perl equivalent for this is $#myarray.

(A slightly shorter form is av_tindex.)

	 SSize_t	 av_top_index(AV *av)

av_undef

Undefines the array. Frees the memory used by the av to store its list of
 scalars. If any
destructors are triggered as a result, the av itself may
 be freed.

	 void	 av_undef(AV *av)

av_unshift

Unshift the given number of undef values onto the beginning of the
 array. The array
will grow automatically to accommodate the addition. You
 must then use av_store to
assign values to these new elements.

Perl equivalent: unshift @myarray, ((undef) x $n);

	 void	 av_unshift(AV *av, SSize_t num)

get_av

Returns the AV of the specified Perl global or package array with the given
 name (so it
won't work on lexical variables). flags are passed to gv_fetchpv. If GV_ADD is set
and the
 Perl variable does not exist then it will be created. If flags is zero
 and the
variable does not exist then NULL is returned.

Perl equivalent: @{"$name"}.

NOTE: the perl_ form of this function is deprecated.

	 AV*	 get_av(const char *name, I32 flags)

newAV

Perl version 5.20.1 documentation - perlapi

Page 5http://perldoc.perl.org

Creates a new AV. The reference count is set to 1.

Perl equivalent: my @array;.

	 AV*	 newAV()

sortsv

Sort an array. Here is an example:

 sortsv(AvARRAY(av), av_top_index(av)+1, Perl_sv_cmp_locale);

Currently this always uses mergesort. See sortsv_flags for a more
 flexible routine.

	 void	 sortsv(SV** array, size_t num_elts,
		 SVCOMPARE_t cmp)

sortsv_flags

Sort an array, with various options.

	 void	 sortsv_flags(SV** array, size_t num_elts,
		 SVCOMPARE_t cmp, U32 flags)

Callback Functions
call_argv

Performs a callback to the specified named and package-scoped Perl subroutine with
argv (a NULL-terminated array of strings) as arguments. See perlcall.

Approximate Perl equivalent: &{"$sub_name"}(@$argv).

NOTE: the perl_ form of this function is deprecated.

	 I32	 call_argv(const char* sub_name, I32 flags,
		 char** argv)

call_method

Performs a callback to the specified Perl method. The blessed object must
 be on the
stack. See perlcall.

NOTE: the perl_ form of this function is deprecated.

	 I32	 call_method(const char* methname, I32 flags)

call_pv

Performs a callback to the specified Perl sub. See perlcall.

NOTE: the perl_ form of this function is deprecated.

	 I32	 call_pv(const char* sub_name, I32 flags)

call_sv

Performs a callback to the Perl sub whose name is in the SV. See perlcall.

NOTE: the perl_ form of this function is deprecated.

	 I32	 call_sv(SV* sv, VOL I32 flags)

ENTER

Opening bracket on a callback. See LEAVE and perlcall.

		 ENTER;

Perl version 5.20.1 documentation - perlapi

Page 6http://perldoc.perl.org

eval_pv

Tells Perl to eval the given string and return an SV* result.

NOTE: the perl_ form of this function is deprecated.

	 SV*	 eval_pv(const char* p, I32 croak_on_error)

eval_sv

Tells Perl to eval the string in the SV. It supports the same flags
 as call_sv, with
the obvious exception of G_EVAL. See perlcall.

NOTE: the perl_ form of this function is deprecated.

	 I32	 eval_sv(SV* sv, I32 flags)

FREETMPS

Closing bracket for temporaries on a callback. See SAVETMPS and perlcall.

		 FREETMPS;

LEAVE

Closing bracket on a callback. See ENTER and perlcall.

		 LEAVE;

SAVETMPS

Opening bracket for temporaries on a callback. See FREETMPS and perlcall.

		 SAVETMPS;

Character case changing
toFOLD

Converts the specified character to foldcase. If the input is anything but an
 ASCII
uppercase character, that input character itself is returned. Variant toFOLD_A is
equivalent. (There is no equivalent to_FOLD_L1 for the full
 Latin1 range, as the full
generality of toFOLD_uni is needed there.)

	 U8	 toFOLD(U8 ch)

toFOLD_uni

Converts the Unicode code point cp to its foldcase version, and
 stores that in UTF-8 in
s, and its length in bytes in lenp. Note
 that the buffer pointed to by s needs to be at
least UTF8_MAXBYTES_CASE+1
 bytes since the foldcase version may be longer than
the original character.

The first code point of the foldcased version is returned
 (but note, as explained just
above, that there may be more.)

	 UV	 toFOLD_uni(UV cp, U8* s, STRLEN* lenp)

toFOLD_utf8

Converts the UTF-8 encoded character at p to its foldcase version, and
 stores that in
UTF-8 in s, and its length in bytes in lenp. Note
 that the buffer pointed to by s needs
to be at least UTF8_MAXBYTES_CASE+1
 bytes since the foldcase version may be
longer than the original character.

The first code point of the foldcased version is returned
 (but note, as explained just
above, that there may be more.)

Perl version 5.20.1 documentation - perlapi

Page 7http://perldoc.perl.org

The input character at p is assumed to be well-formed.

	 UV	 toFOLD_utf8(U8* p, U8* s, STRLEN* lenp)

toLOWER

Converts the specified character to lowercase. If the input is anything but an
 ASCII
uppercase character, that input character itself is returned. Variant toLOWER_A is
equivalent.

	 U8	 toLOWER(U8 ch)

toLOWER_L1

Converts the specified Latin1 character to lowercase. The results are undefined if
 the
input doesn't fit in a byte.

	 U8	 toLOWER_L1(U8 ch)

toLOWER_LC

Converts the specified character to lowercase using the current locale's rules,
 if
possible; otherwise returns the input character itself.

	 U8	 toLOWER_LC(U8 ch)

toLOWER_uni

Converts the Unicode code point cp to its lowercase version, and
 stores that in UTF-8
in s, and its length in bytes in lenp. Note
 that the buffer pointed to by s needs to be at
least UTF8_MAXBYTES_CASE+1
 bytes since the lowercase version may be longer
than the original character.

The first code point of the lowercased version is returned
 (but note, as explained just
above, that there may be more.)

	 UV	 toLOWER_uni(UV cp, U8* s, STRLEN* lenp)

toLOWER_utf8

Converts the UTF-8 encoded character at p to its lowercase version, and
 stores that in
UTF-8 in s, and its length in bytes in lenp. Note
 that the buffer pointed to by s needs
to be at least UTF8_MAXBYTES_CASE+1
 bytes since the lowercase version may be
longer than the original character.

The first code point of the lowercased version is returned
 (but note, as explained just
above, that there may be more.)

The input character at p is assumed to be well-formed.

	 UV	 toLOWER_utf8(U8* p, U8* s, STRLEN* lenp)

toTITLE

Converts the specified character to titlecase. If the input is anything but an
 ASCII
lowercase character, that input character itself is returned. Variant toTITLE_A is
equivalent. (There is no toTITLE_L1 for the full Latin1 range,
 as the full generality of
toTITLE_uni is needed there. Titlecase is not a
 concept used in locale handling, so
there is no functionality for that.)

	 U8	 toTITLE(U8 ch)

toTITLE_uni

Converts the Unicode code point cp to its titlecase version, and
 stores that in UTF-8 in

Perl version 5.20.1 documentation - perlapi

Page 8http://perldoc.perl.org

s, and its length in bytes in lenp. Note
 that the buffer pointed to by s needs to be at
least UTF8_MAXBYTES_CASE+1
 bytes since the titlecase version may be longer than
the original character.

The first code point of the titlecased version is returned
 (but note, as explained just
above, that there may be more.)

	 UV	 toTITLE_uni(UV cp, U8* s, STRLEN* lenp)

toTITLE_utf8

Converts the UTF-8 encoded character at p to its titlecase version, and
 stores that in
UTF-8 in s, and its length in bytes in lenp. Note
 that the buffer pointed to by s needs
to be at least UTF8_MAXBYTES_CASE+1
 bytes since the titlecase version may be
longer than the original character.

The first code point of the titlecased version is returned
 (but note, as explained just
above, that there may be more.)

The input character at p is assumed to be well-formed.

	 UV	 toTITLE_utf8(U8* p, U8* s, STRLEN* lenp)

toUPPER

Converts the specified character to uppercase. If the input is anything but an
 ASCII
lowercase character, that input character itself is returned. Variant toUPPER_A is
equivalent.

	 U8	 toUPPER(U8 ch)

toUPPER_uni

Converts the Unicode code point cp to its uppercase version, and
 stores that in UTF-8
in s, and its length in bytes in lenp. Note
 that the buffer pointed to by s needs to be at
least UTF8_MAXBYTES_CASE+1
 bytes since the uppercase version may be longer
than the original character.

The first code point of the uppercased version is returned
 (but note, as explained just
above, that there may be more.)

	 UV	 toUPPER_uni(UV cp, U8* s, STRLEN* lenp)

toUPPER_utf8

Converts the UTF-8 encoded character at p to its uppercase version, and
 stores that in
UTF-8 in s, and its length in bytes in lenp. Note
 that the buffer pointed to by s needs
to be at least UTF8_MAXBYTES_CASE+1
 bytes since the uppercase version may be
longer than the original character.

The first code point of the uppercased version is returned
 (but note, as explained just
above, that there may be more.)

The input character at p is assumed to be well-formed.

	 UV	 toUPPER_utf8(U8* p, U8* s, STRLEN* lenp)

Character classes
This section is about functions (really macros) that classify characters
 into types, such as punctuation
versus alphabetic, etc. Most of these are
 analogous to regular expression character classes. (See
"POSIX Character Classes" in perlrecharclass.) There are several variants for
 each class. (Not all
macros have all variants; each item below lists the
 ones valid for it.) None are affected by use bytes
, and only the ones
 with LC in the name are affected by the current locale.

Perl version 5.20.1 documentation - perlapi

Page 9http://perldoc.perl.org

The base function, e.g., isALPHA(), takes an octet (either a char or a U8) as input and returns a
boolean as to whether or not the character
 represented by that octet is (or on non-ASCII platforms,
corresponds to) an
 ASCII character in the named class based on platform, Unicode, and Perl rules.
 If
the input is a number that doesn't fit in an octet, FALSE is returned.

Variant isFOO_A (e.g., isALPHA_A()) is identical to the base function
 with no suffix "_A".

Variant isFOO_L1 imposes the Latin-1 (or EBCDIC equivlalent) character set
 onto the platform. That
is, the code points that are ASCII are unaffected,
 since ASCII is a subset of Latin-1. But the
non-ASCII code points are treated
 as if they are Latin-1 characters. For example, isWORDCHAR_L1()
will return
 true when called with the code point 0xDF, which is a word character in both
 ASCII and
EBCDIC (though it represents different characters in each).

Variant isFOO_uni is like the isFOO_L1 variant, but accepts any UV code
 point as input. If the code
point is larger than 255, Unicode rules are used
 to determine if it is in the character class. For
example, isWORDCHAR_uni(0x100) returns TRUE, since 0x100 is LATIN CAPITAL LETTER A

WITH MACRON in Unicode, and is a word character.

Variant isFOO_utf8 is like isFOO_uni, but the input is a pointer to a
 (known to be well-formed)
UTF-8 encoded string (U8* or char*). The
 classification of just the first (possibly multi-byte)
character in the string
 is tested.

Variant isFOO_LC is like the isFOO_A and isFOO_L1 variants, but the
 result is based on the current
locale, which is what LC in the name stands
 for. If Perl can determine that the current locale is a
UTF-8 locale, it uses
 the published Unicode rules; otherwise, it uses the C library function that
 gives
the named classification. For example, isDIGIT_LC() when not in a
 UTF-8 locale returns the result
of calling isdigit(). FALSE is always
 returned if the input won't fit into an octet.

Variant isFOO_LC_uvchr is like isFOO_LC, but is defined on any UV. It
 returns the same as
isFOO_LC for input code points less than 256, and
 returns the hard-coded, not-affected-by-locale,
Unicode results for larger ones.

Variant isFOO_LC_utf8 is like isFOO_LC_uvchr, but the input is a pointer to a
 (known to be
well-formed) UTF-8 encoded string (U8* or char*). The
 classification of just the first (possibly
multi-byte) character in the string
 is tested.

isALPHA

Returns a boolean indicating whether the specified character is an
 alphabetic
character, analogous to m/[[:alpha:]]/.
 See the top of this section for an
explanation of variants isALPHA_A, isALPHA_L1, isALPHA_uni, isALPHA_utf8,
isALPHA_LC, isALPHA_LC_uvchr, and isALPHA_LC_utf8.

	 bool	 isALPHA(char ch)

isALPHANUMERIC

Returns a boolean indicating whether the specified character is a either an
 alphabetic
character or decimal digit, analogous to m/[[:alnum:]]/.
 See the top of this section
for an explanation of variants isALPHANUMERIC_A, isALPHANUMERIC_L1,
isALPHANUMERIC_uni, isALPHANUMERIC_utf8, isALPHANUMERIC_LC,
isALPHANUMERIC_LC_uvchr, and isALPHANUMERIC_LC_utf8.

	 bool	 isALPHANUMERIC(char ch)

isASCII

Returns a boolean indicating whether the specified character is one of the 128

characters in the ASCII character set, analogous to m/[[:ascii:]]/.
 On non-ASCII
platforms, it returns TRUE iff this
 character corresponds to an ASCII character.
Variants isASCII_A() and isASCII_L1() are identical to isASCII().
 See the top

Perl version 5.20.1 documentation - perlapi

Page 10http://perldoc.perl.org

of this section for an explanation of variants isASCII_uni, isASCII_utf8,
isASCII_LC, isASCII_LC_uvchr, and isASCII_LC_utf8. Note, however, that
some platforms do not have the C
 library routine isascii(). In these cases, the
variants whose names contain LC are the same as the corresponding ones without.

Also note, that because all ASCII characters are UTF-8 invariant (meaning they
 have
the exact same representation (always a single byte) whether encoded in
 UTF-8 or
not), isASCII will give the correct results when called with any
 byte in any string
encoded or not in UTF-8. And similarly isASCII_utf8 will
 work properly on any
string encoded or not in UTF-8.

	 bool	 isASCII(char ch)

isBLANK

Returns a boolean indicating whether the specified character is a
 character considered
to be a blank, analogous to m/[[:blank:]]/.
 See the top of this section for an
explanation of variants isBLANK_A, isBLANK_L1, isBLANK_uni, isBLANK_utf8,
isBLANK_LC, isBLANK_LC_uvchr, and isBLANK_LC_utf8. Note, however, that
some
 platforms do not have the C library routine isblank(). In these cases, the

variants whose names contain LC are the same as the corresponding ones
 without.

	 bool	 isBLANK(char ch)

isCNTRL

Returns a boolean indicating whether the specified character is a
 control character,
analogous to m/[[:cntrl:]]/.
 See the top of this section for an explanation of
variants isCNTRL_A, isCNTRL_L1, isCNTRL_uni, isCNTRL_utf8, isCNTRL_LC,
isCNTRL_LC_uvchr, and isCNTRL_LC_utf8
 On EBCDIC platforms, you almost
always want to use the isCNTRL_L1 variant.

	 bool	 isCNTRL(char ch)

isDIGIT

Returns a boolean indicating whether the specified character is a
 digit, analogous to
m/[[:digit:]]/.
 Variants isDIGIT_A and isDIGIT_L1 are identical to isDIGIT.

See the top of this section for an explanation of variants isDIGIT_uni,
isDIGIT_utf8, isDIGIT_LC, isDIGIT_LC_uvchr, and isDIGIT_LC_utf8.

	 bool	 isDIGIT(char ch)

isGRAPH

Returns a boolean indicating whether the specified character is a
 graphic character,
analogous to m/[[:graph:]]/.
 See the top of this section for an explanation of
variants isGRAPH_A, isGRAPH_L1, isGRAPH_uni, isGRAPH_utf8, isGRAPH_LC,
isGRAPH_LC_uvchr, and isGRAPH_LC_utf8.

	 bool	 isGRAPH(char ch)

isIDCONT

Returns a boolean indicating whether the specified character can be the
 second or
succeeding character of an identifier. This is very close to, but
 not quite the same as
the official Unicode property XID_Continue. The
 difference is that this returns true
only if the input character also matches isWORDCHAR. See the top of this section for
an
 explanation of variants isIDCONT_A, isIDCONT_L1, isIDCONT_uni,
isIDCONT_utf8, isIDCONT_LC, isIDCONT_LC_uvchr, and isIDCONT_LC_utf8.

	 bool	 isIDCONT(char ch)

Perl version 5.20.1 documentation - perlapi

Page 11http://perldoc.perl.org

isIDFIRST

Returns a boolean indicating whether the specified character can be the first
 character
of an identifier. This is very close to, but not quite the same as
 the official Unicode
property XID_Start. The difference is that this
 returns true only if the input character
also matches isWORDCHAR.
 See the top of this section for an explanation of variants
isIDFIRST_A, isIDFIRST_L1, isIDFIRST_uni, isIDFIRST_utf8,
isIDFIRST_LC, isIDFIRST_LC_uvchr, and isIDFIRST_LC_utf8.

	 bool	 isIDFIRST(char ch)

isLOWER

Returns a boolean indicating whether the specified character is a
 lowercase character,
analogous to m/[[:lower:]]/.
 See the top of this section for an explanation of
variants isLOWER_A, isLOWER_L1, isLOWER_uni, isLOWER_utf8, isLOWER_LC,
isLOWER_LC_uvchr, and isLOWER_LC_utf8.

	 bool	 isLOWER(char ch)

isOCTAL

Returns a boolean indicating whether the specified character is an
 octal digit, [0-7].

The only two variants are isOCTAL_A and isOCTAL_L1; each is identical to isOCTAL
.

	 bool	 isOCTAL(char ch)

isPRINT

Returns a boolean indicating whether the specified character is a
 printable character,
analogous to m/[[:print:]]/.
 See the top of this section for an explanation of
variants isPRINT_A, isPRINT_L1, isPRINT_uni, isPRINT_utf8, isPRINT_LC,
isPRINT_LC_uvchr, and isPRINT_LC_utf8.

	 bool	 isPRINT(char ch)

isPSXSPC

(short for Posix Space)
 Starting in 5.18, this is identical (experimentally) in all its forms
to the
 corresponding isSPACE() macros. ("Experimentally" means that this change

may be backed out in 5.22 if field experience indicates that it
 was unwise.)
 The locale
forms of this macro are identical to their corresponding isSPACE() forms in all Perl
releases. In releases prior to 5.18, the
 non-locale forms differ from their isSPACE()
forms only in that the isSPACE() forms don't match a Vertical Tab, and the
isPSXSPC() forms do.
 Otherwise they are identical. Thus this macro is analogous to
what m/[[:space:]]/ matches in a regular expression.
 See the top of this section
for an explanation of variants isPSXSPC_A, isPSXSPC_L1, isPSXSPC_uni,
isPSXSPC_utf8, isPSXSPC_LC, isPSXSPC_LC_uvchr, and isPSXSPC_LC_utf8.

	 bool	 isPSXSPC(char ch)

isPUNCT

Returns a boolean indicating whether the specified character is a
 punctuation
character, analogous to m/[[:punct:]]/.
 Note that the definition of what is
punctuation isn't as
 straightforward as one might desire. See "POSIX Character
Classes" in perlrecharclass for details.
 See the top of this section for an explanation of
variants isPUNCT_A, isPUNCT_L1, isPUNCT_uni, isPUNCT_utf8, isPUNCT_LC,
isPUNCT_LC_uvchr, and isPUNCT_LC_utf8.

	 bool	 isPUNCT(char ch)

Perl version 5.20.1 documentation - perlapi

Page 12http://perldoc.perl.org

isSPACE

Returns a boolean indicating whether the specified character is a
 whitespace
character. This is analogous
 to what m/\s/ matches in a regular expression. Starting
in Perl 5.18
 (experimentally), this also matches what m/[[:space:]]/ does.

("Experimentally" means that this change may be backed out in 5.22 if
 field experience
indicates that it was unwise.) Prior to 5.18, only the
 locale forms of this macro (the
ones with LC in their names) matched
 precisely what m/[[:space:]]/ does. In
those releases, the only difference,
 in the non-locale variants, was that isSPACE()
did not match a vertical tab.
 (See isPSXSPC for a macro that matches a vertical tab in
all releases.)
 See the top of this section for an explanation of variants isSPACE_A,
isSPACE_L1, isSPACE_uni, isSPACE_utf8, isSPACE_LC, isSPACE_LC_uvchr,
and isSPACE_LC_utf8.

	 bool	 isSPACE(char ch)

isUPPER

Returns a boolean indicating whether the specified character is an
 uppercase
character, analogous to m/[[:upper:]]/.
 See the top of this section for an
explanation of variants isUPPER_A, isUPPER_L1, isUPPER_uni, isUPPER_utf8,
isUPPER_LC, isUPPER_LC_uvchr, and isUPPER_LC_utf8.

	 bool	 isUPPER(char ch)

isWORDCHAR

Returns a boolean indicating whether the specified character is a character
 that is a
word character, analogous to what m/\w/ and m/[[:word:]]/ match
 in a regular
expression. A word character is an alphabetic character, a
 decimal digit, a connecting
punctuation character (such as an underscore), or
 a "mark" character that attaches to
one of those (like some sort of accent). isALNUM() is a synonym provided for
backward compatibility, even though a
 word character includes more than the standard
C language meaning of
 alphanumeric.
 See the top of this section for an explanation of
variants isWORDCHAR_A, isWORDCHAR_L1, isWORDCHAR_uni, isWORDCHAR_utf8,
isWORDCHAR_LC, isWORDCHAR_LC_uvchr, and isWORDCHAR_LC_utf8.

	 bool	 isWORDCHAR(char ch)

isXDIGIT

Returns a boolean indicating whether the specified character is a hexadecimal
 digit. In
the ASCII range these are [0-9A-Fa-f]. Variants isXDIGIT_A()
 and
isXDIGIT_L1() are identical to isXDIGIT().
 See the top of this section for an
explanation of variants isXDIGIT_uni, isXDIGIT_utf8, isXDIGIT_LC,
isXDIGIT_LC_uvchr, and isXDIGIT_LC_utf8.

	 bool	 isXDIGIT(char ch)

Cloning an interpreter
perl_clone

Create and return a new interpreter by cloning the current one.

perl_clone takes these flags as parameters:

CLONEf_COPY_STACKS - is used to, well, copy the stacks also,
 without it we only
clone the data and zero the stacks,
 with it we copy the stacks and the new perl
interpreter is
 ready to run at the exact same point as the previous one.
 The
pseudo-fork code uses COPY_STACKS while the
 threads->create doesn't.

CLONEf_KEEP_PTR_TABLE -
 perl_clone keeps a ptr_table with the pointer of the old

Perl version 5.20.1 documentation - perlapi

Page 13http://perldoc.perl.org

variable as a key and the new variable as a value,
 this allows it to check if something
has been cloned and not
 clone it again but rather just use the value and increase the

refcount. If KEEP_PTR_TABLE is not set then perl_clone will kill
 the ptr_table using
the function ptr_table_free(PL_ptr_table); PL_ptr_table = NULL;,

reason to keep it around is if you want to dup some of your own
 variable who are
outside the graph perl scans, example of this
 code is in threads.xs create.

CLONEf_CLONE_HOST -
 This is a win32 thing, it is ignored on unix, it tells perls

win32host code (which is c++) to clone itself, this is needed on
 win32 if you want to run
two threads at the same time,
 if you just want to do some stuff in a separate perl
interpreter
 and then throw it away and return to the original one,
 you don't need to do
anything.

	 PerlInterpreter* perl_clone(
	 PerlInterpreter *proto_perl,
	 UV flags
)

Compile-time scope hooks
BhkDISABLE

NOTE: this function is experimental and may change or be
 removed without notice.

Temporarily disable an entry in this BHK structure, by clearing the
 appropriate flag.
which is a preprocessor token indicating which
 entry to disable.

	 void	 BhkDISABLE(BHK *hk, which)

BhkENABLE

NOTE: this function is experimental and may change or be
 removed without notice.

Re-enable an entry in this BHK structure, by setting the appropriate
 flag. which is a
preprocessor token indicating which entry to enable.
 This will assert (under
-DDEBUGGING) if the entry doesn't contain a valid
 pointer.

	 void	 BhkENABLE(BHK *hk, which)

BhkENTRY_set

NOTE: this function is experimental and may change or be
 removed without notice.

Set an entry in the BHK structure, and set the flags to indicate it is
 valid. which is a
preprocessing token indicating which entry to set.
 The type of ptr depends on the
entry.

	 void	 BhkENTRY_set(BHK *hk, which, void *ptr)

blockhook_register

NOTE: this function is experimental and may change or be
 removed without notice.

Register a set of hooks to be called when the Perl lexical scope changes
 at compile
time. See "Compile-time scope hooks" in perlguts.

NOTE: this function must be explicitly called as Perl_blockhook_register with an
aTHX_ parameter.

	 void	 Perl_blockhook_register(pTHX_ BHK *hk)

COP Hint Hashes
cophh_2hv

NOTE: this function is experimental and may change or be
 removed without notice.

Perl version 5.20.1 documentation - perlapi

Page 14http://perldoc.perl.org

Generates and returns a standard Perl hash representing the full set of
 key/value pairs
in the cop hints hash cophh. flags is currently
 unused and must be zero.

	 HV *	 cophh_2hv(const COPHH *cophh, U32 flags)

cophh_copy

NOTE: this function is experimental and may change or be
 removed without notice.

Make and return a complete copy of the cop hints hash cophh.

	 COPHH *	 cophh_copy(COPHH *cophh)

cophh_delete_pv

NOTE: this function is experimental and may change or be
 removed without notice.

Like cophh_delete_pvn, but takes a nul-terminated string instead of
 a string/length
pair.

	 COPHH *	 cophh_delete_pv(const COPHH *cophh,
		 const char *key, U32 hash,
		 U32 flags)

cophh_delete_pvn

NOTE: this function is experimental and may change or be
 removed without notice.

Delete a key and its associated value from the cop hints hash cophh,
 and returns the
modified hash. The returned hash pointer is in general
 not the same as the hash
pointer that was passed in. The input hash is
 consumed by the function, and the
pointer to it must not be subsequently
 used. Use cophh_copy if you need both hashes.

The key is specified by keypv and keylen. If flags has the COPHH_KEY_UTF8 bit set,
the key octets are interpreted as UTF-8,
 otherwise they are interpreted as Latin-1.
hash is a precomputed
 hash of the key string, or zero if it has not been precomputed.

	 COPHH *	 cophh_delete_pvn(COPHH *cophh,
		 const char *keypv,
		 STRLEN keylen, U32 hash,
		 U32 flags)

cophh_delete_pvs

NOTE: this function is experimental and may change or be
 removed without notice.

Like cophh_delete_pvn, but takes a literal string instead of a
 string/length pair, and no
precomputed hash.

	 COPHH *	 cophh_delete_pvs(const COPHH *cophh,
		 const char *key, U32 flags)

cophh_delete_sv

NOTE: this function is experimental and may change or be
 removed without notice.

Like cophh_delete_pvn, but takes a Perl scalar instead of a
 string/length pair.

	 COPHH *	 cophh_delete_sv(const COPHH *cophh, SV *key,
		 U32 hash, U32 flags)

cophh_fetch_pv

NOTE: this function is experimental and may change or be
 removed without notice.

Like cophh_fetch_pvn, but takes a nul-terminated string instead of
 a string/length pair.

Perl version 5.20.1 documentation - perlapi

Page 15http://perldoc.perl.org

	 SV *	 cophh_fetch_pv(const COPHH *cophh,
		 const char *key, U32 hash,
		 U32 flags)

cophh_fetch_pvn

NOTE: this function is experimental and may change or be
 removed without notice.

Look up the entry in the cop hints hash cophh with the key specified by keypv and
keylen. If flags has the COPHH_KEY_UTF8 bit set,
 the key octets are interpreted as
UTF-8, otherwise they are interpreted
 as Latin-1. hash is a precomputed hash of the
key string, or zero if
 it has not been precomputed. Returns a mortal scalar copy of the
value
 associated with the key, or &PL_sv_placeholder if there is no value

associated with the key.

	 SV *	 cophh_fetch_pvn(const COPHH *cophh,
		 const char *keypv,
		 STRLEN keylen, U32 hash,
		 U32 flags)

cophh_fetch_pvs

NOTE: this function is experimental and may change or be
 removed without notice.

Like cophh_fetch_pvn, but takes a literal string instead of a
 string/length pair, and no
precomputed hash.

	 SV *	 cophh_fetch_pvs(const COPHH *cophh,
		 const char *key, U32 flags)

cophh_fetch_sv

NOTE: this function is experimental and may change or be
 removed without notice.

Like cophh_fetch_pvn, but takes a Perl scalar instead of a
 string/length pair.

	 SV *	 cophh_fetch_sv(const COPHH *cophh, SV *key,
		 U32 hash, U32 flags)

cophh_free

NOTE: this function is experimental and may change or be
 removed without notice.

Discard the cop hints hash cophh, freeing all resources associated
 with it.

	 void	 cophh_free(COPHH *cophh)

cophh_new_empty

NOTE: this function is experimental and may change or be
 removed without notice.

Generate and return a fresh cop hints hash containing no entries.

	 COPHH *	 cophh_new_empty()

cophh_store_pv

NOTE: this function is experimental and may change or be
 removed without notice.

Like cophh_store_pvn, but takes a nul-terminated string instead of
 a string/length pair.

	 COPHH *	 cophh_store_pv(const COPHH *cophh,
		 const char *key, U32 hash,
		 SV *value, U32 flags)

cophh_store_pvn

Perl version 5.20.1 documentation - perlapi

Page 16http://perldoc.perl.org

NOTE: this function is experimental and may change or be
 removed without notice.

Stores a value, associated with a key, in the cop hints hash cophh,
 and returns the
modified hash. The returned hash pointer is in general
 not the same as the hash
pointer that was passed in. The input hash is
 consumed by the function, and the
pointer to it must not be subsequently
 used. Use cophh_copy if you need both hashes.

The key is specified by keypv and keylen. If flags has the COPHH_KEY_UTF8 bit set,
the key octets are interpreted as UTF-8,
 otherwise they are interpreted as Latin-1.
hash is a precomputed
 hash of the key string, or zero if it has not been precomputed.

value is the scalar value to store for this key. value is copied
 by this function, which
thus does not take ownership of any reference
 to it, and later changes to the scalar will
not be reflected in the
 value visible in the cop hints hash. Complex types of scalar will
not
 be stored with referential integrity, but will be coerced to strings.

	 COPHH *	 cophh_store_pvn(COPHH *cophh, const char *keypv,
		 STRLEN keylen, U32 hash,
		 SV *value, U32 flags)

cophh_store_pvs

NOTE: this function is experimental and may change or be
 removed without notice.

Like cophh_store_pvn, but takes a literal string instead of a
 string/length pair, and no
precomputed hash.

	 COPHH *	 cophh_store_pvs(const COPHH *cophh,
		 const char *key, SV *value,
		 U32 flags)

cophh_store_sv

NOTE: this function is experimental and may change or be
 removed without notice.

Like cophh_store_pvn, but takes a Perl scalar instead of a
 string/length pair.

	 COPHH *	 cophh_store_sv(const COPHH *cophh, SV *key,
		 U32 hash, SV *value, U32 flags)

COP Hint Reading
cop_hints_2hv

Generates and returns a standard Perl hash representing the full set of
 hint entries in
the cop cop. flags is currently unused and must
 be zero.

	 HV *	 cop_hints_2hv(const COP *cop, U32 flags)

cop_hints_fetch_pv

Like cop_hints_fetch_pvn, but takes a nul-terminated string instead
 of a string/length
pair.

	 SV *	 cop_hints_fetch_pv(const COP *cop,
		 const char *key, U32 hash,
		 U32 flags)

cop_hints_fetch_pvn

Look up the hint entry in the cop cop with the key specified by keypv and keylen. If
flags has the COPHH_KEY_UTF8 bit set,
 the key octets are interpreted as UTF-8,
otherwise they are interpreted
 as Latin-1. hash is a precomputed hash of the key
string, or zero if
 it has not been precomputed. Returns a mortal scalar copy of the
value
 associated with the key, or &PL_sv_placeholder if there is no value

Perl version 5.20.1 documentation - perlapi

Page 17http://perldoc.perl.org

associated with the key.

	 SV *	 cop_hints_fetch_pvn(const COP *cop,
		 const char *keypv,
		 STRLEN keylen, U32 hash,
		 U32 flags)

cop_hints_fetch_pvs

Like cop_hints_fetch_pvn, but takes a literal string instead of a
 string/length pair, and
no precomputed hash.

	 SV *	 cop_hints_fetch_pvs(const COP *cop,
		 const char *key, U32 flags)

cop_hints_fetch_sv

Like cop_hints_fetch_pvn, but takes a Perl scalar instead of a
 string/length pair.

	 SV *	 cop_hints_fetch_sv(const COP *cop, SV *key,
		 U32 hash, U32 flags)

Custom Operators
custom_op_register

Register a custom op. See "Custom Operators" in perlguts.

NOTE: this function must be explicitly called as Perl_custom_op_register with an
aTHX_ parameter.

	 void	 Perl_custom_op_register(pTHX_
		 Perl_ppaddr_t ppaddr,
		 const XOP *xop)

custom_op_xop

Return the XOP structure for a given custom op. This macro should be
 considered
internal to OP_NAME and the other access macros: use them instead.
 This macro
does call a function. Prior
 to 5.19.6, this was implemented as a
 function.

NOTE: this function must be explicitly called as Perl_custom_op_xop with an aTHX_
parameter.

	 const XOP * Perl_custom_op_xop(pTHX_ const OP *o)

XopDISABLE

Temporarily disable a member of the XOP, by clearing the appropriate flag.

	 void	 XopDISABLE(XOP *xop, which)

XopENABLE

Reenable a member of the XOP which has been disabled.

	 void	 XopENABLE(XOP *xop, which)

XopENTRY

Return a member of the XOP structure. which is a cpp token
 indicating which entry to
return. If the member is not set
 this will return a default value. The return type depends
on which. This macro evaluates its arguments more than
 once. If you are using
Perl_custom_op_xop to retreive a XOP * from a OP *, use the more efficient
XopENTRYCUSTOM instead.

Perl version 5.20.1 documentation - perlapi

Page 18http://perldoc.perl.org

		 XopENTRY(XOP *xop, which)

XopENTRYCUSTOM

Exactly like XopENTRY(XopENTRY(Perl_custom_op_xop(aTHX_ o), which)
but more
 efficient. The which parameter is identical to XopENTRY.

		 XopENTRYCUSTOM(const OP *o, which)

XopENTRY_set

Set a member of the XOP structure. which is a cpp token
 indicating which entry to set.
See "Custom Operators" in perlguts
 for details about the available members and how

they are used. This macro evaluates its argument
 more than once.

	 void	 XopENTRY_set(XOP *xop, which, value)

XopFLAGS

Return the XOP's flags.

	 U32	 XopFLAGS(XOP *xop)

CV Manipulation Functions
CvSTASH

Returns the stash of the CV. A stash is the symbol table hash, containing
 the
package-scoped variables in the package where the subroutine was defined.
 For more
information, see perlguts.

This also has a special use with XS AUTOLOAD subs.
 See "Autoloading with XSUBs"
in perlguts.

	 HV*	 CvSTASH(CV* cv)

get_cv

Uses strlen to get the length of name, then calls get_cvn_flags.

NOTE: the perl_ form of this function is deprecated.

	 CV*	 get_cv(const char* name, I32 flags)

get_cvn_flags

Returns the CV of the specified Perl subroutine. flags are passed to
gv_fetchpvn_flags. If GV_ADD is set and the Perl subroutine does not
 exist then it
will be declared (which has the same effect as saying sub name;). If GV_ADD is not
set and the subroutine does not exist
 then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

	 CV*	 get_cvn_flags(const char* name, STRLEN len,
		 I32 flags)

Debugging Utilities
dump_all

Dumps the entire optree of the current program starting at PL_main_root to STDERR.
Also dumps the optrees for all visible subroutines in PL_defstash.

	 void	 dump_all()

dump_packsubs

Perl version 5.20.1 documentation - perlapi

Page 19http://perldoc.perl.org

Dumps the optrees for all visible subroutines in stash.

	 void	 dump_packsubs(const HV* stash)

op_dump

Dumps the optree starting at OP o to STDERR.

	 void	 op_dump(const OP *o)

sv_dump

Dumps the contents of an SV to the STDERR filehandle.

For an example of its output, see Devel::Peek.

	 void	 sv_dump(SV* sv)

Embedding Functions
cv_clone

Clone a CV, making a lexical closure. proto supplies the prototype
 of the function: its
code, pad structure, and other attributes.
 The prototype is combined with a capture of
outer lexicals to which the
 code refers, which are taken from the currently-executing
instance of
 the immediately surrounding code.

	 CV *	 cv_clone(CV *proto)

cv_undef

Clear out all the active components of a CV. This can happen either
 by an explicit
undef &foo, or by the reference count going to zero.
 In the former case, we keep the
CvOUTSIDE pointer, so that any anonymous
 children can still follow the full lexical
scope chain.

	 void	 cv_undef(CV* cv)

find_rundefsv

Find and return the variable that is named $_ in the lexical scope
 of the
currently-executing function. This may be a lexical $_,
 or will otherwise be the global
one.

	 SV *	 find_rundefsv()

find_rundefsvoffset

DEPRECATED! It is planned to remove this function from a
 future release of Perl. Do
not use it for new code; remove it from
 existing code.

Find the position of the lexical $_ in the pad of the
 currently-executing function.
Returns the offset in the current pad,
 or NOT_IN_PAD if there is no lexical $_ in scope
(in which case
 the global one should be used instead). find_rundefsv is likely to be
more convenient.

NOTE: the perl_ form of this function is deprecated.

	 PADOFFSET find_rundefsvoffset()

load_module

Loads the module whose name is pointed to by the string part of name.
 Note that the
actual module name, not its filename, should be given.
 Eg, "Foo::Bar" instead of
"Foo/Bar.pm". flags can be any of
 PERL_LOADMOD_DENY,
PERL_LOADMOD_NOIMPORT, or PERL_LOADMOD_IMPORT_OPS
 (or 0 for no

Perl version 5.20.1 documentation - perlapi

Page 20http://perldoc.perl.org

flags). ver, if specified
 and not NULL, provides version semantics
 similar to use
Foo::Bar VERSION. The optional trailing SV*
 arguments can be used to specify
arguments to the module's import()
 method, similar to use Foo::Bar VERSION
LIST. They must be
 terminated with a final NULL pointer. Note that this list can only

be omitted when the PERL_LOADMOD_NOIMPORT flag has been used.
 Otherwise at
least a single NULL pointer to designate the default
 import list is required.

The reference count for each specified SV* parameter is decremented.

	 void	 load_module(U32 flags, SV* name, SV* ver, ...)

nothreadhook

Stub that provides thread hook for perl_destruct when there are
 no threads.

	 int	 nothreadhook()

pad_add_anon

Allocates a place in the currently-compiling pad (via pad_alloc)
 for an anonymous
function that is lexically scoped inside the
 currently-compiling function.
 The function
func is linked into the pad, and its CvOUTSIDE link
 to the outer scope is weakened to
avoid a reference loop.

One reference count is stolen, so you may need to do SvREFCNT_inc(func).

optype should be an opcode indicating the type of operation that the
 pad entry is to
support. This doesn't affect operational semantics,
 but is used for debugging.

	 PADOFFSET pad_add_anon(CV *func, I32 optype)

pad_add_name_pv

Exactly like pad_add_name_pvn, but takes a nul-terminated string
 instead of a
string/length pair.

	 PADOFFSET pad_add_name_pv(const char *name, U32 flags,
	 HV *typestash, HV *ourstash)

pad_add_name_pvn

Allocates a place in the currently-compiling pad for a named lexical
 variable. Stores
the name and other metadata in the name part of the
 pad, and makes preparations to
manage the variable's lexical scoping.
 Returns the offset of the allocated pad slot.

namepv/namelen specify the variable's name, including leading sigil.
 If typestash is
non-null, the name is for a typed lexical, and this
 identifies the type. If ourstash is
non-null, it's a lexical reference
 to a package variable, and this identifies the package.
The following
 flags can be OR'ed together:

 padadd_OUR redundantly specifies if it's a package
var
 padadd_STATE variable will retain value persistently
 padadd_NO_DUP_CHECK skip check for lexical shadowing

	 PADOFFSET pad_add_name_pvn(const char *namepv,
	 STRLEN namelen, U32 flags,
	 HV *typestash, HV *ourstash)

pad_add_name_sv

Exactly like pad_add_name_pvn, but takes the name string in the form
 of an SV
instead of a string/length pair.

Perl version 5.20.1 documentation - perlapi

Page 21http://perldoc.perl.org

	 PADOFFSET pad_add_name_sv(SV *name, U32 flags,
	 HV *typestash, HV *ourstash)

pad_alloc

NOTE: this function is experimental and may change or be
 removed without notice.

Allocates a place in the currently-compiling pad,
 returning the offset of the allocated
pad slot.
 No name is initially attached to the pad slot. tmptype is a set of flags
indicating the kind of pad entry required,
 which will be set in the value SV for the
allocated pad entry:

 SVs_PADMY named lexical variable ("my", "our", "state")
 SVs_PADTMP unnamed temporary store
 SVf_READONLY constant shared between recursion levels

SVf_READONLY has been supported here only since perl 5.20. To work with
 earlier
versions as well, use SVf_READONLY|SVs_PADTMP. SVf_READONLY
 does not cause
the SV in the pad slot to be marked read-only, but simply
 tells pad_alloc that it will
be made read-only (by the caller), or at
 least should be treated as such.

optype should be an opcode indicating the type of operation that the
 pad entry is to
support. This doesn't affect operational semantics,
 but is used for debugging.

	 PADOFFSET pad_alloc(I32 optype, U32 tmptype)

pad_compname_type

Looks up the type of the lexical variable at position po in the
 currently-compiling pad. If
the variable is typed, the stash of the
 class to which it is typed is returned. If not, NULL
is returned.

	 HV *	 pad_compname_type(PADOFFSET po)

pad_findmy_pv

Exactly like pad_findmy_pvn, but takes a nul-terminated string
 instead of a
string/length pair.

	 PADOFFSET pad_findmy_pv(const char *name, U32 flags)

pad_findmy_pvn

Given the name of a lexical variable, find its position in the
 currently-compiling pad.
namepv/namelen specify the variable's name, including leading sigil. flags is reserved
and must be zero.
 If it is not in the current pad but appears in the pad of any lexically

enclosing scope, then a pseudo-entry for it is added in the current pad.
 Returns the
offset in the current pad,
 or NOT_IN_PAD if no such lexical is in scope.

	 PADOFFSET pad_findmy_pvn(const char *namepv,
	 STRLEN namelen, U32 flags)

pad_findmy_sv

Exactly like pad_findmy_pvn, but takes the name string in the form
 of an SV instead of
a string/length pair.

	 PADOFFSET pad_findmy_sv(SV *name, U32 flags)

pad_setsv

Set the value at offset po in the current (compiling or executing) pad.
 Use the macro
PAD_SETSV() rather than calling this function directly.

Perl version 5.20.1 documentation - perlapi

Page 22http://perldoc.perl.org

	 void	 pad_setsv(PADOFFSET po, SV *sv)

pad_sv

Get the value at offset po in the current (compiling or executing) pad.
 Use macro
PAD_SV instead of calling this function directly.

	 SV *	 pad_sv(PADOFFSET po)

pad_tidy

NOTE: this function is experimental and may change or be
 removed without notice.

Tidy up a pad at the end of compilation of the code to which it belongs.
 Jobs
performed here are: remove most stuff from the pads of anonsub
 prototypes; give it a
@_; mark temporaries as such. type indicates
 the kind of subroutine:

 padtidy_SUB ordinary subroutine
 padtidy_SUBCLONE prototype for lexical closure
 padtidy_FORMAT format

	 void	 pad_tidy(padtidy_type type)

perl_alloc

Allocates a new Perl interpreter. See perlembed.

	 PerlInterpreter* perl_alloc()

perl_construct

Initializes a new Perl interpreter. See perlembed.

	 void	 perl_construct(PerlInterpreter *my_perl)

perl_destruct

Shuts down a Perl interpreter. See perlembed.

	 int	 perl_destruct(PerlInterpreter *my_perl)

perl_free

Releases a Perl interpreter. See perlembed.

	 void	 perl_free(PerlInterpreter *my_perl)

perl_parse

Tells a Perl interpreter to parse a Perl script. See perlembed.

	 int	 perl_parse(PerlInterpreter *my_perl,
		 XSINIT_t xsinit, int argc,
		 char** argv, char** env)

perl_run

Tells a Perl interpreter to run. See perlembed.

	 int	 perl_run(PerlInterpreter *my_perl)

require_pv

Tells Perl to require the file named by the string argument. It is
 analogous to the Perl
code eval "require '$file'". It's even
 implemented that way; consider using

Perl version 5.20.1 documentation - perlapi

Page 23http://perldoc.perl.org

load_module instead.

NOTE: the perl_ form of this function is deprecated.

	 void	 require_pv(const char* pv)

Functions in file dump.c
pv_display

Similar to

 pv_escape(dsv,pv,cur,pvlim,PERL_PV_ESCAPE_QUOTE);

except that an additional "\0" will be appended to the string when
 len > cur and pv[cur]
is "\0".

Note that the final string may be up to 7 chars longer than pvlim.

	 char*	 pv_display(SV *dsv, const char *pv, STRLEN cur,
		 STRLEN len, STRLEN pvlim)

pv_escape

Escapes at most the first "count" chars of pv and puts the results into
 dsv such that the
size of the escaped string will not exceed "max" chars
 and will not contain any
incomplete escape sequences.

If flags contains PERL_PV_ESCAPE_QUOTE then any double quotes in the string
 will
also be escaped.

Normally the SV will be cleared before the escaped string is prepared,
 but when
PERL_PV_ESCAPE_NOCLEAR is set this will not occur.

If PERL_PV_ESCAPE_UNI is set then the input string is treated as Unicode,
 if
PERL_PV_ESCAPE_UNI_DETECT is set then the input string is scanned
 using
is_utf8_string() to determine if it is Unicode.

If PERL_PV_ESCAPE_ALL is set then all input chars will be output
 using \x01F1
style escapes, otherwise if PERL_PV_ESCAPE_NONASCII is set, only
 non-ASCII
chars will be escaped using this style; otherwise, only chars above
 255 will be so
escaped; other non printable chars will use octal or
 common escaped patterns like \n.

Otherwise, if PERL_PV_ESCAPE_NOBACKSLASH
 then all chars below 255 will be
treated as printable and
 will be output as literals.

If PERL_PV_ESCAPE_FIRSTCHAR is set then only the first char of the
 string will be
escaped, regardless of max. If the output is to be in hex,
 then it will be returned as a
plain hex
 sequence. Thus the output will either be a single char,
 an octal escape
sequence, a special escape like \n or a hex value.

If PERL_PV_ESCAPE_RE is set then the escape char used will be a '%' and
 not a '\\'.
This is because regexes very often contain backslashed
 sequences, whereas '%' is
not a particularly common character in patterns.

Returns a pointer to the escaped text as held by dsv.

	 char*	 pv_escape(SV *dsv, char const * const str,
		 const STRLEN count, const STRLEN max,
		 STRLEN * const escaped,
		 const U32 flags)

pv_pretty

Converts a string into something presentable, handling escaping via
 pv_escape() and
supporting quoting and ellipses.

If the PERL_PV_PRETTY_QUOTE flag is set then the result will be double quoted

Perl version 5.20.1 documentation - perlapi

Page 24http://perldoc.perl.org

with any double quotes in the string escaped. Otherwise
 if the
PERL_PV_PRETTY_LTGT flag is set then the result be wrapped in
 angle brackets.

If the PERL_PV_PRETTY_ELLIPSES flag is set and not all characters in
 string were
output then an ellipsis ... will be appended to the
 string. Note that this happens
AFTER it has been quoted.

If start_color is non-null then it will be inserted after the opening
 quote (if there is one)
but before the escaped text. If end_color
 is non-null then it will be inserted after the
escaped text but before
 any quotes or ellipses.

Returns a pointer to the prettified text as held by dsv.

	 char*	 pv_pretty(SV *dsv, char const * const str,
		 const STRLEN count, const STRLEN max,
		 char const * const start_color,
		 char const * const end_color,
		 const U32 flags)

Functions in file inline.h
is_safe_syscall

Test that the given pv doesn't contain any internal NUL characters.
 If it does, set
errno to ENOENT, optionally warn, and return FALSE.

Return TRUE if the name is safe.

Used by the IS_SAFE_SYSCALL() macro.

	 bool	 is_safe_syscall(const char *pv, STRLEN len,
		 const char *what,
		 const char *op_name)

Functions in file mathoms.c
custom_op_desc

Return the description of a given custom op. This was once used by the
 OP_DESC
macro, but is no longer: it has only been kept for
 compatibility, and should not be used.

	 const char * custom_op_desc(const OP *o)

custom_op_name

Return the name for a given custom op. This was once used by the OP_NAME
 macro,
but is no longer: it has only been kept for compatibility, and
 should not be used.

	 const char * custom_op_name(const OP *o)

gv_fetchmethod

See gv_fetchmethod_autoload.

	 GV*	 gv_fetchmethod(HV* stash, const char* name)

pack_cat

The engine implementing pack() Perl function. Note: parameters
 next_in_list and flags
are not used. This call should not be used; use
 packlist instead.

	 void	 pack_cat(SV *cat, const char *pat,
		 const char *patend, SV **beglist,
		 SV **endlist, SV ***next_in_list,
		 U32 flags)

Perl version 5.20.1 documentation - perlapi

Page 25http://perldoc.perl.org

sv_2pvbyte_nolen

Return a pointer to the byte-encoded representation of the SV.
 May cause the SV to
be downgraded from UTF-8 as a side-effect.

Usually accessed via the SvPVbyte_nolen macro.

	 char*	 sv_2pvbyte_nolen(SV* sv)

sv_2pvutf8_nolen

Return a pointer to the UTF-8-encoded representation of the SV.
 May cause the SV to
be upgraded to UTF-8 as a side-effect.

Usually accessed via the SvPVutf8_nolen macro.

	 char*	 sv_2pvutf8_nolen(SV* sv)

sv_2pv_nolen

Like sv_2pv(), but doesn't return the length too. You should usually
 use the macro
wrapper SvPV_nolen(sv) instead.

	 char*	 sv_2pv_nolen(SV* sv)

sv_catpvn_mg

Like sv_catpvn, but also handles 'set' magic.

	 void	 sv_catpvn_mg(SV *sv, const char *ptr,
		 STRLEN len)

sv_catsv_mg

Like sv_catsv, but also handles 'set' magic.

	 void	 sv_catsv_mg(SV *dsv, SV *ssv)

sv_force_normal

Undo various types of fakery on an SV: if the PV is a shared string, make
 a private
copy; if we're a ref, stop refing; if we're a glob, downgrade to
 an xpvmg. See also
sv_force_normal_flags.

	 void	 sv_force_normal(SV *sv)

sv_iv

A private implementation of the SvIVx macro for compilers which can't
 cope with
complex macro expressions. Always use the macro instead.

	 IV	 sv_iv(SV* sv)

sv_nolocking

Dummy routine which "locks" an SV when there is no locking module present.
 Exists to
avoid test for a NULL function pointer and because it could
 potentially warn under
some level of strict-ness.

"Superseded" by sv_nosharing().

	 void	 sv_nolocking(SV *sv)

sv_nounlocking

Dummy routine which "unlocks" an SV when there is no locking module present.
 Exists
to avoid test for a NULL function pointer and because it could
 potentially warn under

Perl version 5.20.1 documentation - perlapi

Page 26http://perldoc.perl.org

some level of strict-ness.

"Superseded" by sv_nosharing().

	 void	 sv_nounlocking(SV *sv)

sv_nv

A private implementation of the SvNVx macro for compilers which can't
 cope with
complex macro expressions. Always use the macro instead.

	 NV	 sv_nv(SV* sv)

sv_pv

Use the SvPV_nolen macro instead

	 char*	 sv_pv(SV *sv)

sv_pvbyte

Use SvPVbyte_nolen instead.

	 char*	 sv_pvbyte(SV *sv)

sv_pvbyten

A private implementation of the SvPVbyte macro for compilers
 which can't cope with
complex macro expressions. Always use the macro
 instead.

	 char*	 sv_pvbyten(SV *sv, STRLEN *lp)

sv_pvn

A private implementation of the SvPV macro for compilers which can't
 cope with
complex macro expressions. Always use the macro instead.

	 char*	 sv_pvn(SV *sv, STRLEN *lp)

sv_pvutf8

Use the SvPVutf8_nolen macro instead

	 char*	 sv_pvutf8(SV *sv)

sv_pvutf8n

A private implementation of the SvPVutf8 macro for compilers
 which can't cope with
complex macro expressions. Always use the macro
 instead.

	 char*	 sv_pvutf8n(SV *sv, STRLEN *lp)

sv_taint

Taint an SV. Use SvTAINTED_on instead.

	 void	 sv_taint(SV* sv)

sv_unref

Unsets the RV status of the SV, and decrements the reference count of
 whatever was
being referenced by the RV. This can almost be thought of
 as a reversal of newSVrv.
This is sv_unref_flags with the flag
 being zero. See SvROK_off.

	 void	 sv_unref(SV* sv)

Perl version 5.20.1 documentation - perlapi

Page 27http://perldoc.perl.org

sv_usepvn

Tells an SV to use ptr to find its string value. Implemented by
 calling
sv_usepvn_flags with flags of 0, hence does not handle 'set'
 magic. See
sv_usepvn_flags.

	 void	 sv_usepvn(SV* sv, char* ptr, STRLEN len)

sv_usepvn_mg

Like sv_usepvn, but also handles 'set' magic.

	 void	 sv_usepvn_mg(SV *sv, char *ptr, STRLEN len)

sv_uv

A private implementation of the SvUVx macro for compilers which can't
 cope with
complex macro expressions. Always use the macro instead.

	 UV	 sv_uv(SV* sv)

unpack_str

The engine implementing unpack() Perl function. Note: parameters strbeg,
 new_s and
ocnt are not used. This call should not be used, use
 unpackstring instead.

	 I32	 unpack_str(const char *pat, const char *patend,
		 const char *s, const char *strbeg,
		 const char *strend, char **new_s,
		 I32 ocnt, U32 flags)

Functions in file op.c
alloccopstash

NOTE: this function is experimental and may change or be
 removed without notice.

Available only under threaded builds, this function allocates an entry in PL_stashpad
for the stash passed to it.

	 PADOFFSET alloccopstash(HV *hv)

op_contextualize

Applies a syntactic context to an op tree representing an expression. o is the op tree,
and context must be G_SCALAR, G_ARRAY,
 or G_VOID to specify the context to apply.
The modified op tree
 is returned.

	 OP *	 op_contextualize(OP *o, I32 context)

op_free

Free an op. Only use this when an op is no longer linked to from any
 optree.

	 void	 op_free(OP *o)

op_null

Neutralizes an op when it is no longer needed, but is still linked to from
 other ops.

	 void	 op_null(OP *o)

Functions in file perl.h
PERL_SYS_INIT

Provides system-specific tune up of the C runtime environment necessary to
 run Perl

Perl version 5.20.1 documentation - perlapi

Page 28http://perldoc.perl.org

interpreters. This should be called only once, before creating
 any Perl interpreters.

	 void	 PERL_SYS_INIT(int *argc, char*** argv)

PERL_SYS_INIT3

Provides system-specific tune up of the C runtime environment necessary to
 run Perl
interpreters. This should be called only once, before creating
 any Perl interpreters.

	 void	 PERL_SYS_INIT3(int *argc, char*** argv,
		 char*** env)

PERL_SYS_TERM

Provides system-specific clean up of the C runtime environment after
 running Perl
interpreters. This should be called only once, after
 freeing any remaining Perl
interpreters.

	 void	 PERL_SYS_TERM()

Functions in file pp_ctl.c
caller_cx

The XSUB-writer's equivalent of caller(). The
 returned PERL_CONTEXT structure can
be interrogated to find all the
 information returned to Perl by caller. Note that XSUBs
don't get a
 stack frame, so caller_cx(0, NULL) will return information for the

immediately-surrounding Perl code.

This function skips over the automatic calls to &DB::sub made on the
 behalf of the
debugger. If the stack frame requested was a sub called by DB::sub, the return value
will be the frame for the call to DB::sub, since that has the correct line number/etc. for
the call
 site. If dbcxp is non-NULL, it will be set to a pointer to the
 frame for the sub call
itself.

	 const PERL_CONTEXT * caller_cx(
	 I32 level,
	 const PERL_CONTEXT **dbcxp
)

find_runcv

Locate the CV corresponding to the currently executing sub or eval.
 If db_seqp is
non_null, skip CVs that are in the DB package and populate
 *db_seqp with the cop
sequence number at the point that the DB:: code was
 entered. (This allows debuggers
to eval in the scope of the breakpoint
 rather than in the scope of the debugger itself.)

	 CV*	 find_runcv(U32 *db_seqp)

Functions in file pp_pack.c
packlist

The engine implementing pack() Perl function.

	 void	 packlist(SV *cat, const char *pat,
		 const char *patend, SV **beglist,
		 SV **endlist)

unpackstring

The engine implementing the unpack() Perl function.

Using the template pat..patend, this function unpacks the string
 s..strend into a number
of mortal SVs, which it pushes onto the perl
 argument (@_) stack (so you will need to

Perl version 5.20.1 documentation - perlapi

Page 29http://perldoc.perl.org

issue a PUTBACK before and SPAGAIN after the call to this function). It returns the
number of
 pushed elements.

The strend and patend pointers should point to the byte following the last
 character of
each string.

Although this function returns its values on the perl argument stack, it
 doesn't take any
parameters from that stack (and thus in particular
 there's no need to do a PUSHMARK
before calling it, unlike call_pv for
 example).

	 I32	 unpackstring(const char *pat,
		 const char *patend, const char *s,
		 const char *strend, U32 flags)

Functions in file pp_sys.c
setdefout

Sets PL_defoutgv, the default file handle for output, to the passed in
 typeglob. As
PL_defoutgv "owns" a reference on its typeglob, the reference
 count of the passed in
typeglob is increased by one, and the reference count
 of the typeglob that
PL_defoutgv points to is decreased by one.

	 void	 setdefout(GV* gv)

Functions in file utf8.h
ibcmp_utf8

This is a synonym for (! foldEQ_utf8())

	 I32	 ibcmp_utf8(const char *s1, char **pe1, UV l1,
		 bool u1, const char *s2, char **pe2,
		 UV l2, bool u2)

Functions in file util.h
ibcmp

This is a synonym for (! foldEQ())

	 I32	 ibcmp(const char* a, const char* b, I32 len)

ibcmp_locale

This is a synonym for (! foldEQ_locale())

	 I32	 ibcmp_locale(const char* a, const char* b,
		 I32 len)

Functions in file vutil.c
new_version

Returns a new version object based on the passed in SV:

 SV *sv = new_version(SV *ver);

Does not alter the passed in ver SV. See "upg_version" if you
 want to upgrade the SV.

	 SV*	 new_version(SV *ver)

prescan_version

Validate that a given string can be parsed as a version object, but doesn't
 actually
perform the parsing. Can use either strict or lax validation rules.
 Can optionally set a
number of hint variables to save the parsing code
 some time when tokenizing.

Perl version 5.20.1 documentation - perlapi

Page 30http://perldoc.perl.org

	 const char* prescan_version(const char *s, bool strict,
	 const char** errstr,
	 bool *sqv,
	 int *ssaw_decimal,
	 int *swidth, bool *salpha)

scan_version

Returns a pointer to the next character after the parsed
 version string, as well as
upgrading the passed in SV to
 an RV.

Function must be called with an already existing SV like

 sv = newSV(0);
 s = scan_version(s, SV *sv, bool qv);

Performs some preprocessing to the string to ensure that
 it has the correct
characteristics of a version. Flags the
 object if it contains an underscore (which
denotes this
 is an alpha version). The boolean qv denotes that the version
 should be
interpreted as if it had multiple decimals, even if
 it doesn't.

	 const char* scan_version(const char *s, SV *rv, bool qv)

upg_version

In-place upgrade of the supplied SV to a version object.

 SV *sv = upg_version(SV *sv, bool qv);

Returns a pointer to the upgraded SV. Set the boolean qv if you want
 to force this SV
to be interpreted as an "extended" version.

	 SV*	 upg_version(SV *ver, bool qv)

vcmp

Version object aware cmp. Both operands must already have been converted into
version objects.

	 int	 vcmp(SV *lhv, SV *rhv)

vnormal

Accepts a version object and returns the normalized string
 representation. Call like:

 sv = vnormal(rv);

NOTE: you can pass either the object directly or the SV
 contained within the RV.

The SV returned has a refcount of 1.

	 SV*	 vnormal(SV *vs)

vnumify

Accepts a version object and returns the normalized floating
 point representation. Call
like:

 sv = vnumify(rv);

NOTE: you can pass either the object directly or the SV
 contained within the RV.

The SV returned has a refcount of 1.

	 SV*	 vnumify(SV *vs)

Perl version 5.20.1 documentation - perlapi

Page 31http://perldoc.perl.org

vstringify

In order to maintain maximum compatibility with earlier versions
 of Perl, this function
will return either the floating point
 notation or the multiple dotted notation, depending
on whether
 the original version contained 1 or more dots, respectively.

The SV returned has a refcount of 1.

	 SV*	 vstringify(SV *vs)

vverify

Validates that the SV contains valid internal structure for a version object.
 It may be
passed either the version object (RV) or the hash itself (HV). If
 the structure is valid, it
returns the HV. If the structure is invalid,
 it returns NULL.

 SV *hv = vverify(sv);

Note that it only confirms the bare minimum structure (so as not to get
 confused by
derived classes which may contain additional hash entries):

	 SV*	 vverify(SV *vs)

Global Variables
PL_check

Array, indexed by opcode, of functions that will be called for the "check"
 phase of
optree building during compilation of Perl code. For most (but
 not all) types of op, once
the op has been initially built and populated
 with child ops it will be filtered through the
check function referenced
 by the appropriate element of this array. The new op is
passed in as the
 sole argument to the check function, and the check function returns
the
 completed op. The check function may (as the name suggests) check the op
 for
validity and signal errors. It may also initialise or modify parts of
 the ops, or perform
more radical surgery such as adding or removing child
 ops, or even throw the op away
and return a different op in its place.

This array of function pointers is a convenient place to hook into the
 compilation
process. An XS module can put its own custom check function
 in place of any of the
standard ones, to influence the compilation of a
 particular type of op. However, a
custom check function must never fully
 replace a standard check function (or even a
custom check function from
 another module). A module modifying checking must
instead wrap the
 preexisting check function. A custom check function must be
selective
 about when to apply its custom behaviour. In the usual case where
 it decides
not to do anything special with an op, it must chain the
 preexisting op function. Check
functions are thus linked in a chain,
 with the core's base checker at the end.

For thread safety, modules should not write directly to this array.
 Instead, use the
function wrap_op_checker.

PL_keyword_plugin

NOTE: this function is experimental and may change or be
 removed without notice.

Function pointer, pointing at a function used to handle extended keywords.
 The
function should be declared as

	 int keyword_plugin_function(pTHX_
		 char *keyword_ptr, STRLEN keyword_len,
		 OP **op_ptr)

The function is called from the tokeniser, whenever a possible keyword
 is seen.
keyword_ptr points at the word in the parser's input
 buffer, and keyword_len gives
its length; it is not null-terminated.
 The function is expected to examine the word, and

Perl version 5.20.1 documentation - perlapi

Page 32http://perldoc.perl.org

possibly other state
 such as %^H, to decide whether it wants to handle it
 as an
extended keyword. If it does not, the function should return
KEYWORD_PLUGIN_DECLINE, and the normal parser process will continue.

If the function wants to handle the keyword, it first must
 parse anything following the
keyword that is part of the syntax
 introduced by the keyword. See Lexer interface for
details.

When a keyword is being handled, the plugin function must build
 a tree of OP
structures, representing the code that was parsed.
 The root of the tree must be stored
in *op_ptr. The function then
 returns a constant indicating the syntactic role of the
construct that
 it has parsed: KEYWORD_PLUGIN_STMT if it is a complete statement, or
KEYWORD_PLUGIN_EXPR if it is an expression. Note that a statement
 construct cannot
be used inside an expression (except via do BLOCK
 and similar), and an expression is
not a complete statement (it requires
 at least a terminating semicolon).

When a keyword is handled, the plugin function may also have
 (compile-time) side
effects. It may modify %^H, define functions, and
 so on. Typically, if side effects are the
main purpose of a handler,
 it does not wish to generate any ops to be included in the
normal
 compilation. In this case it is still required to supply an op tree,
 but it suffices to
generate a single null op.

That's how the *PL_keyword_plugin function needs to behave overall.

Conventionally, however, one does not completely replace the existing
 handler
function. Instead, take a copy of PL_keyword_plugin before
 assigning your own
function pointer to it. Your handler function should
 look for keywords that it is
interested in and handle those. Where it
 is not interested, it should call the saved
plugin function, passing on
 the arguments it received. Thus PL_keyword_plugin
actually points
 at a chain of handler functions, all of which have an opportunity to

handle keywords, and only the last function in the chain (built into
 the Perl core) will
normally return KEYWORD_PLUGIN_DECLINE.

GV Functions
GvAV

Return the AV from the GV.

	 AV*	 GvAV(GV* gv)

GvCV

Return the CV from the GV.

	 CV*	 GvCV(GV* gv)

GvHV

Return the HV from the GV.

	 HV*	 GvHV(GV* gv)

GvSV

Return the SV from the GV.

	 SV*	 GvSV(GV* gv)

gv_const_sv

If gv is a typeglob whose subroutine entry is a constant sub eligible for
 inlining, or gv
is a placeholder reference that would be promoted to such
 a typeglob, then returns the
value returned by the sub. Otherwise, returns
 NULL.

	 SV*	 gv_const_sv(GV* gv)

Perl version 5.20.1 documentation - perlapi

Page 33http://perldoc.perl.org

gv_fetchmeth

Like gv_fetchmeth_pvn, but lacks a flags parameter.

	 GV*	 gv_fetchmeth(HV* stash, const char* name,
		 STRLEN len, I32 level)

gv_fetchmethod_autoload

Returns the glob which contains the subroutine to call to invoke the method
 on the
stash. In fact in the presence of autoloading this may be the
 glob for "AUTOLOAD".
In this case the corresponding variable $AUTOLOAD is
 already setup.

The third parameter of gv_fetchmethod_autoload determines whether

AUTOLOAD lookup is performed if the given method is not present: non-zero
 means
yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD.
 Calling
gv_fetchmethod is equivalent to calling gv_fetchmethod_autoload
 with a
non-zero autoload parameter.

These functions grant "SUPER" token
 as a prefix of the method name. Note
 that if you
want to keep the returned glob for a long time, you need to
 check for it being
"AUTOLOAD", since at the later time the call may load a
 different subroutine due to
$AUTOLOAD changing its value. Use the glob
 created as a side effect to do this.

These functions have the same side-effects as gv_fetchmeth with level==0. The
warning against passing the GV returned by gv_fetchmeth to call_sv applies
equally to these functions.

	 GV*	 gv_fetchmethod_autoload(HV* stash,
		 const char* name,
		 I32 autoload)

gv_fetchmeth_autoload

This is the old form of gv_fetchmeth_pvn_autoload, which has no flags
 parameter.

	 GV*	 gv_fetchmeth_autoload(HV* stash,
		 const char* name,
		 STRLEN len, I32 level)

gv_fetchmeth_pv

Exactly like gv_fetchmeth_pvn, but takes a nul-terminated string instead of a
string/length pair.

	 GV*	 gv_fetchmeth_pv(HV* stash, const char* name,
		 I32 level, U32 flags)

gv_fetchmeth_pvn

Returns the glob with the given name and a defined subroutine or NULL. The glob lives
in the given stash, or in the stashes
 accessible via @ISA and UNIVERSAL::.

The argument level should be either 0 or -1. If level==0, as a
 side-effect creates a
glob with the given name in the given stash
 which in the case of success contains an
alias for the subroutine, and sets
 up caching info for this glob.

The only significant values for flags are GV_SUPER and SVf_UTF8.

GV_SUPER indicates that we want to look up the method in the superclasses
 of the
stash.

The
 GV returned from gv_fetchmeth may be a method cache entry, which is not

visible to Perl code. So when calling call_sv, you should not use
 the GV directly;
instead, you should use the method's CV, which can be
 obtained from the GV with the

Perl version 5.20.1 documentation - perlapi

Page 34http://perldoc.perl.org

GvCV macro.

	 GV*	 gv_fetchmeth_pvn(HV* stash, const char* name,
		 STRLEN len, I32 level,
		 U32 flags)

gv_fetchmeth_pvn_autoload

Same as gv_fetchmeth_pvn(), but looks for autoloaded subroutines too.
 Returns a
glob for the subroutine.

For an autoloaded subroutine without a GV, will create a GV even
 if level < 0. For
an autoloaded subroutine without a stub, GvCV()
 of the result may be zero.

Currently, the only significant value for flags is SVf_UTF8.

	 GV*	 gv_fetchmeth_pvn_autoload(HV* stash,
		 const char* name,
		 STRLEN len, I32 level,
		 U32 flags)

gv_fetchmeth_pv_autoload

Exactly like gv_fetchmeth_pvn_autoload, but takes a nul-terminated string
 instead of a
string/length pair.

	 GV*	 gv_fetchmeth_pv_autoload(HV* stash,
		 const char* name,
		 I32 level, U32 flags)

gv_fetchmeth_sv

Exactly like gv_fetchmeth_pvn, but takes the name string in the form
 of an SV instead
of a string/length pair.

	 GV*	 gv_fetchmeth_sv(HV* stash, SV* namesv,
		 I32 level, U32 flags)

gv_fetchmeth_sv_autoload

Exactly like gv_fetchmeth_pvn_autoload, but takes the name string in the form
 of an
SV instead of a string/length pair.

	 GV*	 gv_fetchmeth_sv_autoload(HV* stash, SV* namesv,
		 I32 level, U32 flags)

gv_init

The old form of gv_init_pvn(). It does not work with UTF8 strings, as it
 has no flags
parameter. If the multi parameter is set, the
 GV_ADDMULTI flag will be passed to
gv_init_pvn().

	 void	 gv_init(GV* gv, HV* stash, const char* name,
		 STRLEN len, int multi)

gv_init_pv

Same as gv_init_pvn(), but takes a nul-terminated string for the name
 instead of
separate char * and length parameters.

	 void	 gv_init_pv(GV* gv, HV* stash, const char* name,
		 U32 flags)

gv_init_pvn

Perl version 5.20.1 documentation - perlapi

Page 35http://perldoc.perl.org

Converts a scalar into a typeglob. This is an incoercible typeglob;
 assigning a
reference to it will assign to one of its slots, instead of
 overwriting it as happens with
typeglobs created by SvSetSV. Converting
 any scalar that is SvOK() may produce
unpredictable results and is reserved
 for perl's internal use.

gv is the scalar to be converted.

stash is the parent stash/package, if any.

name and len give the name. The name must be unqualified;
 that is, it must not
include the package name. If gv is a
 stash element, it is the caller's responsibility to
ensure that the name
 passed to this function matches the name of the element. If it
does not
 match, perl's internal bookkeeping will get out of sync.

flags can be set to SVf_UTF8 if name is a UTF8 string, or
 the return value of
SvUTF8(sv). It can also take the
 GV_ADDMULTI flag, which means to pretend that the
GV has been
 seen before (i.e., suppress "Used once" warnings).

	 void	 gv_init_pvn(GV* gv, HV* stash, const char* name,
		 STRLEN len, U32 flags)

gv_init_sv

Same as gv_init_pvn(), but takes an SV * for the name instead of separate
 char * and
length parameters. flags is currently unused.

	 void	 gv_init_sv(GV* gv, HV* stash, SV* namesv,
		 U32 flags)

gv_stashpv

Returns a pointer to the stash for a specified package. Uses strlen to
 determine the
length of name, then calls gv_stashpvn().

	 HV*	 gv_stashpv(const char* name, I32 flags)

gv_stashpvn

Returns a pointer to the stash for a specified package. The namelen
 parameter
indicates the length of the name, in bytes. flags is passed
 to
gv_fetchpvn_flags(), so if set to GV_ADD then the package will be
 created if it
does not already exist. If the package does not exist and flags is 0 (or any other
setting that does not create packages) then NULL
 is returned.

Flags may be one of:

 GV_ADD
 SVf_UTF8
 GV_NOADD_NOINIT
 GV_NOINIT
 GV_NOEXPAND
 GV_ADDMG

The most important of which are probably GV_ADD and SVf_UTF8.

	 HV*	 gv_stashpvn(const char* name, U32 namelen,
		 I32 flags)

gv_stashpvs

Like gv_stashpvn, but takes a literal string instead of a string/length pair.

	 HV*	 gv_stashpvs(const char* name, I32 create)

Perl version 5.20.1 documentation - perlapi

Page 36http://perldoc.perl.org

gv_stashsv

Returns a pointer to the stash for a specified package. See gv_stashpvn.

	 HV*	 gv_stashsv(SV* sv, I32 flags)

Handy Values
Nullav

Null AV pointer.

(deprecated - use (AV *)NULL instead)

Nullch

Null character pointer. (No longer available when PERL_CORE is
 defined.)

Nullcv

Null CV pointer.

(deprecated - use (CV *)NULL instead)

Nullhv

Null HV pointer.

(deprecated - use (HV *)NULL instead)

Nullsv

Null SV pointer. (No longer available when PERL_CORE is defined.)

Hash Manipulation Functions
cop_fetch_label

NOTE: this function is experimental and may change or be
 removed without notice.

Returns the label attached to a cop.
 The flags pointer may be set to SVf_UTF8 or 0.

	 const char * cop_fetch_label(COP *const cop,
	 STRLEN *len, U32 *flags)

cop_store_label

NOTE: this function is experimental and may change or be
 removed without notice.

Save a label into a cop_hints_hash.
 You need to set flags to SVf_UTF8
 for a utf-8
label.

	 void	 cop_store_label(COP *const cop,
		 const char *label, STRLEN len,
		 U32 flags)

get_hv

Returns the HV of the specified Perl hash. flags are passed to gv_fetchpv. If
GV_ADD is set and the
 Perl variable does not exist then it will be created. If flags is
zero
 and the variable does not exist then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

	 HV*	 get_hv(const char *name, I32 flags)

HEf_SVKEY

This flag, used in the length slot of hash entries and magic structures,
 specifies the
structure contains an SV* pointer where a char* pointer
 is to be expected. (For
information only--not to be used).

Perl version 5.20.1 documentation - perlapi

Page 37http://perldoc.perl.org

HeHASH

Returns the computed hash stored in the hash entry.

	 U32	 HeHASH(HE* he)

HeKEY

Returns the actual pointer stored in the key slot of the hash entry. The
 pointer may be
either char* or SV*, depending on the value of HeKLEN(). Can be assigned to. The
HePV() or HeSVKEY() macros are
 usually preferable for finding the value of a key.

	 void*	 HeKEY(HE* he)

HeKLEN

If this is negative, and amounts to HEf_SVKEY, it indicates the entry
 holds an SV* key.
Otherwise, holds the actual length of the key. Can
 be assigned to. The HePV() macro
is usually preferable for finding key
 lengths.

	 STRLEN	 HeKLEN(HE* he)

HePV

Returns the key slot of the hash entry as a char* value, doing any
 necessary
dereferencing of possibly SV* keys. The length of the string
 is placed in len (this is a
macro, so do not use &len). If you do
 not care about what the length of the key is, you
may use the global
 variable PL_na, though this is rather less efficient than using a
local
 variable. Remember though, that hash keys in perl are free to contain
 embedded
nulls, so using strlen() or similar is not a good way to find
 the length of hash keys.
This is very similar to the SvPV() macro
 described elsewhere in this document. See
also HeUTF8.

If you are using HePV to get values to pass to newSVpvn() to create a
 new SV, you
should consider using newSVhek(HeKEY_hek(he)) as it is more
 efficient.

	 char*	 HePV(HE* he, STRLEN len)

HeSVKEY

Returns the key as an SV*, or NULL if the hash entry does not
 contain an SV* key.

	 SV*	 HeSVKEY(HE* he)

HeSVKEY_force

Returns the key as an SV*. Will create and return a temporary mortal SV* if the hash
entry contains only a char* key.

	 SV*	 HeSVKEY_force(HE* he)

HeSVKEY_set

Sets the key to a given SV*, taking care to set the appropriate flags to
 indicate the
presence of an SV* key, and returns the same SV*.

	 SV*	 HeSVKEY_set(HE* he, SV* sv)

HeUTF8

Returns whether the char * value returned by HePV is encoded in UTF-8,
 doing any
necessary dereferencing of possibly SV* keys. The value returned
 will be 0 or non-0,
not necessarily 1 (or even a value with any low bits set),
 so do not blindly assign this
to a bool variable, as bool may be a
 typedef for char.

Perl version 5.20.1 documentation - perlapi

Page 38http://perldoc.perl.org

	 U32	 HeUTF8(HE* he)

HeVAL

Returns the value slot (type SV*)
 stored in the hash entry. Can be assigned
 to.

 SV *foo= HeVAL(hv);
 HeVAL(hv)= sv;

	 SV*	 HeVAL(HE* he)

HvENAME

Returns the effective name of a stash, or NULL if there is none. The
 effective name
represents a location in the symbol table where this stash
 resides. It is updated
automatically when packages are aliased or deleted.
 A stash that is no longer in the
symbol table has no effective name. This
 name is preferable to HvNAME for use in
MRO linearisations and isa
 caches.

	 char*	 HvENAME(HV* stash)

HvENAMELEN

Returns the length of the stash's effective name.

	 STRLEN	 HvENAMELEN(HV *stash)

HvENAMEUTF8

Returns true if the effective name is in UTF8 encoding.

	 unsigned char HvENAMEUTF8(HV *stash)

HvNAME

Returns the package name of a stash, or NULL if stash isn't a stash.
 See SvSTASH,
CvSTASH.

	 char*	 HvNAME(HV* stash)

HvNAMELEN

Returns the length of the stash's name.

	 STRLEN	 HvNAMELEN(HV *stash)

HvNAMEUTF8

Returns true if the name is in UTF8 encoding.

	 unsigned char HvNAMEUTF8(HV *stash)

hv_assert

Check that a hash is in an internally consistent state.

	 void	 hv_assert(HV *hv)

hv_clear

Frees the all the elements of a hash, leaving it empty.
 The XS equivalent of %hash =
(). See also hv_undef.

If any destructors are triggered as a result, the hv itself may
 be freed.

	 void	 hv_clear(HV *hv)

Perl version 5.20.1 documentation - perlapi

Page 39http://perldoc.perl.org

hv_clear_placeholders

Clears any placeholders from a hash. If a restricted hash has any of its keys
 marked
as readonly and the key is subsequently deleted, the key is not actually
 deleted but is
marked by assigning it a value of &PL_sv_placeholder. This tags
 it so it will be ignored
by future operations such as iterating over the hash,
 but will still allow the hash to have
a value reassigned to the key at some
 future point. This function clears any such
placeholder keys from the hash.
 See Hash::Util::lock_keys() for an example of its use.

	 void	 hv_clear_placeholders(HV *hv)

hv_copy_hints_hv

A specialised version of newHVhv for copying %^H. ohv must be
 a pointer to a hash
(which may have %^H magic, but should be generally
 non-magical), or NULL
(interpreted as an empty hash). The content
 of ohv is copied to a new hash, which has
the %^H-specific magic
 added to it. A pointer to the new hash is returned.

	 HV *	 hv_copy_hints_hv(HV *ohv)

hv_delete

Deletes a key/value pair in the hash. The value's SV is removed from
 the hash, made
mortal, and returned to the caller. The absolute
 value of klen is the length of the key.
If klen is negative the
 key is assumed to be in UTF-8-encoded Unicode. The flags
value
 will normally be zero; if set to G_DISCARD then NULL will be returned.
 NULL
will also be returned if the key is not found.

	 SV*	 hv_delete(HV *hv, const char *key, I32 klen,
		 I32 flags)

hv_delete_ent

Deletes a key/value pair in the hash. The value SV is removed from the hash,
 made
mortal, and returned to the caller. The flags value will normally be
 zero; if set to
G_DISCARD then NULL will be returned. NULL will also be
 returned if the key is not
found. hash can be a valid precomputed hash
 value, or 0 to ask for it to be computed.

	 SV*	 hv_delete_ent(HV *hv, SV *keysv, I32 flags,
		 U32 hash)

hv_exists

Returns a boolean indicating whether the specified hash key exists. The
 absolute
value of klen is the length of the key. If klen is
 negative the key is assumed to be in
UTF-8-encoded Unicode.

	 bool	 hv_exists(HV *hv, const char *key, I32 klen)

hv_exists_ent

Returns a boolean indicating whether
 the specified hash key exists. hash
 can be a
valid precomputed hash value, or 0 to ask for it to be
 computed.

	 bool	 hv_exists_ent(HV *hv, SV *keysv, U32 hash)

hv_fetch

Returns the SV which corresponds to the specified key in the hash.
 The absolute value
of klen is the length of the key. If klen is
 negative the key is assumed to be in
UTF-8-encoded Unicode. If lval is set then the fetch will be part of a store. This
means that if
 there is no value in the hash associated with the given key, then one is

created and a pointer to it is returned. The SV* it points to can be
 assigned to. But

Perl version 5.20.1 documentation - perlapi

Page 40http://perldoc.perl.org

always check that the
 return value is non-null before dereferencing it to an SV*.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more

information on how to use this function on tied hashes.

	 SV**	 hv_fetch(HV *hv, const char *key, I32 klen,
		 I32 lval)

hv_fetchs

Like hv_fetch, but takes a literal string instead of a string/length pair.

	 SV**	 hv_fetchs(HV* tb, const char* key, I32 lval)

hv_fetch_ent

Returns the hash entry which corresponds to the specified key in the hash. hash must
be a valid precomputed hash number for the given key, or 0
 if you want the function to
compute it. IF lval is set then the fetch
 will be part of a store. Make sure the return
value is non-null before
 accessing it. The return value when hv is a tied hash is a
pointer to a
 static location, so be sure to make a copy of the structure if you need to

store it somewhere.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more

information on how to use this function on tied hashes.

	 HE*	 hv_fetch_ent(HV *hv, SV *keysv, I32 lval,
		 U32 hash)

hv_fill

Returns the number of hash buckets that
 happen to be in use. This function is

wrapped by the macro HvFILL.

Previously this value was always stored in the HV structure, which created an

overhead on every hash (and pretty much every object) for something that was
 rarely
used. Now we calculate it on demand the first
 time that it is needed, and cache it if that
calculation
 is going to be costly to repeat. The cached
 value is updated by insertions
and deletions, but (currently) discarded if
 the hash is split.

	 STRLEN	 hv_fill(HV *const hv)

hv_iterinit

Prepares a starting point to traverse a hash table. Returns the number of
 keys in the
hash (i.e. the same as HvUSEDKEYS(hv)). The return value is
 currently only
meaningful for hashes without tie magic.

NOTE: Before version 5.004_65, hv_iterinit used to return the number of
 hash
buckets that happen to be in use. If you still need that esoteric
 value, you can get it
through the macro HvFILL(hv).

	 I32	 hv_iterinit(HV *hv)

hv_iterkey

Returns the key from the current position of the hash iterator. See hv_iterinit.

	 char*	 hv_iterkey(HE* entry, I32* retlen)

hv_iterkeysv

Returns the key as an SV* from the current position of the hash
 iterator. The return
value will always be a mortal copy of the key. Also
 see hv_iterinit.

Perl version 5.20.1 documentation - perlapi

Page 41http://perldoc.perl.org

	 SV*	 hv_iterkeysv(HE* entry)

hv_iternext

Returns entries from a hash iterator. See hv_iterinit.

You may call hv_delete or hv_delete_ent on the hash entry that the
 iterator
currently points to, without losing your place or invalidating your
 iterator. Note that in
this case the current entry is deleted from the hash
 with your iterator holding the last
reference to it. Your iterator is flagged
 to free the entry on the next call to
hv_iternext, so you must not discard
 your iterator immediately else the entry will
leak - call hv_iternext to
 trigger the resource deallocation.

	 HE*	 hv_iternext(HV *hv)

hv_iternextsv

Performs an hv_iternext, hv_iterkey, and hv_iterval in one
 operation.

	 SV*	 hv_iternextsv(HV *hv, char **key, I32 *retlen)

hv_iternext_flags

NOTE: this function is experimental and may change or be
 removed without notice.

Returns entries from a hash iterator. See hv_iterinit and hv_iternext.
 The
flags value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
 set
the placeholders keys (for restricted hashes) will be returned in addition
 to normal
keys. By default placeholders are automatically skipped over.
 Currently a placeholder
is implemented with a value that is &PL_sv_placeholder. Note that the
implementation of placeholders and
 restricted hashes may change, and the
implementation currently is
 insufficiently abstracted for any change to be tidy.

	 HE*	 hv_iternext_flags(HV *hv, I32 flags)

hv_iterval

Returns the value from the current position of the hash iterator. See hv_iterkey.

	 SV*	 hv_iterval(HV *hv, HE *entry)

hv_magic

Adds magic to a hash. See sv_magic.

	 void	 hv_magic(HV *hv, GV *gv, int how)

hv_scalar

Evaluates the hash in scalar context and returns the result. Handles magic
 when the
hash is tied.

	 SV*	 hv_scalar(HV *hv)

hv_store

Stores an SV in a hash. The hash key is specified as key and the
 absolute value of
klen is the length of the key. If klen is
 negative the key is assumed to be in
UTF-8-encoded Unicode. The hash parameter is the precomputed hash value; if it is
zero then
 Perl will compute it.

The return value will be
 NULL if the operation failed or if the value did not need to be
actually
 stored within the hash (as in the case of tied hashes). Otherwise it can
 be
dereferenced to get the original SV*. Note that the caller is
 responsible for suitably

Perl version 5.20.1 documentation - perlapi

Page 42http://perldoc.perl.org

incrementing the reference count of val before
 the call, and decrementing it if the
function returned NULL. Effectively
 a successful hv_store takes ownership of one
reference to val. This is
 usually what you want; a newly created SV has a reference
count of one, so
 if all your code does is create SVs then store them in a hash, hv_store
will own the only reference to the new SV, and your code doesn't need to do
 anything
further to tidy up. hv_store is not implemented as a call to
 hv_store_ent, and does not
create a temporary SV for the key, so if your
 key data is not already in SV form then
use hv_store in preference to
 hv_store_ent.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more

information on how to use this function on tied hashes.

	 SV**	 hv_store(HV *hv, const char *key, I32 klen,
		 SV *val, U32 hash)

hv_stores

Like hv_store, but takes a literal string instead of a string/length pair
 and omits the
hash parameter.

	 SV**	 hv_stores(HV* tb, const char* key,
		 NULLOK SV* val)

hv_store_ent

Stores val in a hash. The hash key is specified as key. The hash
 parameter is the
precomputed hash value; if it is zero then Perl will
 compute it. The return value is the
new hash entry so created. It will be
 NULL if the operation failed or if the value did not
need to be actually
 stored within the hash (as in the case of tied hashes). Otherwise
the
 contents of the return value can be accessed using the He? macros
 described
here. Note that the caller is responsible for suitably
 incrementing the reference count
of val before the call, and
 decrementing it if the function returned NULL. Effectively a
successful
 hv_store_ent takes ownership of one reference to val. This is
 usually what
you want; a newly created SV has a reference count of one, so
 if all your code does is
create SVs then store them in a hash, hv_store
 will own the only reference to the new
SV, and your code doesn't need to do
 anything further to tidy up. Note that
hv_store_ent only reads the key;
 unlike val it does not take ownership of it, so
maintaining the correct
 reference count on key is entirely the caller's responsibility.
hv_store
 is not implemented as a call to hv_store_ent, and does not create a
temporary
 SV for the key, so if your key data is not already in SV form then use

hv_store in preference to hv_store_ent.

See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more

information on how to use this function on tied hashes.

	 HE*	 hv_store_ent(HV *hv, SV *key, SV *val, U32 hash)

hv_undef

Undefines the hash. The XS equivalent of undef(%hash).

As well as freeing all the elements of the hash (like hv_clear()), this
 also frees any
auxiliary data and storage associated with the hash.

If any destructors are triggered as a result, the hv itself may
 be freed.

See also hv_clear.

	 void	 hv_undef(HV *hv)

newHV

Creates a new HV. The reference count is set to 1.

Perl version 5.20.1 documentation - perlapi

Page 43http://perldoc.perl.org

	 HV*	 newHV()

Hook manipulation
wrap_op_checker

Puts a C function into the chain of check functions for a specified op
 type. This is the
preferred way to manipulate the PL_check array. opcode specifies which type of op is
to be affected. new_checker
 is a pointer to the C function that is to be added to that
opcode's
 check chain, and old_checker_p points to the storage location where a

pointer to the next function in the chain will be stored. The value of new_pointer is
written into the PL_check array, while the value
 previously stored there is written to
*old_checker_p.

The function should be defined like this:

 static OP *new_checker(pTHX_ OP *op) { ... }

It is intended to be called in this manner:

 new_checker(aTHX_ op)

old_checker_p should be defined like this:

 static Perl_check_t old_checker_p;

PL_check is global to an entire process, and a module wishing to
 hook op checking
may find itself invoked more than once per process,
 typically in different threads. To
handle that situation, this function
 is idempotent. The location *old_checker_p must
initially (once
 per process) contain a null pointer. A C variable of static duration

(declared at file scope, typically also marked static to give
 it internal linkage) will be
implicitly initialised appropriately,
 if it does not have an explicit initialiser. This function
will only
 actually modify the check chain if it finds *old_checker_p to be null.
 This
function is also thread safe on the small scale. It uses appropriate
 locking to avoid race
conditions in accessing PL_check.

When this function is called, the function referenced by new_checker
 must be ready to
be called, except for *old_checker_p being unfilled.
 In a threading situation,
new_checker may be called immediately,
 even before this function has returned.
*old_checker_p will always
 be appropriately set before new_checker is called. If
new_checker
 decides not to do anything special with an op that it is given (which
 is the
usual case for most uses of op check hooking), it must chain the
 check function
referenced by *old_checker_p.

If you want to influence compilation of calls to a specific subroutine,
 then use
cv_set_call_checker rather than hooking checking of all entersub ops.

	 void	 wrap_op_checker(Optype opcode,
		 Perl_check_t new_checker,
		 Perl_check_t *old_checker_p)

Lexer interface
lex_bufutf8

NOTE: this function is experimental and may change or be
 removed without notice.

Indicates whether the octets in the lexer buffer
 (PL_parser->linestr) should be
interpreted as the UTF-8 encoding
 of Unicode characters. If not, they should be
interpreted as Latin-1
 characters. This is analogous to the SvUTF8 flag for scalars.

In UTF-8 mode, it is not guaranteed that the lexer buffer actually
 contains valid UTF-8.
Lexing code must be robust in the face of invalid
 encoding.

The actual SvUTF8 flag of the PL_parser->linestr scalar
 is significant, but not the

Perl version 5.20.1 documentation - perlapi

Page 44http://perldoc.perl.org

whole story regarding the input character
 encoding. Normally, when a file is being
read, the scalar contains octets
 and its SvUTF8 flag is off, but the octets should be
interpreted as
 UTF-8 if the use utf8 pragma is in effect. During a string eval,

however, the scalar may have the SvUTF8 flag on, and in this case its
 octets should
be interpreted as UTF-8 unless the use bytes pragma
 is in effect. This logic may
change in the future; use this function
 instead of implementing the logic yourself.

	 bool	 lex_bufutf8()

lex_discard_to

NOTE: this function is experimental and may change or be
 removed without notice.

Discards the first part of the PL_parser->linestr buffer,
 up to ptr. The remaining content
of the buffer will be moved, and
 all pointers into the buffer updated appropriately. ptr
must not
 be later in the buffer than the position of PL_parser->bufptr:
 it is not permitted
to discard text that has yet to be lexed.

Normally it is not necessarily to do this directly, because it suffices to
 use the implicit
discarding behaviour of lex_next_chunk and things
 based on it. However, if a token
stretches across multiple lines,
 and the lexing code has kept multiple lines of text in the
buffer for
 that purpose, then after completion of the token it would be wise to
 explicitly
discard the now-unneeded earlier lines, to avoid future
 multi-line tokens growing the
buffer without bound.

	 void	 lex_discard_to(char *ptr)

lex_grow_linestr

NOTE: this function is experimental and may change or be
 removed without notice.

Reallocates the lexer buffer (PL_parser->linestr) to accommodate
 at least len octets
(including terminating NUL). Returns a
 pointer to the reallocated buffer. This is
necessary before making
 any direct modification of the buffer that would increase its
length. lex_stuff_pvn provides a more convenient way to insert text into
 the buffer.

Do not use SvGROW or sv_grow directly on PL_parser->linestr;
 this function
updates all of the lexer's variables that point directly
 into the buffer.

	 char *	 lex_grow_linestr(STRLEN len)

lex_next_chunk

NOTE: this function is experimental and may change or be
 removed without notice.

Reads in the next chunk of text to be lexed, appending it to PL_parser->linestr. This
should be called when lexing code has
 looked to the end of the current chunk and
wants to know more. It is
 usual, but not necessary, for lexing to have consumed the
entirety of
 the current chunk at this time.

If PL_parser->bufptr is pointing to the very end of the current
 chunk (i.e., the current
chunk has been entirely consumed), normally the
 current chunk will be discarded at
the same time that the new chunk is
 read in. If flags includes LEX_KEEP_PREVIOUS,
the current chunk
 will not be discarded. If the current chunk has not been entirely

consumed, then it will not be discarded regardless of the flag.

Returns true if some new text was added to the buffer, or false if the
 buffer has
reached the end of the input text.

	 bool	 lex_next_chunk(U32 flags)

lex_peek_unichar

NOTE: this function is experimental and may change or be
 removed without notice.

Perl version 5.20.1 documentation - perlapi

Page 45http://perldoc.perl.org

Looks ahead one (Unicode) character in the text currently being lexed.
 Returns the
codepoint (unsigned integer value) of the next character,
 or -1 if lexing has reached
the end of the input text. To consume the
 peeked character, use lex_read_unichar.

If the next character is in (or extends into) the next chunk of input
 text, the next chunk
will be read in. Normally the current chunk will be
 discarded at the same time, but if
flags includes LEX_KEEP_PREVIOUS
 then the current chunk will not be discarded.

If the input is being interpreted as UTF-8 and a UTF-8 encoding error
 is encountered,
an exception is generated.

	 I32	 lex_peek_unichar(U32 flags)

lex_read_space

NOTE: this function is experimental and may change or be
 removed without notice.

Reads optional spaces, in Perl style, in the text currently being
 lexed. The spaces may
include ordinary whitespace characters and
 Perl-style comments. #line directives are
processed if encountered. PL_parser->bufptr is moved past the spaces, so that it
points
 at a non-space character (or the end of the input text).

If spaces extend into the next chunk of input text, the next chunk will
 be read in.
Normally the current chunk will be discarded at the same
 time, but if flags includes
LEX_KEEP_PREVIOUS then the current
 chunk will not be discarded.

	 void	 lex_read_space(U32 flags)

lex_read_to

NOTE: this function is experimental and may change or be
 removed without notice.

Consume text in the lexer buffer, from PL_parser->bufptr up
 to ptr. This advances
PL_parser->bufptr to match ptr,
 performing the correct bookkeeping whenever a
newline character is passed.
 This is the normal way to consume lexed text.

Interpretation of the buffer's octets can be abstracted out by
 using the slightly
higher-level functions lex_peek_unichar and lex_read_unichar.

	 void	 lex_read_to(char *ptr)

lex_read_unichar

NOTE: this function is experimental and may change or be
 removed without notice.

Reads the next (Unicode) character in the text currently being lexed.
 Returns the
codepoint (unsigned integer value) of the character read,
 and moves PL_parser->
bufptr past the character, or returns -1
 if lexing has reached the end of the input text.
To non-destructively
 examine the next character, use lex_peek_unichar instead.

If the next character is in (or extends into) the next chunk of input
 text, the next chunk
will be read in. Normally the current chunk will be
 discarded at the same time, but if
flags includes LEX_KEEP_PREVIOUS
 then the current chunk will not be discarded.

If the input is being interpreted as UTF-8 and a UTF-8 encoding error
 is encountered,
an exception is generated.

	 I32	 lex_read_unichar(U32 flags)

lex_start

NOTE: this function is experimental and may change or be
 removed without notice.

Creates and initialises a new lexer/parser state object, supplying
 a context in which to
lex and parse from a new source of Perl code.
 A pointer to the new state object is
placed in PL_parser. An entry
 is made on the save stack so that upon unwinding the
new state object
 will be destroyed and the former value of PL_parser will be restored.

Perl version 5.20.1 documentation - perlapi

Page 46http://perldoc.perl.org

Nothing else need be done to clean up the parsing context.

The code to be parsed comes from line and rsfp. line, if
 non-null, provides a string (in
SV form) containing code to be parsed.
 A copy of the string is made, so subsequent
modification of line
 does not affect parsing. rsfp, if non-null, provides an input stream

from which code will be read to be parsed. If both are non-null, the
 code in line comes
first and must consist of complete lines of input,
 and rsfp supplies the remainder of the
source.

The flags parameter is reserved for future use. Currently it is only
 used by perl
internally, so extensions should always pass zero.

	 void	 lex_start(SV *line, PerlIO *rsfp, U32 flags)

lex_stuff_pv

NOTE: this function is experimental and may change or be
 removed without notice.

Insert characters into the lexer buffer (PL_parser->linestr),
 immediately after the
current lexing point (PL_parser->bufptr),
 reallocating the buffer if necessary. This
means that lexing code that
 runs later will see the characters as if they had appeared
in the input.
 It is not recommended to do this as part of normal parsing, and most
 uses
of this facility run the risk of the inserted characters being
 interpreted in an unintended
manner.

The string to be inserted is represented by octets starting at pv
 and continuing to the
first nul. These octets are interpreted as either
 UTF-8 or Latin-1, according to whether
the LEX_STUFF_UTF8 flag is set
 in flags. The characters are recoded for the lexer
buffer, according
 to how the buffer is currently being interpreted (lex_bufutf8).
 If it is
not convenient to nul-terminate a string to be inserted, the lex_stuff_pvn function is
more appropriate.

	 void	 lex_stuff_pv(const char *pv, U32 flags)

lex_stuff_pvn

NOTE: this function is experimental and may change or be
 removed without notice.

Insert characters into the lexer buffer (PL_parser->linestr),
 immediately after the
current lexing point (PL_parser->bufptr),
 reallocating the buffer if necessary. This
means that lexing code that
 runs later will see the characters as if they had appeared
in the input.
 It is not recommended to do this as part of normal parsing, and most
 uses
of this facility run the risk of the inserted characters being
 interpreted in an unintended
manner.

The string to be inserted is represented by len octets starting
 at pv. These octets are
interpreted as either UTF-8 or Latin-1,
 according to whether the LEX_STUFF_UTF8
flag is set in flags.
 The characters are recoded for the lexer buffer, according to how
the
 buffer is currently being interpreted (lex_bufutf8). If a string
 to be inserted is
available as a Perl scalar, the lex_stuff_sv
 function is more convenient.

	 void	 lex_stuff_pvn(const char *pv, STRLEN len,
		 U32 flags)

lex_stuff_pvs

NOTE: this function is experimental and may change or be
 removed without notice.

Like lex_stuff_pvn, but takes a literal string instead of a
 string/length pair.

	 void	 lex_stuff_pvs(const char *pv, U32 flags)

lex_stuff_sv

NOTE: this function is experimental and may change or be
 removed without notice.

Perl version 5.20.1 documentation - perlapi

Page 47http://perldoc.perl.org

Insert characters into the lexer buffer (PL_parser->linestr),
 immediately after the
current lexing point (PL_parser->bufptr),
 reallocating the buffer if necessary. This
means that lexing code that
 runs later will see the characters as if they had appeared
in the input.
 It is not recommended to do this as part of normal parsing, and most
 uses
of this facility run the risk of the inserted characters being
 interpreted in an unintended
manner.

The string to be inserted is the string value of sv. The characters
 are recoded for the
lexer buffer, according to how the buffer is currently
 being interpreted (lex_bufutf8). If a
string to be inserted is
 not already a Perl scalar, the lex_stuff_pvn function avoids the

need to construct a scalar.

	 void	 lex_stuff_sv(SV *sv, U32 flags)

lex_unstuff

NOTE: this function is experimental and may change or be
 removed without notice.

Discards text about to be lexed, from PL_parser->bufptr up to ptr. Text following ptr will
be moved, and the buffer shortened.
 This hides the discarded text from any lexing
code that runs later,
 as if the text had never appeared.

This is not the normal way to consume lexed text. For that, use lex_read_to.

	 void	 lex_unstuff(char *ptr)

parse_arithexpr

NOTE: this function is experimental and may change or be
 removed without notice.

Parse a Perl arithmetic expression. This may contain operators of precedence
 down to
the bit shift operators. The expression must be followed (and thus
 terminated) either by
a comparison or lower-precedence operator or by
 something that would normally
terminate an expression such as semicolon.
 If flags includes PARSE_OPTIONAL then
the expression is optional,
 otherwise it is mandatory. It is up to the caller to ensure that
the
 dynamic parser state (PL_parser et al) is correctly set to reflect
 the source of the
code to be parsed and the lexical context for the
 expression.

The op tree representing the expression is returned. If an optional
 expression is
absent, a null pointer is returned, otherwise the pointer
 will be non-null.

If an error occurs in parsing or compilation, in most cases a valid op
 tree is returned
anyway. The error is reflected in the parser state,
 normally resulting in a single
exception at the top level of parsing
 which covers all the compilation errors that
occurred. Some compilation
 errors, however, will throw an exception immediately.

	 OP *	 parse_arithexpr(U32 flags)

parse_barestmt

NOTE: this function is experimental and may change or be
 removed without notice.

Parse a single unadorned Perl statement. This may be a normal imperative
 statement
or a declaration that has compile-time effect. It does not
 include any label or other
affixture. It is up to the caller to ensure
 that the dynamic parser state (PL_parser et al)
is correctly set to
 reflect the source of the code to be parsed and the lexical context for

the statement.

The op tree representing the statement is returned. This may be a
 null pointer if the
statement is null, for example if it was actually
 a subroutine definition (which has
compile-time side effects). If not
 null, it will be ops directly implementing the statement,
suitable to
 pass to newSTATEOP. It will not normally include a nextstate or

equivalent op (except for those embedded in a scope contained entirely
 within the
statement).

Perl version 5.20.1 documentation - perlapi

Page 48http://perldoc.perl.org

If an error occurs in parsing or compilation, in most cases a valid op
 tree (most likely
null) is returned anyway. The error is reflected in
 the parser state, normally resulting in
a single exception at the top
 level of parsing which covers all the compilation errors
that occurred.
 Some compilation errors, however, will throw an exception immediately.

The flags parameter is reserved for future use, and must always
 be zero.

	 OP *	 parse_barestmt(U32 flags)

parse_block

NOTE: this function is experimental and may change or be
 removed without notice.

Parse a single complete Perl code block. This consists of an opening
 brace, a
sequence of statements, and a closing brace. The block
 constitutes a lexical scope, so
my variables and various compile-time
 effects can be contained within it. It is up to the
caller to ensure
 that the dynamic parser state (PL_parser et al) is correctly set to

reflect the source of the code to be parsed and the lexical context for
 the statement.

The op tree representing the code block is returned. This is always a
 real op, never a
null pointer. It will normally be a lineseq list,
 including nextstate or equivalent ops.
No ops to construct any kind
 of runtime scope are included by virtue of it being a block.

If an error occurs in parsing or compilation, in most cases a valid op
 tree (most likely
null) is returned anyway. The error is reflected in
 the parser state, normally resulting in
a single exception at the top
 level of parsing which covers all the compilation errors
that occurred.
 Some compilation errors, however, will throw an exception immediately.

The flags parameter is reserved for future use, and must always
 be zero.

	 OP *	 parse_block(U32 flags)

parse_fullexpr

NOTE: this function is experimental and may change or be
 removed without notice.

Parse a single complete Perl expression. This allows the full
 expression grammar,
including the lowest-precedence operators such
 as or. The expression must be
followed (and thus terminated) by a
 token that an expression would normally be
terminated by: end-of-file,
 closing bracketing punctuation, semicolon, or one of the
keywords that
 signals a postfix expression-statement modifier. If flags includes
PARSE_OPTIONAL then the expression is optional, otherwise it is
 mandatory. It is up to
the caller to ensure that the dynamic parser
 state (PL_parser et al) is correctly set to
reflect the source of
 the code to be parsed and the lexical context for the expression.

The op tree representing the expression is returned. If an optional
 expression is
absent, a null pointer is returned, otherwise the pointer
 will be non-null.

If an error occurs in parsing or compilation, in most cases a valid op
 tree is returned
anyway. The error is reflected in the parser state,
 normally resulting in a single
exception at the top level of parsing
 which covers all the compilation errors that
occurred. Some compilation
 errors, however, will throw an exception immediately.

	 OP *	 parse_fullexpr(U32 flags)

parse_fullstmt

NOTE: this function is experimental and may change or be
 removed without notice.

Parse a single complete Perl statement. This may be a normal imperative
 statement or
a declaration that has compile-time effect, and may include
 optional labels. It is up to
the caller to ensure that the dynamic
 parser state (PL_parser et al) is correctly set to
reflect the source
 of the code to be parsed and the lexical context for the statement.

The op tree representing the statement is returned. This may be a
 null pointer if the
statement is null, for example if it was actually
 a subroutine definition (which has

Perl version 5.20.1 documentation - perlapi

Page 49http://perldoc.perl.org

compile-time side effects). If not
 null, it will be the result of a newSTATEOP call,
normally including
 a nextstate or equivalent op.

If an error occurs in parsing or compilation, in most cases a valid op
 tree (most likely
null) is returned anyway. The error is reflected in
 the parser state, normally resulting in
a single exception at the top
 level of parsing which covers all the compilation errors
that occurred.
 Some compilation errors, however, will throw an exception immediately.

The flags parameter is reserved for future use, and must always
 be zero.

	 OP *	 parse_fullstmt(U32 flags)

parse_label

NOTE: this function is experimental and may change or be
 removed without notice.

Parse a single label, possibly optional, of the type that may prefix a
 Perl statement. It is
up to the caller to ensure that the dynamic parser
 state (PL_parser et al) is correctly
set to reflect the source of
 the code to be parsed. If flags includes PARSE_OPTIONAL
then the
 label is optional, otherwise it is mandatory.

The name of the label is returned in the form of a fresh scalar. If an
 optional label is
absent, a null pointer is returned.

If an error occurs in parsing, which can only occur if the label is
 mandatory, a valid
label is returned anyway. The error is reflected in
 the parser state, normally resulting in
a single exception at the top
 level of parsing which covers all the compilation errors
that occurred.

	 SV *	 parse_label(U32 flags)

parse_listexpr

NOTE: this function is experimental and may change or be
 removed without notice.

Parse a Perl list expression. This may contain operators of precedence
 down to the
comma operator. The expression must be followed (and thus
 terminated) either by a
low-precedence logic operator such as or or by
 something that would normally
terminate an expression such as semicolon.
 If flags includes PARSE_OPTIONAL then
the expression is optional,
 otherwise it is mandatory. It is up to the caller to ensure that
the
 dynamic parser state (PL_parser et al) is correctly set to reflect
 the source of the
code to be parsed and the lexical context for the
 expression.

The op tree representing the expression is returned. If an optional
 expression is
absent, a null pointer is returned, otherwise the pointer
 will be non-null.

If an error occurs in parsing or compilation, in most cases a valid op
 tree is returned
anyway. The error is reflected in the parser state,
 normally resulting in a single
exception at the top level of parsing
 which covers all the compilation errors that
occurred. Some compilation
 errors, however, will throw an exception immediately.

	 OP *	 parse_listexpr(U32 flags)

parse_stmtseq

NOTE: this function is experimental and may change or be
 removed without notice.

Parse a sequence of zero or more Perl statements. These may be normal
 imperative
statements, including optional labels, or declarations
 that have compile-time effect, or
any mixture thereof. The statement
 sequence ends when a closing brace or end-of-file
is encountered in a
 place where a new statement could have validly started. It is up to

the caller to ensure that the dynamic parser state (PL_parser et al)
 is correctly set to
reflect the source of the code to be parsed and the
 lexical context for the statements.

The op tree representing the statement sequence is returned. This may
 be a null
pointer if the statements were all null, for example if there
 were no statements or if

Perl version 5.20.1 documentation - perlapi

Page 50http://perldoc.perl.org

there were only subroutine definitions (which
 have compile-time side effects). If not
null, it will be a lineseq
 list, normally including nextstate or equivalent ops.

If an error occurs in parsing or compilation, in most cases a valid op
 tree is returned
anyway. The error is reflected in the parser state,
 normally resulting in a single
exception at the top level of parsing
 which covers all the compilation errors that
occurred. Some compilation
 errors, however, will throw an exception immediately.

The flags parameter is reserved for future use, and must always
 be zero.

	 OP *	 parse_stmtseq(U32 flags)

parse_termexpr

NOTE: this function is experimental and may change or be
 removed without notice.

Parse a Perl term expression. This may contain operators of precedence
 down to the
assignment operators. The expression must be followed (and thus
 terminated) either
by a comma or lower-precedence operator or by
 something that would normally
terminate an expression such as semicolon.
 If flags includes PARSE_OPTIONAL then
the expression is optional,
 otherwise it is mandatory. It is up to the caller to ensure that
the
 dynamic parser state (PL_parser et al) is correctly set to reflect
 the source of the
code to be parsed and the lexical context for the
 expression.

The op tree representing the expression is returned. If an optional
 expression is
absent, a null pointer is returned, otherwise the pointer
 will be non-null.

If an error occurs in parsing or compilation, in most cases a valid op
 tree is returned
anyway. The error is reflected in the parser state,
 normally resulting in a single
exception at the top level of parsing
 which covers all the compilation errors that
occurred. Some compilation
 errors, however, will throw an exception immediately.

	 OP *	 parse_termexpr(U32 flags)

PL_parser

Pointer to a structure encapsulating the state of the parsing operation
 currently in
progress. The pointer can be locally changed to perform
 a nested parse without
interfering with the state of an outer parse.
 Individual members of PL_parser have
their own documentation.

PL_parser->bufend

NOTE: this function is experimental and may change or be
 removed without notice.

Direct pointer to the end of the chunk of text currently being lexed, the
 end of the lexer
buffer. This is equal to SvPVX(PL_parser->linestr)
 + SvCUR(PL_parser->
linestr). A NUL character (zero octet) is
 always located at the end of the buffer, and
does not count as part of
 the buffer's contents.

PL_parser->bufptr

NOTE: this function is experimental and may change or be
 removed without notice.

Points to the current position of lexing inside the lexer buffer.
 Characters around this
point may be freely examined, within
 the range delimited by SvPVX(PL_parser->
linestr) and PL_parser->bufend. The octets of the buffer may be intended to be

interpreted as either UTF-8 or Latin-1, as indicated by lex_bufutf8.

Lexing code (whether in the Perl core or not) moves this pointer past
 the characters
that it consumes. It is also expected to perform some
 bookkeeping whenever a
newline character is consumed. This movement
 can be more conveniently performed
by the function lex_read_to,
 which handles newlines appropriately.

Interpretation of the buffer's octets can be abstracted out by
 using the slightly
higher-level functions lex_peek_unichar and lex_read_unichar.

Perl version 5.20.1 documentation - perlapi

Page 51http://perldoc.perl.org

PL_parser->linestart

NOTE: this function is experimental and may change or be
 removed without notice.

Points to the start of the current line inside the lexer buffer.
 This is useful for indicating
at which column an error occurred, and
 not much else. This must be updated by any
lexing code that consumes
 a newline; the function lex_read_to handles this detail.

PL_parser->linestr

NOTE: this function is experimental and may change or be
 removed without notice.

Buffer scalar containing the chunk currently under consideration of the
 text currently
being lexed. This is always a plain string scalar (for
 which SvPOK is true). It is not
intended to be used as a scalar by
 normal scalar means; instead refer to the buffer
directly by the pointer
 variables described below.

The lexer maintains various char* pointers to things in the PL_parser->linestr
buffer. If PL_parser->linestr is ever
 reallocated, all of these pointers must be
updated. Don't attempt to
 do this manually, but rather use lex_grow_linestr if you need
to
 reallocate the buffer.

The content of the text chunk in the buffer is commonly exactly one
 complete line of
input, up to and including a newline terminator,
 but there are situations where it is
otherwise. The octets of the
 buffer may be intended to be interpreted as either UTF-8
or Latin-1.
 The function lex_bufutf8 tells you which. Do not use the SvUTF8
 flag on this
scalar, which may disagree with it.

For direct examination of the buffer, the variable PL_parser->bufend points to the end
of the buffer. The current
 lexing position is pointed to by PL_parser->bufptr. Direct use

of these pointers is usually preferable to examination of the scalar
 through normal
scalar means.

Locale-related functions and macros
sync_locale

Changing the program's locale should be avoided by XS code. Nevertheless,
 certain
non-Perl libraries called from XS, such as Gtk do so. When this
 happens, Perl needs
to be told that the locale has changed. Use this macro
 to do so, before returning to
Perl code.

	 void	 sync_locale()

Magical Functions
mg_clear

Clear something magical that the SV represents. See sv_magic.

	 int	 mg_clear(SV* sv)

mg_copy

Copies the magic from one SV to another. See sv_magic.

	 int	 mg_copy(SV *sv, SV *nsv, const char *key,
		 I32 klen)

mg_find

Finds the magic pointer for type matching the SV. See sv_magic.

	 MAGIC*	 mg_find(const SV* sv, int type)

mg_findext

Perl version 5.20.1 documentation - perlapi

Page 52http://perldoc.perl.org

Finds the magic pointer of type with the given vtbl for the SV. See sv_magicext.

	 MAGIC*	 mg_findext(const SV* sv, int type,
		 const MGVTBL *vtbl)

mg_free

Free any magic storage used by the SV. See sv_magic.

	 int	 mg_free(SV* sv)

mg_free_type

Remove any magic of type how from the SV sv. See sv_magic.

	 void	 mg_free_type(SV *sv, int how)

mg_get

Do magic before a value is retrieved from the SV. The type of SV must
 be >=
SVt_PVMG. See sv_magic.

	 int	 mg_get(SV* sv)

mg_length

DEPRECATED! It is planned to remove this function from a
 future release of Perl. Do
not use it for new code; remove it from
 existing code.

Reports on the SV's length in bytes, calling length magic if available,
 but does not set
the UTF8 flag on the sv. It will fall back to 'get'
 magic if there is no 'length' magic, but
with no indication as to
 whether it called 'get' magic. It assumes the sv is a PVMG or

higher. Use sv_len() instead.

	 U32	 mg_length(SV* sv)

mg_magical

Turns on the magical status of an SV. See sv_magic.

	 void	 mg_magical(SV* sv)

mg_set

Do magic after a value is assigned to the SV. See sv_magic.

	 int	 mg_set(SV* sv)

SvGETMAGIC

Invokes mg_get on an SV if it has 'get' magic. For example, this
 will call FETCH on a
tied variable. This macro evaluates its
 argument more than once.

	 void	 SvGETMAGIC(SV* sv)

SvLOCK

Arranges for a mutual exclusion lock to be obtained on sv if a suitable module
 has
been loaded.

	 void	 SvLOCK(SV* sv)

SvSETMAGIC

Invokes mg_set on an SV if it has 'set' magic. This is necessary
 after modifying a
scalar, in case it is a magical variable like $|
 or a tied variable (it calls STORE). This

Perl version 5.20.1 documentation - perlapi

Page 53http://perldoc.perl.org

macro evaluates its
 argument more than once.

	 void	 SvSETMAGIC(SV* sv)

SvSetMagicSV

Like SvSetSV, but does any set magic required afterwards.

	 void	 SvSetMagicSV(SV* dsv, SV* ssv)

SvSetMagicSV_nosteal

Like SvSetSV_nosteal, but does any set magic required afterwards.

	 void	 SvSetMagicSV_nosteal(SV* dsv, SV* ssv)

SvSetSV

Calls sv_setsv if dsv is not the same as ssv. May evaluate arguments
 more than
once. Does not handle 'set' magic on the destination SV.

	 void	 SvSetSV(SV* dsv, SV* ssv)

SvSetSV_nosteal

Calls a non-destructive version of sv_setsv if dsv is not the same as
 ssv. May
evaluate arguments more than once.

	 void	 SvSetSV_nosteal(SV* dsv, SV* ssv)

SvSHARE

Arranges for sv to be shared between threads if a suitable module
 has been loaded.

	 void	 SvSHARE(SV* sv)

SvUNLOCK

Releases a mutual exclusion lock on sv if a suitable module
 has been loaded.

	 void	 SvUNLOCK(SV* sv)

Memory Management
Copy

The XSUB-writer's interface to the C memcpy function. The src is the
 source, dest is
the destination, nitems is the number of items, and type is the type. May fail on
overlapping copies. See also Move.

	 void	 Copy(void* src, void* dest, int nitems, type)

CopyD

Like Copy but returns dest. Useful
 for encouraging compilers to tail-call
 optimise.

	 void *	 CopyD(void* src, void* dest, int nitems, type)

Move

The XSUB-writer's interface to the C memmove function. The src is the
 source, dest
is the destination, nitems is the number of items, and type is the type. Can do
overlapping moves. See also Copy.

	 void	 Move(void* src, void* dest, int nitems, type)

Perl version 5.20.1 documentation - perlapi

Page 54http://perldoc.perl.org

MoveD

Like Move but returns dest. Useful
 for encouraging compilers to tail-call
 optimise.

	 void *	 MoveD(void* src, void* dest, int nitems, type)

Newx

The XSUB-writer's interface to the C malloc function.

Memory obtained by this should ONLY be freed with Safefree.

In 5.9.3, Newx() and friends replace the older New() API, and drops
 the first
parameter, x, a debug aid which allowed callers to identify
 themselves. This aid has
been superseded by a new build option,
 PERL_MEM_LOG (see "PERL_MEM_LOG"
in perlhacktips). The older API is still
 there for use in XS modules supporting older
perls.

	 void	 Newx(void* ptr, int nitems, type)

Newxc

The XSUB-writer's interface to the C malloc function, with
 cast. See also Newx.

Memory obtained by this should ONLY be freed with Safefree.

	 void	 Newxc(void* ptr, int nitems, type, cast)

Newxz

The XSUB-writer's interface to the C malloc function. The allocated
 memory is
zeroed with memzero. See also Newx.

Memory obtained by this should ONLY be freed with Safefree.

	 void	 Newxz(void* ptr, int nitems, type)

Poison

PoisonWith(0xEF) for catching access to freed memory.

	 void	 Poison(void* dest, int nitems, type)

PoisonFree

PoisonWith(0xEF) for catching access to freed memory.

	 void	 PoisonFree(void* dest, int nitems, type)

PoisonNew

PoisonWith(0xAB) for catching access to allocated but uninitialized memory.

	 void	 PoisonNew(void* dest, int nitems, type)

PoisonWith

Fill up memory with a byte pattern (a byte repeated over and over
 again) that hopefully
catches attempts to access uninitialized memory.

	 void	 PoisonWith(void* dest, int nitems, type,
		 U8 byte)

Renew

The XSUB-writer's interface to the C realloc function.

Memory obtained by this should ONLY be freed with Safefree.

Perl version 5.20.1 documentation - perlapi

Page 55http://perldoc.perl.org

	 void	 Renew(void* ptr, int nitems, type)

Renewc

The XSUB-writer's interface to the C realloc function, with
 cast.

Memory obtained by this should ONLY be freed with Safefree.

	 void	 Renewc(void* ptr, int nitems, type, cast)

Safefree

The XSUB-writer's interface to the C free function.

This should ONLY be used on memory obtained using Newx and friends.

	 void	 Safefree(void* ptr)

savepv

Perl's version of strdup(). Returns a pointer to a newly allocated
 string which is a
duplicate of pv. The size of the string is
 determined by strlen(), which means it
may not contain embedded NUL
 characters and must have a trailing NUL. The memory
allocated for the new
 string can be freed with the Safefree() function.

On some platforms, Windows for example, all allocated memory owned by a thread
 is
deallocated when that thread ends. So if you need that not to happen, you
 need to use
the shared memory functions, such as savesharedpv.

	 char*	 savepv(const char* pv)

savepvn

Perl's version of what strndup() would be if it existed. Returns a
 pointer to a newly
allocated string which is a duplicate of the first len bytes from pv, plus a trailing NUL
byte. The memory allocated for
 the new string can be freed with the Safefree()
function.

On some platforms, Windows for example, all allocated memory owned by a thread
 is
deallocated when that thread ends. So if you need that not to happen, you
 need to use
the shared memory functions, such as savesharedpvn.

	 char*	 savepvn(const char* pv, I32 len)

savepvs

Like savepvn, but takes a literal NUL-terminated string instead of a
 string/length pair.

	 char*	 savepvs(const char* s)

savesharedpv

A version of savepv() which allocates the duplicate string in memory
 which is shared
between threads.

	 char*	 savesharedpv(const char* pv)

savesharedpvn

A version of savepvn() which allocates the duplicate string in memory
 which is
shared between threads. (With the specific difference that a NULL
 pointer is not
acceptable)

	 char*	 savesharedpvn(const char *const pv,
		 const STRLEN len)

Perl version 5.20.1 documentation - perlapi

Page 56http://perldoc.perl.org

savesharedpvs

A version of savepvs() which allocates the duplicate string in memory
 which is
shared between threads.

	 char*	 savesharedpvs(const char* s)

savesharedsvpv

A version of savesharedpv() which allocates the duplicate string in
 memory which
is shared between threads.

	 char*	 savesharedsvpv(SV *sv)

savesvpv

A version of savepv()/savepvn() which gets the string to duplicate from
 the passed
in SV using SvPV()

On some platforms, Windows for example, all allocated memory owned by a thread
 is
deallocated when that thread ends. So if you need that not to happen, you
 need to use
the shared memory functions, such as savesharedsvpv.

	 char*	 savesvpv(SV* sv)

StructCopy

This is an architecture-independent macro to copy one structure to another.

	 void	 StructCopy(type *src, type *dest, type)

Zero

The XSUB-writer's interface to the C memzero function. The dest is the
 destination,
nitems is the number of items, and type is the type.

	 void	 Zero(void* dest, int nitems, type)

ZeroD

Like Zero but returns dest. Useful
 for encouraging compilers to tail-call
 optimise.

	 void *	 ZeroD(void* dest, int nitems, type)

Miscellaneous Functions
fbm_compile

Analyses the string in order to make fast searches on it using fbm_instr()
 -- the
Boyer-Moore algorithm.

	 void	 fbm_compile(SV* sv, U32 flags)

fbm_instr

Returns the location of the SV in the string delimited by big and bigend. It returns
NULL if the string can't be found. The sv
 does not have to be fbm_compiled, but the
search will not be as fast
 then.

	 char*	 fbm_instr(unsigned char* big,
		 unsigned char* bigend, SV* littlestr,
		 U32 flags)

foldEQ

Returns true if the leading len bytes of the strings s1 and s2 are the same

Perl version 5.20.1 documentation - perlapi

Page 57http://perldoc.perl.org

case-insensitively; false otherwise. Uppercase and lowercase ASCII range bytes

match themselves and their opposite case counterparts. Non-cased and non-ASCII

range bytes match only themselves.

	 I32	 foldEQ(const char* a, const char* b, I32 len)

foldEQ_locale

Returns true if the leading len bytes of the strings s1 and s2 are the same

case-insensitively in the current locale; false otherwise.

	 I32	 foldEQ_locale(const char* a, const char* b,
		 I32 len)

form

Takes a sprintf-style format pattern and conventional
 (non-SV) arguments and returns
the formatted string.

 (char *) Perl_form(pTHX_ const char* pat, ...)

can be used any place a string (char *) is required:

 char * s = Perl_form("%d.%d",major,minor);

Uses a single private buffer so if you want to format several strings you
 must explicitly
copy the earlier strings away (and free the copies when you
 are done).

	 char*	 form(const char* pat, ...)

getcwd_sv

Fill the sv with current working directory

	 int	 getcwd_sv(SV* sv)

mess

Take a sprintf-style format pattern and argument list. These are used to
 generate a
string message. If the message does not end with a newline,
 then it will be extended
with some indication of the current location
 in the code, as described for mess_sv.

Normally, the resulting message is returned in a new mortal SV.
 During global
destruction a single SV may be shared between uses of
 this function.

	 SV *	 mess(const char *pat, ...)

mess_sv

Expands a message, intended for the user, to include an indication of
 the current
location in the code, if the message does not already appear
 to be complete.

basemsg is the initial message or object. If it is a reference, it
 will be used as-is and
will be the result of this function. Otherwise it
 is used as a string, and if it already ends
with a newline, it is taken
 to be complete, and the result of this function will be the
same string.
 If the message does not end with a newline, then a segment such as at

foo.pl line 37 will be appended, and possibly other clauses indicating
 the current
state of execution. The resulting message will end with a
 dot and a newline.

Normally, the resulting message is returned in a new mortal SV.
 During global
destruction a single SV may be shared between uses of this
 function. If consume is
true, then the function is permitted (but not
 required) to modify and return basemsg
instead of allocating a new SV.

	 SV *	 mess_sv(SV *basemsg, bool consume)

Perl version 5.20.1 documentation - perlapi

Page 58http://perldoc.perl.org

my_snprintf

The C library snprintf functionality, if available and
 standards-compliant (uses
vsnprintf, actually). However, if the vsnprintf is not available, will unfortunately
use the unsafe vsprintf which can overrun the buffer (there is an overrun check,
 but
that may be too late). Consider using sv_vcatpvf instead, or
 getting vsnprintf.

	 int	 my_snprintf(char *buffer, const Size_t len,
		 const char *format, ...)

my_sprintf

The C library sprintf, wrapped if necessary, to ensure that it will return
 the length of
the string written to the buffer. Only rare pre-ANSI systems
 need the wrapper function -
usually this is a direct call to sprintf.

	 int	 my_sprintf(char *buffer, const char *pat, ...)

my_strlcat

The C library strlcat if available, or a Perl implementation of it.
 This operates on C
NUL-terminated strings.

my_strlcat() appends string src to the end of dst. It will append at
 most size -
 strlen(dst) - 1 characters. It will then NUL-terminate,
 unless size is 0 or the
original dst string was longer than size (in
 practice this should not happen as it
means that either size is incorrect or
 that dst is not a proper NUL-terminated string).

Note that size is the full size of the destination buffer and
 the result is guaranteed to
be NUL-terminated if there is room. Note that
 room for the NUL should be included in
size.

	 Size_t	 my_strlcat(char *dst, const char *src,
		 Size_t size)

my_strlcpy

The C library strlcpy if available, or a Perl implementation of it.
 This operates on C
NUL-terminated strings.

my_strlcpy() copies up to size - 1 characters from the string src
 to dst, NUL
-terminating the result if size is not 0.

	 Size_t	 my_strlcpy(char *dst, const char *src,
		 Size_t size)

my_vsnprintf

The C library vsnprintf if available and standards-compliant.
 However, if if the
vsnprintf is not available, will unfortunately
 use the unsafe vsprintf which can
overrun the buffer (there is an
 overrun check, but that may be too late). Consider using
sv_vcatpvf instead, or getting vsnprintf.

	 int	 my_vsnprintf(char *buffer, const Size_t len,
		 const char *format, va_list ap)

READ_XDIGIT

Returns the value of an ASCII-range hex digit and advances the string pointer.

Behaviour is only well defined when isXDIGIT(*str) is true.

	 U8	 READ_XDIGIT(char str*)

strEQ

Perl version 5.20.1 documentation - perlapi

Page 59http://perldoc.perl.org

Test two strings to see if they are equal. Returns true or false.

	 bool	 strEQ(char* s1, char* s2)

strGE

Test two strings to see if the first, s1, is greater than or equal to
 the second, s2.
Returns true or false.

	 bool	 strGE(char* s1, char* s2)

strGT

Test two strings to see if the first, s1, is greater than the second, s2. Returns true or
false.

	 bool	 strGT(char* s1, char* s2)

strLE

Test two strings to see if the first, s1, is less than or equal to the
 second, s2. Returns
true or false.

	 bool	 strLE(char* s1, char* s2)

strLT

Test two strings to see if the first, s1, is less than the second, s2. Returns true or
false.

	 bool	 strLT(char* s1, char* s2)

strNE

Test two strings to see if they are different. Returns true or
 false.

	 bool	 strNE(char* s1, char* s2)

strnEQ

Test two strings to see if they are equal. The len parameter indicates
 the number of
bytes to compare. Returns true or false. (A wrapper for strncmp).

	 bool	 strnEQ(char* s1, char* s2, STRLEN len)

strnNE

Test two strings to see if they are different. The len parameter
 indicates the number of
bytes to compare. Returns true or false. (A
 wrapper for strncmp).

	 bool	 strnNE(char* s1, char* s2, STRLEN len)

sv_destroyable

Dummy routine which reports that object can be destroyed when there is no
 sharing
module present. It ignores its single SV argument, and returns
 'true'. Exists to avoid
test for a NULL function pointer and because it
 could potentially warn under some level
of strict-ness.

	 bool	 sv_destroyable(SV *sv)

sv_nosharing

Dummy routine which "shares" an SV when there is no sharing module present.
 Or
"locks" it. Or "unlocks" it. In other
 words, ignores its single SV argument.
 Exists to

Perl version 5.20.1 documentation - perlapi

Page 60http://perldoc.perl.org

avoid test for a NULL function pointer and because it could
 potentially warn under
some level of strict-ness.

	 void	 sv_nosharing(SV *sv)

vmess

pat and args are a sprintf-style format pattern and encapsulated
 argument list. These
are used to generate a string message. If the
 message does not end with a newline,
then it will be extended with
 some indication of the current location in the code, as
described for mess_sv.

Normally, the resulting message is returned in a new mortal SV.
 During global
destruction a single SV may be shared between uses of
 this function.

	 SV *	 vmess(const char *pat, va_list *args)

MRO Functions
mro_get_linear_isa

Returns the mro linearisation for the given stash. By default, this
 will be whatever
mro_get_linear_isa_dfs returns unless some
 other MRO is in effect for the
stash. The return value is a
 read-only AV*.

You are responsible for SvREFCNT_inc() on the
 return value if you plan to store it
anywhere
 semi-permanently (otherwise it might be deleted
 out from under you the next
time the cache is
 invalidated).

	 AV*	 mro_get_linear_isa(HV* stash)

mro_method_changed_in

Invalidates method caching on any child classes
 of the given stash, so that they might
notice
 the changes in this one.

Ideally, all instances of PL_sub_generation++ in
 perl source outside of mro.c
should be
 replaced by calls to this.

Perl automatically handles most of the common
 ways a method might be redefined.
However, there
 are a few ways you could change a method in a stash
 without the
cache code noticing, in which case you
 need to call this method afterwards:

1) Directly manipulating the stash HV entries from
 XS code.

2) Assigning a reference to a readonly scalar
 constant into a stash entry in order to
create
 a constant subroutine (like constant.pm
 does).

This same method is available from pure perl
 via,
mro::method_changed_in(classname).

	 void	 mro_method_changed_in(HV* stash)

mro_register

Registers a custom mro plugin. See perlmroapi for details.

	 void	 mro_register(const struct mro_alg *mro)

Multicall Functions
dMULTICALL

Declare local variables for a multicall. See "LIGHTWEIGHT CALLBACKS" in perlcall.

		 dMULTICALL;

Perl version 5.20.1 documentation - perlapi

Page 61http://perldoc.perl.org

MULTICALL

Make a lightweight callback. See "LIGHTWEIGHT CALLBACKS" in perlcall.

		 MULTICALL;

POP_MULTICALL

Closing bracket for a lightweight callback.
 See "LIGHTWEIGHT CALLBACKS" in
perlcall.

		 POP_MULTICALL;

PUSH_MULTICALL

Opening bracket for a lightweight callback.
 See "LIGHTWEIGHT CALLBACKS" in
perlcall.

		 PUSH_MULTICALL;

Numeric functions
grok_bin

converts a string representing a binary number to numeric form.

On entry start and *len give the string to scan, *flags gives
 conversion flags, and result
should be NULL or a pointer to an NV.
 The scan stops at the end of the string, or the
first invalid character.
 Unless PERL_SCAN_SILENT_ILLDIGIT is set in *flags,
encountering an
 invalid character will also trigger a warning.
 On return *len is set to the
length of the scanned string,
 and *flags gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
 and nothing
is written to *result. If the value is > UV_MAX grok_bin
 returns UV_MAX, sets
PERL_SCAN_GREATER_THAN_UV_MAX in the output flags,
 and writes the value to
*result (or the value is discarded if result
 is NULL).

The binary number may optionally be prefixed with "0b" or "b" unless
PERL_SCAN_DISALLOW_PREFIX is set in *flags on entry. If
PERL_SCAN_ALLOW_UNDERSCORES is set in *flags then the binary
 number may use
'_' characters to separate digits.

	 UV	 grok_bin(const char* start, STRLEN* len_p,
		 I32* flags, NV *result)

grok_hex

converts a string representing a hex number to numeric form.

On entry start and *len_p give the string to scan, *flags gives
 conversion flags, and
result should be NULL or a pointer to an NV.
 The scan stops at the end of the string, or
the first invalid character.
 Unless PERL_SCAN_SILENT_ILLDIGIT is set in *flags,
encountering an
 invalid character will also trigger a warning.
 On return *len is set to the
length of the scanned string,
 and *flags gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
 and
nothing is written to *result. If the value is > UV_MAX grok_hex
 returns UV_MAX,
sets PERL_SCAN_GREATER_THAN_UV_MAX in the output flags,
 and writes the value to
*result (or the value is discarded if result
 is NULL).

The hex number may optionally be prefixed with "0x" or "x" unless
PERL_SCAN_DISALLOW_PREFIX is set in *flags on entry. If
PERL_SCAN_ALLOW_UNDERSCORES is set in *flags then the hex
 number may use '_'
characters to separate digits.

	 UV	 grok_hex(const char* start, STRLEN* len_p,

Perl version 5.20.1 documentation - perlapi

Page 62http://perldoc.perl.org

		 I32* flags, NV *result)

grok_number

Recognise (or not) a number. The type of the number is returned
 (0 if unrecognised),
otherwise it is a bit-ORed combination of
 IS_NUMBER_IN_UV,
IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,

IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).

If the value of the number can fit in a UV, it is returned in the *valuep

IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV

will never be set unless *valuep is valid, but *valuep may have been assigned
 to during
processing even though IS_NUMBER_IN_UV is not set on return.
 If valuep is NULL,
IS_NUMBER_IN_UV will be set for the same cases as when
 valuep is non-NULL, but
no actual assignment (or SEGV) will occur.

IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were

seen (in which case *valuep gives the true value truncated to an integer), and

IS_NUMBER_NEG if the number is negative (in which case *valuep holds the
 absolute
value). IS_NUMBER_IN_UV is not set if e notation was used or the
 number is larger
than a UV.

	 int	 grok_number(const char *pv, STRLEN len,
		 UV *valuep)

grok_numeric_radix

Scan and skip for a numeric decimal separator (radix).

	 bool	 grok_numeric_radix(const char **sp,
		 const char *send)

grok_oct

converts a string representing an octal number to numeric form.

On entry start and *len give the string to scan, *flags gives
 conversion flags, and result
should be NULL or a pointer to an NV.
 The scan stops at the end of the string, or the
first invalid character.
 Unless PERL_SCAN_SILENT_ILLDIGIT is set in *flags,
encountering an
 8 or 9 will also trigger a warning.
 On return *len is set to the length of
the scanned string,
 and *flags gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear,
 and
nothing is written to *result. If the value is > UV_MAX grok_oct
 returns UV_MAX,
sets PERL_SCAN_GREATER_THAN_UV_MAX in the output flags,
 and writes the value to
*result (or the value is discarded if result
 is NULL).

If PERL_SCAN_ALLOW_UNDERSCORES is set in *flags then the octal
 number may use
'_' characters to separate digits.

	 UV	 grok_oct(const char* start, STRLEN* len_p,
		 I32* flags, NV *result)

Perl_signbit

NOTE: this function is experimental and may change or be
 removed without notice.

Return a non-zero integer if the sign bit on an NV is set, and 0 if
 it is not.

If Configure detects this system has a signbit() that will work with
 our NVs, then we just
use it via the #define in perl.h. Otherwise,
 fall back on this implementation. As a first
pass, this gets everything
 right except -0.0. Alas, catching -0.0 is the main use for this
function,
 so this is not too helpful yet. Still, at least we have the scaffolding
 in place to
support other systems, should that prove useful.

Perl version 5.20.1 documentation - perlapi

Page 63http://perldoc.perl.org

Configure notes: This function is called 'Perl_signbit' instead of a
 plain 'signbit'
because it is easy to imagine a system having a signbit()
 function or macro that doesn't
happen to work with our particular choice
 of NVs. We shouldn't just re-#define signbit
as Perl_signbit and expect
 the standard system headers to be happy. Also, this is a
no-context
 function (no pTHX_) because Perl_signbit() is usually re-#defined in
 perl.h
as a simple macro call to the system's signbit().
 Users should just always call
Perl_signbit().

	 int	 Perl_signbit(NV f)

scan_bin

For backwards compatibility. Use grok_bin instead.

	 NV	 scan_bin(const char* start, STRLEN len,
		 STRLEN* retlen)

scan_hex

For backwards compatibility. Use grok_hex instead.

	 NV	 scan_hex(const char* start, STRLEN len,
		 STRLEN* retlen)

scan_oct

For backwards compatibility. Use grok_oct instead.

	 NV	 scan_oct(const char* start, STRLEN len,
		 STRLEN* retlen)

Optree construction
newASSIGNOP

Constructs, checks, and returns an assignment op. left and right
 supply the
parameters of the assignment; they are consumed by this
 function and become part of
the constructed op tree.

If optype is OP_ANDASSIGN, OP_ORASSIGN, or OP_DORASSIGN, then
 a suitable
conditional optree is constructed. If optype is the opcode
 of a binary operator, such as
OP_BIT_OR, then an op is constructed that
 performs the binary operation and assigns
the result to the left argument.
 Either way, if optype is non-zero then flags has no
effect.

If optype is zero, then a plain scalar or list assignment is
 constructed. Which type of
assignment it is is automatically determined. flags gives the eight bits of op_flags,
except that OPf_KIDS
 will be set automatically, and, shifted up eight bits, the eight bits
of op_private, except that the bit with value 1 or 2 is automatically
 set as required.

	 OP *	 newASSIGNOP(I32 flags, OP *left, I32 optype,
		 OP *right)

newBINOP

Constructs, checks, and returns an op of any binary type. type
 is the opcode. flags
gives the eight bits of op_flags, except
 that OPf_KIDS will be set automatically, and,
shifted up eight bits,
 the eight bits of op_private, except that the bit with value 1 or
 2
is automatically set as required. first and last supply up to
 two ops to be the direct
children of the binary op; they are consumed
 by this function and become part of the
constructed op tree.

	 OP *	 newBINOP(I32 type, I32 flags, OP *first,
		 OP *last)

Perl version 5.20.1 documentation - perlapi

Page 64http://perldoc.perl.org

newCONDOP

Constructs, checks, and returns a conditional-expression (cond_expr)
 op. flags gives
the eight bits of op_flags, except that OPf_KIDS
 will be set automatically, and,
shifted up eight bits, the eight bits of op_private, except that the bit with value 1 is
automatically set. first supplies the expression selecting between the two branches,

and trueop and falseop supply the branches; they are consumed by
 this function and
become part of the constructed op tree.

	 OP *	 newCONDOP(I32 flags, OP *first, OP *trueop,
		 OP *falseop)

newFOROP

Constructs, checks, and returns an op tree expressing a foreach
 loop (iteration
through a list of values). This is a heavyweight loop,
 with structure that allows exiting
the loop by last and suchlike.

sv optionally supplies the variable that will be aliased to each
 item in turn; if null, it
defaults to $_ (either lexical or global). expr supplies the list of values to iterate over.
block supplies
 the main body of the loop, and cont optionally supplies a continue

block that operates as a second half of the body. All of these optree
 inputs are
consumed by this function and become part of the constructed
 op tree.

flags gives the eight bits of op_flags for the leaveloop
 op and, shifted up eight
bits, the eight bits of op_private for
 the leaveloop op, except that (in both cases)
some bits will be set
 automatically.

	 OP *	 newFOROP(I32 flags, OP *sv, OP *expr, OP *block,
		 OP *cont)

newGIVENOP

Constructs, checks, and returns an op tree expressing a given block. cond supplies
the expression that will be locally assigned to a lexical
 variable, and block supplies the
body of the given construct; they
 are consumed by this function and become part of
the constructed op tree. defsv_off is the pad offset of the scalar lexical variable that will
be affected. If it is 0, the global $_ will be used.

	 OP *	 newGIVENOP(OP *cond, OP *block,
		 PADOFFSET defsv_off)

newGVOP

Constructs, checks, and returns an op of any type that involves an
 embedded
reference to a GV. type is the opcode. flags gives the
 eight bits of op_flags. gv
identifies the GV that the op should
 reference; calling this function does not transfer
ownership of any
 reference to it.

	 OP *	 newGVOP(I32 type, I32 flags, GV *gv)

newLISTOP

Constructs, checks, and returns an op of any list type. type is
 the opcode. flags gives
the eight bits of op_flags, except that OPf_KIDS will be set automatically if required.
first and last
 supply up to two ops to be direct children of the list op; they are

consumed by this function and become part of the constructed op tree.

	 OP *	 newLISTOP(I32 type, I32 flags, OP *first,
		 OP *last)

newLOGOP

Perl version 5.20.1 documentation - perlapi

Page 65http://perldoc.perl.org

Constructs, checks, and returns a logical (flow control) op. type
 is the opcode. flags
gives the eight bits of op_flags, except
 that OPf_KIDS will be set automatically, and,
shifted up eight bits,
 the eight bits of op_private, except that the bit with value 1 is

automatically set. first supplies the expression controlling the
 flow, and other supplies
the side (alternate) chain of ops; they are
 consumed by this function and become part
of the constructed op tree.

	 OP *	 newLOGOP(I32 type, I32 flags, OP *first,
		 OP *other)

newLOOPEX

Constructs, checks, and returns a loop-exiting op (such as goto
 or last). type is the
opcode. label supplies the parameter
 determining the target of the op; it is consumed
by this function and
 becomes part of the constructed op tree.

	 OP *	 newLOOPEX(I32 type, OP *label)

newLOOPOP

Constructs, checks, and returns an op tree expressing a loop. This is
 only a loop in the
control flow through the op tree; it does not have
 the heavyweight loop structure that
allows exiting the loop by last
 and suchlike. flags gives the eight bits of op_flags
for the
 top-level op, except that some bits will be set automatically as required. expr
supplies the expression controlling loop iteration, and block
 supplies the body of the
loop; they are consumed by this function and
 become part of the constructed op tree.
debuggable is currently
 unused and should always be 1.

	 OP *	 newLOOPOP(I32 flags, I32 debuggable, OP *expr,
		 OP *block)

newNULLLIST

Constructs, checks, and returns a new stub op, which represents an
 empty list
expression.

	 OP *	 newNULLLIST()

newOP

Constructs, checks, and returns an op of any base type (any type that
 has no extra
fields). type is the opcode. flags gives the
 eight bits of op_flags, and, shifted up eight
bits, the eight bits
 of op_private.

	 OP *	 newOP(I32 type, I32 flags)

newPADOP

Constructs, checks, and returns an op of any type that involves a
 reference to a pad
element. type is the opcode. flags gives the
 eight bits of op_flags. A pad slot is
automatically allocated, and
 is populated with sv; this function takes ownership of one
reference
 to it.

This function only exists if Perl has been compiled to use ithreads.

	 OP *	 newPADOP(I32 type, I32 flags, SV *sv)

newPMOP

Constructs, checks, and returns an op of any pattern matching type. type is the
opcode. flags gives the eight bits of op_flags
 and, shifted up eight bits, the eight bits
of op_private.

Perl version 5.20.1 documentation - perlapi

Page 66http://perldoc.perl.org

	 OP *	 newPMOP(I32 type, I32 flags)

newPVOP

Constructs, checks, and returns an op of any type that involves an
 embedded C-level
pointer (PV). type is the opcode. flags gives
 the eight bits of op_flags. pv supplies
the C-level pointer, which
 must have been allocated using PerlMemShared_malloc;
the memory will
 be freed when the op is destroyed.

	 OP *	 newPVOP(I32 type, I32 flags, char *pv)

newRANGE

Constructs and returns a range op, with subordinate flip and flop ops. flags gives
the eight bits of op_flags for the flip op and, shifted up eight bits, the eight bits of
op_private
 for both the flip and range ops, except that the bit with value
 1 is
automatically set. left and right supply the expressions
 controlling the endpoints of the
range; they are consumed by this function
 and become part of the constructed op tree.

	 OP *	 newRANGE(I32 flags, OP *left, OP *right)

newSLICEOP

Constructs, checks, and returns an lslice (list slice) op. flags
 gives the eight bits of
op_flags, except that OPf_KIDS will
 be set automatically, and, shifted up eight bits,
the eight bits of op_private, except that the bit with value 1 or 2 is automatically
 set
as required. listval and subscript supply the parameters of
 the slice; they are
consumed by this function and become part of the
 constructed op tree.

	 OP *	 newSLICEOP(I32 flags, OP *subscript,
		 OP *listval)

newSTATEOP

Constructs a state op (COP). The state op is normally a nextstate op,
 but will be a
dbstate op if debugging is enabled for currently-compiled
 code. The state op is
populated from PL_curcop (or PL_compiling).
 If label is non-null, it supplies the
name of a label to attach to
 the state op; this function takes ownership of the memory
pointed at by label, and will free it. flags gives the eight bits of op_flags
 for the state
op.

If o is null, the state op is returned. Otherwise the state op is
 combined with o into a
lineseq list op, which is returned. o
 is consumed by this function and becomes part
of the returned op tree.

	 OP *	 newSTATEOP(I32 flags, char *label, OP *o)

newSVOP

Constructs, checks, and returns an op of any type that involves an
 embedded SV. type
is the opcode. flags gives the eight bits
 of op_flags. sv gives the SV to embed in the
op; this function
 takes ownership of one reference to it.

	 OP *	 newSVOP(I32 type, I32 flags, SV *sv)

newUNOP

Constructs, checks, and returns an op of any unary type. type is
 the opcode. flags
gives the eight bits of op_flags, except that OPf_KIDS will be set automatically if
required, and, shifted up eight
 bits, the eight bits of op_private, except that the bit
with value 1
 is automatically set. first supplies an optional op to be the direct
 child of
the unary op; it is consumed by this function and become part
 of the constructed op

Perl version 5.20.1 documentation - perlapi

Page 67http://perldoc.perl.org

tree.	 OP *	 newUNOP(I32 type, I32 flags, OP *first)

newWHENOP

Constructs, checks, and returns an op tree expressing a when block. cond supplies the
test expression, and block supplies the block
 that will be executed if the test evaluates
to true; they are consumed
 by this function and become part of the constructed op
tree. cond
 will be interpreted DWIMically, often as a comparison against $_,
 and may
be null to generate a default block.

	 OP *	 newWHENOP(OP *cond, OP *block)

newWHILEOP

Constructs, checks, and returns an op tree expressing a while loop.
 This is a
heavyweight loop, with structure that allows exiting the loop
 by last and suchlike.

loop is an optional preconstructed enterloop op to use in the
 loop; if it is null then a
suitable op will be constructed automatically. expr supplies the loop's controlling
expression. block supplies the
 main body of the loop, and cont optionally supplies a
continue block
 that operates as a second half of the body. All of these optree inputs

are consumed by this function and become part of the constructed op tree.

flags gives the eight bits of op_flags for the leaveloop
 op and, shifted up eight
bits, the eight bits of op_private for
 the leaveloop op, except that (in both cases)
some bits will be set
 automatically. debuggable is currently unused and should always
be 1. has_my can be supplied as true to force the
 loop body to be enclosed in its own
scope.

	 OP *	 newWHILEOP(I32 flags, I32 debuggable,
		 LOOP *loop, OP *expr, OP *block,
		 OP *cont, I32 has_my)

Optree Manipulation Functions
ck_entersub_args_list

Performs the default fixup of the arguments part of an entersub
 op tree. This
consists of applying list context to each of the
 argument ops. This is the standard
treatment used on a call marked
 with &, or a method call, or a call through a subroutine
reference,
 or any other call where the callee can't be identified at compile time,
 or a
call where the callee has no prototype.

	 OP *	 ck_entersub_args_list(OP *entersubop)

ck_entersub_args_proto

Performs the fixup of the arguments part of an entersub op tree
 based on a
subroutine prototype. This makes various modifications to
 the argument ops, from
applying context up to inserting refgen ops,
 and checking the number and syntactic
types of arguments, as directed by
 the prototype. This is the standard treatment used
on a subroutine call,
 not marked with &, where the callee can be identified at compile
time
 and has a prototype.

protosv supplies the subroutine prototype to be applied to the call.
 It may be a normal
defined scalar, of which the string value will be used.
 Alternatively, for convenience, it
may be a subroutine object (a CV*
 that has been cast to SV*) which has a prototype.
The prototype
 supplied, in whichever form, does not need to match the actual callee

referenced by the op tree.

If the argument ops disagree with the prototype, for example by having
 an
unacceptable number of arguments, a valid op tree is returned anyway.
 The error is
reflected in the parser state, normally resulting in a single
 exception at the top level of

Perl version 5.20.1 documentation - perlapi

Page 68http://perldoc.perl.org

parsing which covers all the compilation
 errors that occurred. In the error message, the
callee is referred to
 by the name defined by the namegv parameter.

	 OP *	 ck_entersub_args_proto(OP *entersubop,
		 GV *namegv, SV *protosv)

ck_entersub_args_proto_or_list

Performs the fixup of the arguments part of an entersub op tree either
 based on a
subroutine prototype or using default list-context processing.
 This is the standard
treatment used on a subroutine call, not marked
 with &, where the callee can be
identified at compile time.

protosv supplies the subroutine prototype to be applied to the call,
 or indicates that
there is no prototype. It may be a normal scalar,
 in which case if it is defined then the
string value will be used
 as a prototype, and if it is undefined then there is no
prototype.
 Alternatively, for convenience, it may be a subroutine object (a CV*
 that has
been cast to SV*), of which the prototype will be used if it
 has one. The prototype (or
lack thereof) supplied, in whichever form,
 does not need to match the actual callee
referenced by the op tree.

If the argument ops disagree with the prototype, for example by having
 an
unacceptable number of arguments, a valid op tree is returned anyway.
 The error is
reflected in the parser state, normally resulting in a single
 exception at the top level of
parsing which covers all the compilation
 errors that occurred. In the error message, the
callee is referred to
 by the name defined by the namegv parameter.

	 OP *	 ck_entersub_args_proto_or_list(OP *entersubop,
		 GV *namegv,
		 SV *protosv)

cv_const_sv

If cv is a constant sub eligible for inlining, returns the constant
 value returned by the
sub. Otherwise, returns NULL.

Constant subs can be created with newCONSTSUB or as described in "Constant
Functions" in perlsub.

	 SV*	 cv_const_sv(const CV *const cv)

cv_get_call_checker

Retrieves the function that will be used to fix up a call to cv.
 Specifically, the function is
applied to an entersub op tree for a
 subroutine call, not marked with &, where the
callee can be identified
 at compile time as cv.

The C-level function pointer is returned in *ckfun_p, and an SV
 argument for it is
returned in *ckobj_p. The function is intended
 to be called in this manner:

 entersubop = (*ckfun_p)(aTHX_ entersubop, namegv,
(*ckobj_p));

In this call, entersubop is a pointer to the entersub op,
 which may be replaced by the
check function, and namegv is a GV
 supplying the name that should be used by the
check function to refer
 to the callee of the entersub op if it needs to emit any
diagnostics.
 It is permitted to apply the check function in non-standard situations,
 such
as to a call to a different subroutine or to a method call.

By default, the function is Perl_ck_entersub_args_proto_or_list,
 and the SV parameter
is cv itself. This implements standard
 prototype processing. It can be changed, for a
particular subroutine,
 by cv_set_call_checker.

	 void	 cv_get_call_checker(CV *cv,

Perl version 5.20.1 documentation - perlapi

Page 69http://perldoc.perl.org

		 Perl_call_checker *ckfun_p,
		 SV **ckobj_p)

cv_set_call_checker

Sets the function that will be used to fix up a call to cv.
 Specifically, the function is
applied to an entersub op tree for a
 subroutine call, not marked with &, where the
callee can be identified
 at compile time as cv.

The C-level function pointer is supplied in ckfun, and an SV argument
 for it is supplied
in ckobj. The function should be defined like this:

 STATIC OP * ckfun(pTHX_ OP *op, GV *namegv, SV *ckobj)

It is intended to be called in this manner:

 entersubop = ckfun(aTHX_ entersubop, namegv, ckobj);

In this call, entersubop is a pointer to the entersub op,
 which may be replaced by the
check function, and namegv is a GV
 supplying the name that should be used by the
check function to refer
 to the callee of the entersub op if it needs to emit any
diagnostics.
 It is permitted to apply the check function in non-standard situations,
 such
as to a call to a different subroutine or to a method call.

The current setting for a particular CV can be retrieved by cv_get_call_checker.

	 void	 cv_set_call_checker(CV *cv,
		 Perl_call_checker ckfun,
		 SV *ckobj)

LINKLIST

Given the root of an optree, link the tree in execution order using the op_next
pointers and return the first op executed. If this has
 already been done, it will not be
redone, and o->op_next will be
 returned. If o->op_next is not already set, o should
be at
 least an UNOP.

	 OP*	 LINKLIST(OP *o)

newCONSTSUB

See newCONSTSUB_flags.

	 CV*	 newCONSTSUB(HV* stash, const char* name, SV* sv)

newCONSTSUB_flags

Creates a constant sub equivalent to Perl sub FOO () { 123 } which is
 eligible for
inlining at compile-time.

Currently, the only useful value for flags is SVf_UTF8.

The newly created subroutine takes ownership of a reference to the passed in
 SV.

Passing NULL for SV creates a constant sub equivalent to sub BAR () {},
 which
won't be called if used as a destructor, but will suppress the overhead
 of a call to
AUTOLOAD. (This form, however, isn't eligible for inlining at
 compile time.)

	 CV*	 newCONSTSUB_flags(HV* stash, const char* name,
		 STRLEN len, U32 flags, SV* sv)

newXS

Used by xsubpp to hook up XSUBs as Perl subs. filename needs to be
 static storage,
as it is used directly as CvFILE(), without a copy being made.

Perl version 5.20.1 documentation - perlapi

Page 70http://perldoc.perl.org

op_append_elem

Append an item to the list of ops contained directly within a list-type
 op, returning the
lengthened list. first is the list-type op,
 and last is the op to append to the list. optype
specifies the
 intended opcode for the list. If first is not already a list of the
 right type, it
will be upgraded into one. If either first or last
 is null, the other is returned unchanged.

	 OP *	 op_append_elem(I32 optype, OP *first, OP *last)

op_append_list

Concatenate the lists of ops contained directly within two list-type ops,
 returning the
combined list. first and last are the list-type ops
 to concatenate. optype specifies the
intended opcode for the list.
 If either first or last is not already a list of the right type,
 it
will be upgraded into one. If either first or last is null,
 the other is returned unchanged.

	 OP *	 op_append_list(I32 optype, OP *first, OP *last)

OP_CLASS

Return the class of the provided OP: that is, which of the *OP
 structures it uses. For
core ops this currently gets the information out
 of PL_opargs, which does not always
accurately reflect the type used.
 For custom ops the type is returned from the
registration, and it is up
 to the registree to ensure it is accurate. The value returned will
be
 one of the OA_* constants from op.h.

	 U32	 OP_CLASS(OP *o)

OP_DESC

Return a short description of the provided OP.

	 const char * OP_DESC(OP *o)

op_linklist

This function is the implementation of the LINKLIST macro. It should
 not be called
directly.

	 OP*	 op_linklist(OP *o)

op_lvalue

NOTE: this function is experimental and may change or be
 removed without notice.

Propagate lvalue ("modifiable") context to an op and its children. type represents the
context type, roughly based on the type of op that
 would do the modifying, although
local() is represented by OP_NULL,
 because it has no op type of its own (it is
signalled by a flag on
 the lvalue op).

This function detects things that can't be modified, such as $x+1, and
 generates errors
for them. For example, $x+1 = 2 would cause it to be
 called with an op of type
OP_ADD and a type argument of OP_SASSIGN.

It also flags things that need to behave specially in an lvalue context,
 such as $$x =
5 which might have to vivify a reference in $x.

	 OP *	 op_lvalue(OP *o, I32 type)

OP_NAME

Return the name of the provided OP. For core ops this looks up the name
 from the
op_type; for custom ops from the op_ppaddr.

	 const char * OP_NAME(OP *o)

Perl version 5.20.1 documentation - perlapi

Page 71http://perldoc.perl.org

op_prepend_elem

Prepend an item to the list of ops contained directly within a list-type
 op, returning the
lengthened list. first is the op to prepend to the
 list, and last is the list-type op. optype
specifies the intended
 opcode for the list. If last is not already a list of the right type,
 it
will be upgraded into one. If either first or last is null,
 the other is returned unchanged.

	 OP *	 op_prepend_elem(I32 optype, OP *first, OP *last)

op_scope

NOTE: this function is experimental and may change or be
 removed without notice.

Wraps up an op tree with some additional ops so that at runtime a dynamic
 scope will
be created. The original ops run in the new dynamic scope,
 and then, provided that
they exit normally, the scope will be unwound.
 The additional ops used to create and
unwind the dynamic scope will
 normally be an enter/leave pair, but a scope op may
be used
 instead if the ops are simple enough to not need the full dynamic scope

structure.

	 OP *	 op_scope(OP *o)

OP_TYPE_IS

Returns true if the given OP is not a NULL pointer
 and if it is of the given type.

The negation of this macro, OP_TYPE_ISNT is also available
 as well as
OP_TYPE_IS_NN and OP_TYPE_ISNT_NN which elide
 the NULL pointer check.

	 bool	 OP_TYPE_IS(OP *o, Optype type)

OP_TYPE_IS_OR_WAS

Returns true if the given OP is not a NULL pointer and
 if it is of the given type or used
to be before being
 replaced by an OP of type OP_NULL.

The negation of this macro, OP_TYPE_ISNT_AND_WASNT
 is also available as well as
OP_TYPE_IS_OR_WAS_NN
 and OP_TYPE_ISNT_AND_WASNT_NN which elide
 the
NULL pointer check.

	 bool	 OP_TYPE_IS_OR_WAS(OP *o, Optype type)

rv2cv_op_cv

Examines an op, which is expected to identify a subroutine at runtime,
 and attempts to
determine at compile time which subroutine it identifies.
 This is normally used during
Perl compilation to determine whether
 a prototype can be applied to a function call.
cvop is the op
 being considered, normally an rv2cv op. A pointer to the identified

subroutine is returned, if it could be determined statically, and a null
 pointer is returned
if it was not possible to determine statically.

Currently, the subroutine can be identified statically if the RV that the rv2cv is to
operate on is provided by a suitable gv or const op.
 A gv op is suitable if the GV's
CV slot is populated. A const op is
 suitable if the constant value must be an RV
pointing to a CV. Details of
 this process may change in future versions of Perl. If the
rv2cv op
 has the OPpENTERSUB_AMPER flag set then no attempt is made to identify

the subroutine statically: this flag is used to suppress compile-time
 magic on a
subroutine call, forcing it to use default runtime behaviour.

If flags has the bit RV2CVOPCV_MARK_EARLY set, then the handling
 of a GV reference
is modified. If a GV was examined and its CV slot was
 found to be empty, then the gv
op has the OPpEARLY_CV flag set.
 If the op is not optimised away, and the CV slot is
later populated with
 a subroutine having a prototype, that flag eventually triggers the
warning
 "called too early to check prototype".

Perl version 5.20.1 documentation - perlapi

Page 72http://perldoc.perl.org

If flags has the bit RV2CVOPCV_RETURN_NAME_GV set, then instead
 of returning a
pointer to the subroutine it returns a pointer to the
 GV giving the most appropriate
name for the subroutine in this context.
 Normally this is just the CvGV of the
subroutine, but for an anonymous
 (CvANON) subroutine that is referenced through a
GV it will be the
 referencing GV. The resulting GV* is cast to CV* to be returned.
 A null
pointer is returned as usual if there is no statically-determinable
 subroutine.

	 CV *	 rv2cv_op_cv(OP *cvop, U32 flags)

Pad Data Structures
CvPADLIST

NOTE: this function is experimental and may change or be
 removed without notice.

CV's can have CvPADLIST(cv) set to point to a PADLIST. This is the CV's
 scratchpad,
which stores lexical variables and opcode temporary and
 per-thread values.

For these purposes "formats" are a kind-of CV; eval""s are too (except they're
 not
callable at will and are always thrown away after the eval"" is done
 executing).
Require'd files are simply evals without any outer lexical
 scope.

XSUBs don't have CvPADLIST set - dXSTARG fetches values from PL_curpad,
 but
that is really the callers pad (a slot of which is allocated by
 every entersub).

The PADLIST has a C array where pads are stored.

The 0th entry of the PADLIST is a PADNAMELIST (which is actually just an
 AV, but
that may change) which represents the "names" or rather
 the "static type information"
for lexicals. The individual elements of a
 PADNAMELIST are PADNAMEs (just SVs;
but, again, that may change). Future
 refactorings might stop the PADNAMELIST from
being stored in the PADLIST's
 array, so don't rely on it. See PadlistNAMES.

The CvDEPTH'th entry of a PADLIST is a PAD (an AV) which is the stack frame
 at that
depth of recursion into the CV. The 0th slot of a frame AV is an
 AV which is @_. Other
entries are storage for variables and op targets.

Iterating over the PADNAMELIST iterates over all possible pad
 items. Pad slots for
targets (SVs_PADTMP) and GVs end up having &PL_sv_no
 "names", while slots for
constants have &PL_sv_no "names" (see
 pad_alloc()). That &PL_sv_no is used is an
implementation detail subject
 to change. To test for it, use PadnamePV(name) &&
!PadnameLEN(name).

Only my/our variable (SvPADMY/PADNAME_isOUR) slots get valid names.
 The rest
are op targets/GVs/constants which are statically allocated
 or resolved at compile time.
These don't have names by which they
 can be looked up from Perl code at run time
through eval"" the way
 my/our variables can be. Since they can't be looked up by
"name"
 but only by their index allocated at compile time (which is usually
 in
PL_op->op_targ), wasting a name SV for them doesn't make sense.

The SVs in the names AV have their PV being the name of the variable.
 xlow+1..xhigh
inclusive in the NV union is a range of cop_seq numbers for
 which the name is valid
(accessed through the macros COP_SEQ_RANGE_LOW and
 _HIGH). During
compilation, these fields may hold the special value
 PERL_PADSEQ_INTRO to
indicate various stages:

 COP_SEQ_RANGE_LOW _HIGH
 ----------------- -----
 PERL_PADSEQ_INTRO 0 variable not yet introduced:
 { my ($x
 valid-seq# PERL_PADSEQ_INTRO variable in scope:
 { my ($x)
 valid-seq# valid-seq# compilation of scope
complete: { my ($x) }

Perl version 5.20.1 documentation - perlapi

Page 73http://perldoc.perl.org

For typed lexicals name SV is SVt_PVMG and SvSTASH
 points at the type. For our
lexicals, the type is also SVt_PVMG, with the
 SvOURSTASH slot pointing at the stash
of the associated global (so that
 duplicate our declarations in the same package can
be detected). SvUVX is
 sometimes hijacked to store the generation number during
compilation.

If PADNAME_OUTER (SvFAKE) is set on the
 name SV, then that slot in the frame AV
is
 a REFCNT'ed reference to a lexical from "outside". In this case,
 the name SV does
not use xlow and xhigh to store a cop_seq range, since it is
 in scope throughout.
Instead xhigh stores some flags containing info about
 the real lexical (is it declared in
an anon, and is it capable of being
 instantiated multiple times?), and for fake ANONs,
xlow contains the index
 within the parent's pad where the lexical's value is stored, to
make
 cloning quicker.

If the 'name' is '&' the corresponding entry in the PAD
 is a CV representing a possible
closure.
 (PADNAME_OUTER and name of '&' is not a
 meaningful combination
currently but could
 become so if my sub foo {} is implemented.)

Note that formats are treated as anon subs, and are cloned each time
 write is called (if
necessary).

The flag SVs_PADSTALE is cleared on lexicals each time the my() is executed,
 and
set on scope exit. This allows the
 'Variable $x is not available' warning
 to be generated
in evals, such as

 { my $x = 1; sub f { eval '$x'} } f();

For state vars, SVs_PADSTALE is overloaded to mean 'not yet initialised'.

	 PADLIST * CvPADLIST(CV *cv)

PadARRAY

NOTE: this function is experimental and may change or be
 removed without notice.

The C array of pad entries.

	 SV **	 PadARRAY(PAD pad)

PadlistARRAY

NOTE: this function is experimental and may change or be
 removed without notice.

The C array of a padlist, containing the pads. Only subscript it with
 numbers >= 1, as
the 0th entry is not guaranteed to remain usable.

	 PAD **	 PadlistARRAY(PADLIST padlist)

PadlistMAX

NOTE: this function is experimental and may change or be
 removed without notice.

The index of the last allocated space in the padlist. Note that the last
 pad may be in an
earlier slot. Any entries following it will be NULL in
 that case.

	 SSize_t	 PadlistMAX(PADLIST padlist)

PadlistNAMES

NOTE: this function is experimental and may change or be
 removed without notice.

The names associated with pad entries.

	 PADNAMELIST * PadlistNAMES(PADLIST padlist)

PadlistNAMESARRAY

Perl version 5.20.1 documentation - perlapi

Page 74http://perldoc.perl.org

NOTE: this function is experimental and may change or be
 removed without notice.

The C array of pad names.

	 PADNAME ** PadlistNAMESARRAY(PADLIST padlist)

PadlistNAMESMAX

NOTE: this function is experimental and may change or be
 removed without notice.

The index of the last pad name.

	 SSize_t	 PadlistNAMESMAX(PADLIST padlist)

PadlistREFCNT

NOTE: this function is experimental and may change or be
 removed without notice.

The reference count of the padlist. Currently this is always 1.

	 U32	 PadlistREFCNT(PADLIST padlist)

PadMAX

NOTE: this function is experimental and may change or be
 removed without notice.

The index of the last pad entry.

	 SSize_t	 PadMAX(PAD pad)

PadnameLEN

NOTE: this function is experimental and may change or be
 removed without notice.

The length of the name.

	 STRLEN	 PadnameLEN(PADNAME pn)

PadnamelistARRAY

NOTE: this function is experimental and may change or be
 removed without notice.

The C array of pad names.

	 PADNAME ** PadnamelistARRAY(PADNAMELIST pnl)

PadnamelistMAX

NOTE: this function is experimental and may change or be
 removed without notice.

The index of the last pad name.

	 SSize_t	 PadnamelistMAX(PADNAMELIST pnl)

PadnamePV

NOTE: this function is experimental and may change or be
 removed without notice.

The name stored in the pad name struct. This returns NULL for a target or
 GV slot.

	 char *	 PadnamePV(PADNAME pn)

PadnameSV

NOTE: this function is experimental and may change or be
 removed without notice.

Returns the pad name as an SV. This is currently just pn. It will
 begin returning a new
mortal SV if pad names ever stop being SVs.

	 SV *	 PadnameSV(PADNAME pn)

Perl version 5.20.1 documentation - perlapi

Page 75http://perldoc.perl.org

PadnameUTF8

NOTE: this function is experimental and may change or be
 removed without notice.

Whether PadnamePV is in UTF8.

	 bool	 PadnameUTF8(PADNAME pn)

pad_add_name_pvs

Exactly like pad_add_name_pvn, but takes a literal string instead
 of a string/length
pair.

	 PADOFFSET pad_add_name_pvs(const char *name, U32 flags,
	 HV *typestash, HV *ourstash)

pad_findmy_pvs

Exactly like pad_findmy_pvn, but takes a literal string instead
 of a string/length pair.

	 PADOFFSET pad_findmy_pvs(const char *name, U32 flags)

pad_new

Create a new padlist, updating the global variables for the
 currently-compiling padlist
to point to the new padlist. The following
 flags can be OR'ed together:

 padnew_CLONE	 this pad is for a cloned CV
 padnew_SAVE		 save old globals on the save stack
 padnew_SAVESUB	 also save extra stuff for start of sub

	 PADLIST * pad_new(int flags)

PL_comppad

NOTE: this function is experimental and may change or be
 removed without notice.

During compilation, this points to the array containing the values
 part of the pad for the
currently-compiling code. (At runtime a CV may
 have many such value arrays; at
compile time just one is constructed.)
 At runtime, this points to the array containing the
currently-relevant
 values for the pad for the currently-executing code.

PL_comppad_name

NOTE: this function is experimental and may change or be
 removed without notice.

During compilation, this points to the array containing the names part
 of the pad for the
currently-compiling code.

PL_curpad

NOTE: this function is experimental and may change or be
 removed without notice.

Points directly to the body of the PL_comppad array.
 (I.e., this is
PAD_ARRAY(PL_comppad).)

Per-Interpreter Variables
PL_modglobal

PL_modglobal is a general purpose, interpreter global HV for use by
 extensions that
need to keep information on a per-interpreter basis.
 In a pinch, it can also be used as a
symbol table for extensions
 to share data among each other. It is a good idea to use
keys
 prefixed by the package name of the extension that owns the data.

	 HV*	 PL_modglobal

Perl version 5.20.1 documentation - perlapi

Page 76http://perldoc.perl.org

PL_na

A convenience variable which is typically used with SvPV when one
 doesn't care about
the length of the string. It is usually more efficient
 to either declare a local variable and
use that instead or to use the SvPV_nolen macro.

	 STRLEN	 PL_na

PL_opfreehook

When non-NULL, the function pointed by this variable will be called each time an OP is
freed with the corresponding OP as the argument.
 This allows extensions to free any
extra attribute they have locally attached to an OP.
 It is also assured to first fire for the
parent OP and then for its kids.

When you replace this variable, it is considered a good practice to store the possibly
previously installed hook and that you recall it inside your own.

	 Perl_ophook_t	 PL_opfreehook

PL_peepp

Pointer to the per-subroutine peephole optimiser. This is a function
 that gets called at
the end of compilation of a Perl subroutine (or
 equivalently independent piece of Perl
code) to perform fixups of
 some ops and to perform small-scale optimisations. The
function is
 called once for each subroutine that is compiled, and is passed, as sole

parameter, a pointer to the op that is the entry point to the subroutine.
 It modifies the
op tree in place.

The peephole optimiser should never be completely replaced. Rather,
 add code to it
by wrapping the existing optimiser. The basic way to do
 this can be seen in "Compile
pass 3: peephole optimization" in perlguts.
 If the new code wishes to operate on ops
throughout the subroutine's
 structure, rather than just at the top level, it is likely to be
more
 convenient to wrap the PL_rpeepp hook.

	 peep_t	 PL_peepp

PL_rpeepp

Pointer to the recursive peephole optimiser. This is a function
 that gets called at the
end of compilation of a Perl subroutine (or
 equivalently independent piece of Perl
code) to perform fixups of some
 ops and to perform small-scale optimisations. The
function is called
 once for each chain of ops linked through their op_next fields;
 it is
recursively called to handle each side chain. It is passed, as
 sole parameter, a pointer
to the op that is at the head of the chain.
 It modifies the op tree in place.

The peephole optimiser should never be completely replaced. Rather,
 add code to it
by wrapping the existing optimiser. The basic way to do
 this can be seen in "Compile
pass 3: peephole optimization" in perlguts.
 If the new code wishes to operate only on
ops at a subroutine's top level,
 rather than throughout the structure, it is likely to be
more convenient
 to wrap the PL_peepp hook.

	 peep_t	 PL_rpeepp

PL_sv_no

This is the false SV. See PL_sv_yes. Always refer to this as &PL_sv_no.

	 SV	 PL_sv_no

PL_sv_undef

This is the undef SV. Always refer to this as &PL_sv_undef.

Perl version 5.20.1 documentation - perlapi

Page 77http://perldoc.perl.org

	 SV	 PL_sv_undef

PL_sv_yes

This is the true SV. See PL_sv_no. Always refer to this as &PL_sv_yes.

	 SV	 PL_sv_yes

REGEXP Functions
SvRX

Convenience macro to get the REGEXP from a SV. This is approximately
 equivalent to
the following snippet:

 if (SvMAGICAL(sv))
 mg_get(sv);
 if (SvROK(sv))
 sv = MUTABLE_SV(SvRV(sv));
 if (SvTYPE(sv) == SVt_REGEXP)
 return (REGEXP*) sv;

NULL will be returned if a REGEXP* is not found.

	 REGEXP * SvRX(SV *sv)

SvRXOK

Returns a boolean indicating whether the SV (or the one it references)
 is a REGEXP.

If you want to do something with the REGEXP* later use SvRX instead
 and check for
NULL.

	 bool	 SvRXOK(SV* sv)

Simple Exception Handling Macros
dXCPT

Set up necessary local variables for exception handling.
 See "Exception Handling" in
perlguts.

		 dXCPT;

XCPT_CATCH

Introduces a catch block. See "Exception Handling" in perlguts.

XCPT_RETHROW

Rethrows a previously caught exception. See "Exception Handling" in perlguts.

		 XCPT_RETHROW;

XCPT_TRY_END

Ends a try block. See "Exception Handling" in perlguts.

XCPT_TRY_START

Starts a try block. See "Exception Handling" in perlguts.

Stack Manipulation Macros
dMARK

Declare a stack marker variable, mark, for the XSUB. See MARK and dORIGMARK.

Perl version 5.20.1 documentation - perlapi

Page 78http://perldoc.perl.org

		 dMARK;

dORIGMARK

Saves the original stack mark for the XSUB. See ORIGMARK.

		 dORIGMARK;

dSP

Declares a local copy of perl's stack pointer for the XSUB, available via
 the SP macro.
See SP.

		 dSP;

EXTEND

Used to extend the argument stack for an XSUB's return values. Once
 used,
guarantees that there is room for at least nitems to be pushed
 onto the stack.

	 void	 EXTEND(SP, SSize_t nitems)

MARK

Stack marker variable for the XSUB. See dMARK.

mPUSHi

Push an integer onto the stack. The stack must have room for this element.
 Does not
use TARG. See also PUSHi, mXPUSHi and XPUSHi.

	 void	 mPUSHi(IV iv)

mPUSHn

Push a double onto the stack. The stack must have room for this element.
 Does not
use TARG. See also PUSHn, mXPUSHn and XPUSHn.

	 void	 mPUSHn(NV nv)

mPUSHp

Push a string onto the stack. The stack must have room for this element.
 The len
indicates the length of the string. Does not use TARG.
 See also PUSHp, mXPUSHp and
XPUSHp.

	 void	 mPUSHp(char* str, STRLEN len)

mPUSHs

Push an SV onto the stack and mortalizes the SV. The stack must have room
 for this
element. Does not use TARG. See also PUSHs and mXPUSHs.

	 void	 mPUSHs(SV* sv)

mPUSHu

Push an unsigned integer onto the stack. The stack must have room for this
 element.
Does not use TARG. See also PUSHu, mXPUSHu and XPUSHu.

	 void	 mPUSHu(UV uv)

mXPUSHi

Push an integer onto the stack, extending the stack if necessary.
 Does not use TARG.

Perl version 5.20.1 documentation - perlapi

Page 79http://perldoc.perl.org

See also XPUSHi, mPUSHi and PUSHi.

	 void	 mXPUSHi(IV iv)

mXPUSHn

Push a double onto the stack, extending the stack if necessary.
 Does not use TARG.
See also XPUSHn, mPUSHn and PUSHn.

	 void	 mXPUSHn(NV nv)

mXPUSHp

Push a string onto the stack, extending the stack if necessary. The len
 indicates the
length of the string. Does not use TARG. See also XPUSHp, mPUSHp and PUSHp.

	 void	 mXPUSHp(char* str, STRLEN len)

mXPUSHs

Push an SV onto the stack, extending the stack if necessary and mortalizes
 the SV.
Does not use TARG. See also XPUSHs and mPUSHs.

	 void	 mXPUSHs(SV* sv)

mXPUSHu

Push an unsigned integer onto the stack, extending the stack if necessary.
 Does not
use TARG. See also XPUSHu, mPUSHu and PUSHu.

	 void	 mXPUSHu(UV uv)

ORIGMARK

The original stack mark for the XSUB. See dORIGMARK.

POPi

Pops an integer off the stack.

	 IV	 POPi

POPl

Pops a long off the stack.

	 long	 POPl

POPn

Pops a double off the stack.

	 NV	 POPn

POPp

Pops a string off the stack.

	 char*	 POPp

POPpbytex

Pops a string off the stack which must consist of bytes i.e. characters < 256.

	 char*	 POPpbytex

Perl version 5.20.1 documentation - perlapi

Page 80http://perldoc.perl.org

POPpx

Pops a string off the stack. Identical to POPp. There are two names for
 historical
reasons.

	 char*	 POPpx

POPs

Pops an SV off the stack.

	 SV*	 POPs

PUSHi

Push an integer onto the stack. The stack must have room for this element.
 Handles
'set' magic. Uses TARG, so dTARGET or dXSTARG should be
 called to declare it. Do not
call multiple TARG-oriented macros to return lists from XSUB's - see mPUSHi instead.
See also XPUSHi and mXPUSHi.

	 void	 PUSHi(IV iv)

PUSHMARK

Opening bracket for arguments on a callback. See PUTBACK and perlcall.

	 void	 PUSHMARK(SP)

PUSHmortal

Push a new mortal SV onto the stack. The stack must have room for this
 element.
Does not use TARG. See also PUSHs, XPUSHmortal and XPUSHs.

	 void	 PUSHmortal()

PUSHn

Push a double onto the stack. The stack must have room for this element.
 Handles
'set' magic. Uses TARG, so dTARGET or dXSTARG should be
 called to declare it. Do not
call multiple TARG-oriented macros to
 return lists from XSUB's - see mPUSHn instead.
See also XPUSHn and mXPUSHn.

	 void	 PUSHn(NV nv)

PUSHp

Push a string onto the stack. The stack must have room for this element.
 The len
indicates the length of the string. Handles 'set' magic. Uses TARG, so dTARGET or
dXSTARG should be called to declare it. Do not
 call multiple TARG-oriented macros to
return lists from XSUB's - see mPUSHp instead. See also XPUSHp and mXPUSHp.

	 void	 PUSHp(char* str, STRLEN len)

PUSHs

Push an SV onto the stack. The stack must have room for this element.
 Does not
handle 'set' magic. Does not use TARG. See also PUSHmortal, XPUSHs and
XPUSHmortal.

	 void	 PUSHs(SV* sv)

PUSHu

Push an unsigned integer onto the stack. The stack must have room for this
 element.
Handles 'set' magic. Uses TARG, so dTARGET or dXSTARG
 should be called to declare

Perl version 5.20.1 documentation - perlapi

Page 81http://perldoc.perl.org

it. Do not call multiple TARG-oriented
 macros to return lists from XSUB's - see mPUSHu
instead. See also XPUSHu and mXPUSHu.

	 void	 PUSHu(UV uv)

PUTBACK

Closing bracket for XSUB arguments. This is usually handled by xsubpp.
 See
PUSHMARK and perlcall for other uses.

		 PUTBACK;

SP

Stack pointer. This is usually handled by xsubpp. See dSP and SPAGAIN.

SPAGAIN

Refetch the stack pointer. Used after a callback. See perlcall.

		 SPAGAIN;

XPUSHi

Push an integer onto the stack, extending the stack if necessary. Handles
 'set' magic.
Uses TARG, so dTARGET or dXSTARG should be called to
 declare it. Do not call
multiple TARG-oriented macros to return lists
 from XSUB's - see mXPUSHi instead. See
also PUSHi and mPUSHi.

	 void	 XPUSHi(IV iv)

XPUSHmortal

Push a new mortal SV onto the stack, extending the stack if necessary.
 Does not use
TARG. See also XPUSHs, PUSHmortal and PUSHs.

	 void	 XPUSHmortal()

XPUSHn

Push a double onto the stack, extending the stack if necessary. Handles
 'set' magic.
Uses TARG, so dTARGET or dXSTARG should be called to
 declare it. Do not call
multiple TARG-oriented macros to return lists
 from XSUB's - see mXPUSHn instead. See
also PUSHn and mPUSHn.

	 void	 XPUSHn(NV nv)

XPUSHp

Push a string onto the stack, extending the stack if necessary. The len
 indicates the
length of the string. Handles 'set' magic. Uses TARG, so dTARGET or dXSTARG should
be called to declare it. Do not call
 multiple TARG-oriented macros to return lists from
XSUB's - see mXPUSHp instead. See also PUSHp and mPUSHp.

	 void	 XPUSHp(char* str, STRLEN len)

XPUSHs

Push an SV onto the stack, extending the stack if necessary. Does not
 handle 'set'
magic. Does not use TARG. See also XPUSHmortal, PUSHs and PUSHmortal.

	 void	 XPUSHs(SV* sv)

XPUSHu

Perl version 5.20.1 documentation - perlapi

Page 82http://perldoc.perl.org

Push an unsigned integer onto the stack, extending the stack if necessary.
 Handles
'set' magic. Uses TARG, so dTARGET or dXSTARG should be
 called to declare it. Do not
call multiple TARG-oriented macros to
 return lists from XSUB's - see mXPUSHu instead.
See also PUSHu and mPUSHu.

	 void	 XPUSHu(UV uv)

XSRETURN

Return from XSUB, indicating number of items on the stack. This is usually
 handled by
xsubpp.

	 void	 XSRETURN(int nitems)

XSRETURN_EMPTY

Return an empty list from an XSUB immediately.

		 XSRETURN_EMPTY;

XSRETURN_IV

Return an integer from an XSUB immediately. Uses XST_mIV.

	 void	 XSRETURN_IV(IV iv)

XSRETURN_NO

Return &PL_sv_no from an XSUB immediately. Uses XST_mNO.

		 XSRETURN_NO;

XSRETURN_NV

Return a double from an XSUB immediately. Uses XST_mNV.

	 void	 XSRETURN_NV(NV nv)

XSRETURN_PV

Return a copy of a string from an XSUB immediately. Uses XST_mPV.

	 void	 XSRETURN_PV(char* str)

XSRETURN_UNDEF

Return &PL_sv_undef from an XSUB immediately. Uses XST_mUNDEF.

		 XSRETURN_UNDEF;

XSRETURN_UV

Return an integer from an XSUB immediately. Uses XST_mUV.

	 void	 XSRETURN_UV(IV uv)

XSRETURN_YES

Return &PL_sv_yes from an XSUB immediately. Uses XST_mYES.

		 XSRETURN_YES;

XST_mIV

Place an integer into the specified position pos on the stack. The
 value is stored in a
new mortal SV.

Perl version 5.20.1 documentation - perlapi

Page 83http://perldoc.perl.org

	 void	 XST_mIV(int pos, IV iv)

XST_mNO

Place &PL_sv_no into the specified position pos on the
 stack.

	 void	 XST_mNO(int pos)

XST_mNV

Place a double into the specified position pos on the stack. The value
 is stored in a
new mortal SV.

	 void	 XST_mNV(int pos, NV nv)

XST_mPV

Place a copy of a string into the specified position pos on the stack. The value is
stored in a new mortal SV.

	 void	 XST_mPV(int pos, char* str)

XST_mUNDEF

Place &PL_sv_undef into the specified position pos on the
 stack.

	 void	 XST_mUNDEF(int pos)

XST_mYES

Place &PL_sv_yes into the specified position pos on the
 stack.

	 void	 XST_mYES(int pos)

SV Flags
svtype

An enum of flags for Perl types. These are found in the file sv.h
 in the svtype enum.
Test these flags with the SvTYPE macro.

The types are:

 SVt_NULL
 SVt_IV
 SVt_NV
 SVt_RV
 SVt_PV
 SVt_PVIV
 SVt_PVNV
 SVt_PVMG
 SVt_INVLIST
 SVt_REGEXP
 SVt_PVGV
 SVt_PVLV
 SVt_PVAV
 SVt_PVHV
 SVt_PVCV
 SVt_PVFM
 SVt_PVIO

These are most easily explained from the bottom up.

SVt_PVIO is for I/O objects, SVt_PVFM for formats, SVt_PVCV for
 subroutines,

Perl version 5.20.1 documentation - perlapi

Page 84http://perldoc.perl.org

SVt_PVHV for hashes and SVt_PVAV for arrays.

All the others are scalar types, that is, things that can be bound to a $ variable. For
these, the internal types are mostly orthogonal to
 types in the Perl language.

Hence, checking SvTYPE(sv) < SVt_PVAV is the best way to see whether

something is a scalar.

SVt_PVGV represents a typeglob. If !SvFAKE(sv), then it is a real,
 incoercible
typeglob. If SvFAKE(sv), then it is a scalar to which a
 typeglob has been assigned.
Assigning to it again will stop it from being
 a typeglob. SVt_PVLV represents a scalar
that delegates to another scalar
 behind the scenes. It is used, e.g., for the return value
of substr and
 for tied hash and array elements. It can hold any scalar value,
including
 a typeglob. SVt_REGEXP is for regular
 expressions. SVt_INVLIST is for Perl
core internal use only.

SVt_PVMG represents a "normal" scalar (not a typeglob, regular expression,
 or
delegate). Since most scalars do not need all the internal fields of a
 PVMG, we save
memory by allocating smaller structs when possible. All the
 other types are just simpler
forms of SVt_PVMG, with fewer internal fields.
 SVt_NULL can only hold undef. SVt_IV
can hold undef, an integer, or a
 reference. (SVt_RV is an alias for SVt_IV, which exists
for backward
 compatibility.) SVt_NV can hold any of those or a double. SVt_PV can
only
 hold undef or a string. SVt_PVIV is a superset of SVt_PV and SVt_IV.
 SVt_PVNV
is similar. SVt_PVMG can hold anything SVt_PVNV can hold, but it
 can, but does not
have to, be blessed or magical.

SVt_INVLIST

Type flag for scalars. See svtype.

SVt_IV

Type flag for scalars. See svtype.

SVt_NULL

Type flag for scalars. See svtype.

SVt_NV

Type flag for scalars. See svtype.

SVt_PV

Type flag for scalars. See svtype.

SVt_PVAV

Type flag for arrays. See svtype.

SVt_PVCV

Type flag for subroutines. See svtype.

SVt_PVFM

Type flag for formats. See svtype.

SVt_PVGV

Type flag for typeglobs. See svtype.

SVt_PVHV

Type flag for hashes. See svtype.

SVt_PVIO

Type flag for I/O objects. See svtype.

Perl version 5.20.1 documentation - perlapi

Page 85http://perldoc.perl.org

SVt_PVIV

Type flag for scalars. See svtype.

SVt_PVLV

Type flag for scalars. See svtype.

SVt_PVMG

Type flag for scalars. See svtype.

SVt_PVNV

Type flag for scalars. See svtype.

SVt_REGEXP

Type flag for regular expressions. See svtype.

SV Manipulation Functions
boolSV

Returns a true SV if b is a true value, or a false SV if b is 0.

See also PL_sv_yes and PL_sv_no.

	 SV *	 boolSV(bool b)

croak_xs_usage

A specialised variant of croak() for emitting the usage message for xsubs

 croak_xs_usage(cv, "eee_yow");

works out the package name and subroutine name from cv, and then calls croak().
Hence if cv is &ouch::awk, it would call croak as:

 Perl_croak(aTHX_ "Usage: %"SVf"::%"SVf"(%s)", "ouch" "awk",
"eee_yow");

	 void	 croak_xs_usage(const CV *const cv,
		 const char *const params)

get_sv

Returns the SV of the specified Perl scalar. flags are passed to gv_fetchpv. If
GV_ADD is set and the
 Perl variable does not exist then it will be created. If flags is
zero
 and the variable does not exist then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

	 SV*	 get_sv(const char *name, I32 flags)

newRV_inc

Creates an RV wrapper for an SV. The reference count for the original SV is

incremented.

	 SV*	 newRV_inc(SV* sv)

newSVpadname

NOTE: this function is experimental and may change or be
 removed without notice.

Creates a new SV containing the pad name. This is currently identical
 to newSVsv, but
pad names may cease being SVs at some point, so newSVpadname is preferable.

	 SV*	 newSVpadname(PADNAME *pn)

Perl version 5.20.1 documentation - perlapi

Page 86http://perldoc.perl.org

newSVpvn_utf8

Creates a new SV and copies a string (which may contain NUL (\0)
 characters) into it.
If utf8 is true, calls SvUTF8_on on the new SV. Implemented as a wrapper around
newSVpvn_flags.

	 SV*	 newSVpvn_utf8(NULLOK const char* s, STRLEN len,
		 U32 utf8)

SvCUR

Returns the length of the string which is in the SV. See SvLEN.

	 STRLEN	 SvCUR(SV* sv)

SvCUR_set

Set the current length of the string which is in the SV. See SvCUR
 and SvIV_set.

	 void	 SvCUR_set(SV* sv, STRLEN len)

SvEND

Returns a pointer to the spot just after the last character in
 the string which is in the
SV, where there is usually a trailing NUL character (even though Perl scalars do not
strictly require it).
 See SvCUR. Access the character as *(SvEND(sv)).

Warning: If SvCUR is equal to SvLEN, then SvEND points to
 unallocated memory.

	 char*	 SvEND(SV* sv)

SvGAMAGIC

Returns true if the SV has get magic or
 overloading. If either is true then
 the scalar is
active data, and has the potential to return a new value every
 time it is accessed.
Hence you must be careful to
 only read it once per user logical operation and work

with that returned value. If neither is true then
 the scalar's value cannot change unless
written to.

	 U32	 SvGAMAGIC(SV* sv)

SvGROW

Expands the character buffer in the SV so that it has room for the
 indicated number of
bytes (remember to reserve space for an extra trailing NUL character). Calls sv_grow
to perform the expansion if necessary.
 Returns a pointer to the character
 buffer. SV
must be of type >= SVt_PV. One
 alternative is to call sv_grow if you are not sure of
the type of SV.

	 char *	 SvGROW(SV* sv, STRLEN len)

SvIOK

Returns a U32 value indicating whether the SV contains an integer.

	 U32	 SvIOK(SV* sv)

SvIOKp

Returns a U32 value indicating whether the SV contains an integer. Checks
 the
private setting. Use SvIOK instead.

	 U32	 SvIOKp(SV* sv)

SvIOK_notUV

Perl version 5.20.1 documentation - perlapi

Page 87http://perldoc.perl.org

Returns a boolean indicating whether the SV contains a signed integer.

	 bool	 SvIOK_notUV(SV* sv)

SvIOK_off

Unsets the IV status of an SV.

	 void	 SvIOK_off(SV* sv)

SvIOK_on

Tells an SV that it is an integer.

	 void	 SvIOK_on(SV* sv)

SvIOK_only

Tells an SV that it is an integer and disables all other OK bits.

	 void	 SvIOK_only(SV* sv)

SvIOK_only_UV

Tells an SV that it is an unsigned integer and disables all other OK bits.

	 void	 SvIOK_only_UV(SV* sv)

SvIOK_UV

Returns a boolean indicating whether the SV contains an integer that must be

interpreted as unsigned. A non-negative integer whose value is within the
 range of
both an IV and a UV may be be flagged as either SvUOK or SVIOK.

	 bool	 SvIOK_UV(SV* sv)

SvIsCOW

Returns a U32 value indicating whether the SV is Copy-On-Write (either shared
 hash
key scalars, or full Copy On Write scalars if 5.9.0 is configured for
 COW).

	 U32	 SvIsCOW(SV* sv)

SvIsCOW_shared_hash

Returns a boolean indicating whether the SV is Copy-On-Write shared hash key

scalar.

	 bool	 SvIsCOW_shared_hash(SV* sv)

SvIV

Coerces the given SV to an integer and returns it. See SvIVx for a
 version which
guarantees to evaluate sv only once.

	 IV	 SvIV(SV* sv)

SvIVX

Returns the raw value in the SV's IV slot, without checks or conversions.
 Only use
when you are sure SvIOK is true. See also SvIV().

	 IV	 SvIVX(SV* sv)

SvIVx

Perl version 5.20.1 documentation - perlapi

Page 88http://perldoc.perl.org

Coerces the given SV to an integer and returns it.
 Guarantees to evaluate sv only
once. Only use
 this if sv is an expression with side effects,
 otherwise use the more
efficient SvIV.

	 IV	 SvIVx(SV* sv)

SvIV_nomg

Like SvIV but doesn't process magic.

	 IV	 SvIV_nomg(SV* sv)

SvIV_set

Set the value of the IV pointer in sv to val. It is possible to perform
 the same function of
this macro with an lvalue assignment to SvIVX.
 With future Perls, however, it will be
more efficient to use SvIV_set instead of the lvalue assignment to SvIVX.

	 void	 SvIV_set(SV* sv, IV val)

SvLEN

Returns the size of the string buffer in the SV, not including any part
 attributable to
SvOOK. See SvCUR.

	 STRLEN	 SvLEN(SV* sv)

SvLEN_set

Set the actual length of the string which is in the SV. See SvIV_set.

	 void	 SvLEN_set(SV* sv, STRLEN len)

SvMAGIC_set

Set the value of the MAGIC pointer in sv to val. See SvIV_set.

	 void	 SvMAGIC_set(SV* sv, MAGIC* val)

SvNIOK

Returns a U32 value indicating whether the SV contains a number, integer or
 double.

	 U32	 SvNIOK(SV* sv)

SvNIOKp

Returns a U32 value indicating whether the SV contains a number, integer or
 double.
Checks the private setting. Use SvNIOK instead.

	 U32	 SvNIOKp(SV* sv)

SvNIOK_off

Unsets the NV/IV status of an SV.

	 void	 SvNIOK_off(SV* sv)

SvNOK

Returns a U32 value indicating whether the SV contains a double.

	 U32	 SvNOK(SV* sv)

SvNOKp

Perl version 5.20.1 documentation - perlapi

Page 89http://perldoc.perl.org

Returns a U32 value indicating whether the SV contains a double. Checks the private
setting. Use SvNOK instead.

	 U32	 SvNOKp(SV* sv)

SvNOK_off

Unsets the NV status of an SV.

	 void	 SvNOK_off(SV* sv)

SvNOK_on

Tells an SV that it is a double.

	 void	 SvNOK_on(SV* sv)

SvNOK_only

Tells an SV that it is a double and disables all other OK bits.

	 void	 SvNOK_only(SV* sv)

SvNV

Coerce the given SV to a double and return it. See SvNVx for a version
 which
guarantees to evaluate sv only once.

	 NV	 SvNV(SV* sv)

SvNVX

Returns the raw value in the SV's NV slot, without checks or conversions.
 Only use
when you are sure SvNOK is true. See also SvNV().

	 NV	 SvNVX(SV* sv)

SvNVx

Coerces the given SV to a double and returns it.
 Guarantees to evaluate sv only once.
Only use
 this if sv is an expression with side effects,
 otherwise use the more efficient
SvNV.

	 NV	 SvNVx(SV* sv)

SvNV_nomg

Like SvNV but doesn't process magic.

	 NV	 SvNV_nomg(SV* sv)

SvNV_set

Set the value of the NV pointer in sv to val. See SvIV_set.

	 void	 SvNV_set(SV* sv, NV val)

SvOK

Returns a U32 value indicating whether the value is defined. This is
 only meaningful
for scalars.

	 U32	 SvOK(SV* sv)

SvOOK

Perl version 5.20.1 documentation - perlapi

Page 90http://perldoc.perl.org

Returns a U32 indicating whether the pointer to the string buffer is offset.
 This hack is
used internally to speed up removal of characters from the
 beginning of a SvPV. When
SvOOK is true, then the start of the
 allocated string buffer is actually
SvOOK_offset() bytes before SvPVX.
 This offset used to be stored in SvIVX, but is
now stored within the spare
 part of the buffer.

	 U32	 SvOOK(SV* sv)

SvOOK_offset

Reads into len the offset from SvPVX back to the true start of the
 allocated buffer,
which will be non-zero if sv_chop has been used to
 efficiently remove characters from
start of the buffer. Implemented as a
 macro, which takes the address of len, which
must be of type STRLEN.
 Evaluates sv more than once. Sets len to 0 if SvOOK(sv) is
false.

	 void	 SvOOK_offset(NN SV*sv, STRLEN len)

SvPOK

Returns a U32 value indicating whether the SV contains a character
 string.

	 U32	 SvPOK(SV* sv)

SvPOKp

Returns a U32 value indicating whether the SV contains a character string.
 Checks the
private setting. Use SvPOK instead.

	 U32	 SvPOKp(SV* sv)

SvPOK_off

Unsets the PV status of an SV.

	 void	 SvPOK_off(SV* sv)

SvPOK_on

Tells an SV that it is a string.

	 void	 SvPOK_on(SV* sv)

SvPOK_only

Tells an SV that it is a string and disables all other OK bits.
 Will also turn off the UTF-8
status.

	 void	 SvPOK_only(SV* sv)

SvPOK_only_UTF8

Tells an SV that it is a string and disables all other OK bits,
 and leaves the UTF-8
status as it was.

	 void	 SvPOK_only_UTF8(SV* sv)

SvPV

Returns a pointer to the string in the SV, or a stringified form of
 the SV if the SV does
not contain a string. The SV may cache the
 stringified version becoming SvPOK.
Handles 'get' magic. The len variable will be set to the length of the string (this is a
macro, so
 don't use &len). See also SvPVx for a version which guarantees to

evaluate sv only once.

Perl version 5.20.1 documentation - perlapi

Page 91http://perldoc.perl.org

Note that there is no guarantee that the return value of SvPV() is
 equal to
SvPVX(sv), or that SvPVX(sv) contains valid data, or that
 successive calls to
SvPV(sv) will return the same pointer value each
 time. This is due to the way that
things like overloading and
 Copy-On-Write are handled. In these cases, the return
value may point to
 a temporary buffer or similar. If you absolutely need the SvPVX field
to
 be valid (for example, if you intend to write to it), then see SvPV_force.

	 char*	 SvPV(SV* sv, STRLEN len)

SvPVbyte

Like SvPV, but converts sv to byte representation first if necessary.

	 char*	 SvPVbyte(SV* sv, STRLEN len)

SvPVbytex

Like SvPV, but converts sv to byte representation first if necessary.
 Guarantees to
evaluate sv only once; use the more efficient SvPVbyte
 otherwise.

	 char*	 SvPVbytex(SV* sv, STRLEN len)

SvPVbytex_force

Like SvPV_force, but converts sv to byte representation first if necessary.

Guarantees to evaluate sv only once; use the more efficient SvPVbyte_force

otherwise.

	 char*	 SvPVbytex_force(SV* sv, STRLEN len)

SvPVbyte_force

Like SvPV_force, but converts sv to byte representation first if necessary.

	 char*	 SvPVbyte_force(SV* sv, STRLEN len)

SvPVbyte_nolen

Like SvPV_nolen, but converts sv to byte representation first if necessary.

	 char*	 SvPVbyte_nolen(SV* sv)

SvPVutf8

Like SvPV, but converts sv to utf8 first if necessary.

	 char*	 SvPVutf8(SV* sv, STRLEN len)

SvPVutf8x

Like SvPV, but converts sv to utf8 first if necessary.
 Guarantees to evaluate sv only
once; use the more efficient SvPVutf8
 otherwise.

	 char*	 SvPVutf8x(SV* sv, STRLEN len)

SvPVutf8x_force

Like SvPV_force, but converts sv to utf8 first if necessary.
 Guarantees to evaluate sv
only once; use the more efficient SvPVutf8_force
 otherwise.

	 char*	 SvPVutf8x_force(SV* sv, STRLEN len)

SvPVutf8_force

Like SvPV_force, but converts sv to utf8 first if necessary.

Perl version 5.20.1 documentation - perlapi

Page 92http://perldoc.perl.org

	 char*	 SvPVutf8_force(SV* sv, STRLEN len)

SvPVutf8_nolen

Like SvPV_nolen, but converts sv to utf8 first if necessary.

	 char*	 SvPVutf8_nolen(SV* sv)

SvPVX

Returns a pointer to the physical string in the SV. The SV must contain a
 string. Prior
to 5.9.3 it is not safe
 to execute this macro unless the SV's
 type >= SVt_PV.

This is also used to store the name of an autoloaded subroutine in an XS
 AUTOLOAD
routine. See "Autoloading with XSUBs" in perlguts.

	 char*	 SvPVX(SV* sv)

SvPVx

A version of SvPV which guarantees to evaluate sv only once.
 Only use this if sv is an
expression with side effects, otherwise use the
 more efficient SvPV.

	 char*	 SvPVx(SV* sv, STRLEN len)

SvPV_force

Like SvPV but will force the SV into containing a string (SvPOK), and
 only a string (
SvPOK_only), by hook or by crook. You need force if you are
 going to update the
SvPVX directly. Processes get magic.

Note that coercing an arbitrary scalar into a plain PV will potentially
 strip useful data
from it. For example if the SV was SvROK, then the
 referent will have its reference
count decremented, and the SV itself may
 be converted to an SvPOK scalar with a
string buffer containing a value
 such as "ARRAY(0x1234)".

	 char*	 SvPV_force(SV* sv, STRLEN len)

SvPV_force_nomg

Like SvPV_force, but doesn't process get magic.

	 char*	 SvPV_force_nomg(SV* sv, STRLEN len)

SvPV_nolen

Like SvPV but doesn't set a length variable.

	 char*	 SvPV_nolen(SV* sv)

SvPV_nomg

Like SvPV but doesn't process magic.

	 char*	 SvPV_nomg(SV* sv, STRLEN len)

SvPV_nomg_nolen

Like SvPV_nolen but doesn't process magic.

	 char*	 SvPV_nomg_nolen(SV* sv)

SvPV_set

Set the value of the PV pointer in sv to the NUL-terminated string val. See also
SvIV_set.

Perl version 5.20.1 documentation - perlapi

Page 93http://perldoc.perl.org

Beware that the existing pointer may be involved in copy-on-write or other
 mischief, so
do SvOOK_off(sv) and use sv_force_normal or SvPV_force (or check the
SvIsCOW flag) first to make sure this
 modification is safe.

	 void	 SvPV_set(SV* sv, char* val)

SvREFCNT

Returns the value of the object's reference count.

	 U32	 SvREFCNT(SV* sv)

SvREFCNT_dec

Decrements the reference count of the given SV. sv may be NULL.

	 void	 SvREFCNT_dec(SV* sv)

SvREFCNT_dec_NN

Same as SvREFCNT_dec, but can only be used if you know sv
 is not NULL. Since we
don't have to check the NULLness, it's faster
 and smaller.

	 void	 SvREFCNT_dec_NN(SV* sv)

SvREFCNT_inc

Increments the reference count of the given SV, returning the SV.

All of the following SvREFCNT_inc* macros are optimized versions of
 SvREFCNT_inc,
and can be replaced with SvREFCNT_inc.

	 SV*	 SvREFCNT_inc(SV* sv)

SvREFCNT_inc_NN

Same as SvREFCNT_inc, but can only be used if you know sv
 is not NULL. Since we
don't have to check the NULLness, it's faster
 and smaller.

	 SV*	 SvREFCNT_inc_NN(SV* sv)

SvREFCNT_inc_simple

Same as SvREFCNT_inc, but can only be used with expressions without side
 effects.
Since we don't have to store a temporary value, it's faster.

	 SV*	 SvREFCNT_inc_simple(SV* sv)

SvREFCNT_inc_simple_NN

Same as SvREFCNT_inc_simple, but can only be used if you know sv
 is not NULL.
Since we don't have to check the NULLness, it's faster
 and smaller.

	 SV*	 SvREFCNT_inc_simple_NN(SV* sv)

SvREFCNT_inc_simple_void

Same as SvREFCNT_inc_simple, but can only be used if you don't need the
 return
value. The macro doesn't need to return a meaningful value.

	 void	 SvREFCNT_inc_simple_void(SV* sv)

SvREFCNT_inc_simple_void_NN

Same as SvREFCNT_inc, but can only be used if you don't need the return
 value, and
you know that sv is not NULL. The macro doesn't need
 to return a meaningful value, or

Perl version 5.20.1 documentation - perlapi

Page 94http://perldoc.perl.org

check for NULLness, so it's smaller
 and faster.

	 void	 SvREFCNT_inc_simple_void_NN(SV* sv)

SvREFCNT_inc_void

Same as SvREFCNT_inc, but can only be used if you don't need the
 return value. The
macro doesn't need to return a meaningful value.

	 void	 SvREFCNT_inc_void(SV* sv)

SvREFCNT_inc_void_NN

Same as SvREFCNT_inc, but can only be used if you don't need the return
 value, and
you know that sv is not NULL. The macro doesn't need
 to return a meaningful value, or
check for NULLness, so it's smaller
 and faster.

	 void	 SvREFCNT_inc_void_NN(SV* sv)

SvROK

Tests if the SV is an RV.

	 U32	 SvROK(SV* sv)

SvROK_off

Unsets the RV status of an SV.

	 void	 SvROK_off(SV* sv)

SvROK_on

Tells an SV that it is an RV.

	 void	 SvROK_on(SV* sv)

SvRV

Dereferences an RV to return the SV.

	 SV*	 SvRV(SV* sv)

SvRV_set

Set the value of the RV pointer in sv to val. See SvIV_set.

	 void	 SvRV_set(SV* sv, SV* val)

SvSTASH

Returns the stash of the SV.

	 HV*	 SvSTASH(SV* sv)

SvSTASH_set

Set the value of the STASH pointer in sv to val. See SvIV_set.

	 void	 SvSTASH_set(SV* sv, HV* val)

SvTAINT

Taints an SV if tainting is enabled, and if some input to the current
 expression is
tainted--usually a variable, but possibly also implicit
 inputs such as locale settings.
SvTAINT propagates that taintedness to
 the outputs of an expression in a pessimistic

Perl version 5.20.1 documentation - perlapi

Page 95http://perldoc.perl.org

fashion; i.e., without paying
 attention to precisely which outputs are influenced by
which inputs.

	 void	 SvTAINT(SV* sv)

SvTAINTED

Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if
 not.

	 bool	 SvTAINTED(SV* sv)

SvTAINTED_off

Untaints an SV. Be very careful with this routine, as it short-circuits
 some of Perl's
fundamental security features. XS module authors should not
 use this function unless
they fully understand all the implications of
 unconditionally untainting the value.
Untainting should be done in the
 standard perl fashion, via a carefully crafted regexp,
rather than directly
 untainting variables.

	 void	 SvTAINTED_off(SV* sv)

SvTAINTED_on

Marks an SV as tainted if tainting is enabled.

	 void	 SvTAINTED_on(SV* sv)

SvTRUE

Returns a boolean indicating whether Perl would evaluate the SV as true or
 false. See
SvOK() for a defined/undefined test. Handles 'get' magic
 unless the scalar is already
SvPOK, SvIOK or SvNOK (the public, not the
 private flags).

	 bool	 SvTRUE(SV* sv)

SvTRUE_nomg

Returns a boolean indicating whether Perl would evaluate the SV as true or
 false. See
SvOK() for a defined/undefined test. Does not handle 'get' magic.

	 bool	 SvTRUE_nomg(SV* sv)

SvTYPE

Returns the type of the SV. See svtype.

	 svtype	 SvTYPE(SV* sv)

SvUOK

Returns a boolean indicating whether the SV contains an integer that must be

interpreted as unsigned. A non-negative integer whose value is within the
 range of
both an IV and a UV may be be flagged as either SvUOK or SVIOK.

	 bool	 SvUOK(SV* sv)

SvUPGRADE

Used to upgrade an SV to a more complex form. Uses sv_upgrade to
 perform the
upgrade if necessary. See svtype.

	 void	 SvUPGRADE(SV* sv, svtype type)

SvUTF8

Perl version 5.20.1 documentation - perlapi

Page 96http://perldoc.perl.org

Returns a U32 value indicating the UTF-8 status of an SV. If things are set-up

properly, this indicates whether or not the SV contains UTF-8 encoded data.
 You
should use this after a call to SvPV() or one of its variants, in
 case any call to string
overloading updates the internal flag.

	 U32	 SvUTF8(SV* sv)

SvUTF8_off

Unsets the UTF-8 status of an SV (the data is not changed, just the flag).
 Do not use
frivolously.

	 void	 SvUTF8_off(SV *sv)

SvUTF8_on

Turn on the UTF-8 status of an SV (the data is not changed, just the flag).
 Do not use
frivolously.

	 void	 SvUTF8_on(SV *sv)

SvUV

Coerces the given SV to an unsigned integer and returns it. See SvUVx
 for a version
which guarantees to evaluate sv only once.

	 UV	 SvUV(SV* sv)

SvUVX

Returns the raw value in the SV's UV slot, without checks or conversions.
 Only use
when you are sure SvIOK is true. See also SvUV().

	 UV	 SvUVX(SV* sv)

SvUVx

Coerces the given SV to an unsigned integer and
 returns it. Guarantees to evaluate sv
only once. Only
 use this if sv is an expression with side effects,
 otherwise use the
more efficient SvUV.

	 UV	 SvUVx(SV* sv)

SvUV_nomg

Like SvUV but doesn't process magic.

	 UV	 SvUV_nomg(SV* sv)

SvUV_set

Set the value of the UV pointer in sv to val. See SvIV_set.

	 void	 SvUV_set(SV* sv, UV val)

SvVOK

Returns a boolean indicating whether the SV contains a v-string.

	 bool	 SvVOK(SV* sv)

sv_catpvn_nomg

Like sv_catpvn but doesn't process magic.

	 void	 sv_catpvn_nomg(SV* sv, const char* ptr,

Perl version 5.20.1 documentation - perlapi

Page 97http://perldoc.perl.org

		 STRLEN len)

sv_catpv_nomg

Like sv_catpv but doesn't process magic.

	 void	 sv_catpv_nomg(SV* sv, const char* ptr)

sv_catsv_nomg

Like sv_catsv but doesn't process magic.

	 void	 sv_catsv_nomg(SV* dsv, SV* ssv)

sv_derived_from

Exactly like sv_derived_from_pv, but doesn't take a flags parameter.

	 bool	 sv_derived_from(SV* sv, const char *const name)

sv_derived_from_pv

Exactly like sv_derived_from_pvn, but takes a nul-terminated string instead of a
string/length pair.

	 bool	 sv_derived_from_pv(SV* sv,
		 const char *const name,
		 U32 flags)

sv_derived_from_pvn

Returns a boolean indicating whether the SV is derived from the specified class at the
C level. To check derivation at the Perl level, call isa() as a
 normal Perl method.

Currently, the only significant value for flags is SVf_UTF8.

	 bool	 sv_derived_from_pvn(SV* sv,
		 const char *const name,
		 const STRLEN len, U32 flags)

sv_derived_from_sv

Exactly like sv_derived_from_pvn, but takes the name string in the form
 of an SV
instead of a string/length pair.

	 bool	 sv_derived_from_sv(SV* sv, SV *namesv,
		 U32 flags)

sv_does

Like sv_does_pv, but doesn't take a flags parameter.

	 bool	 sv_does(SV* sv, const char *const name)

sv_does_pv

Like sv_does_sv, but takes a nul-terminated string instead of an SV.

	 bool	 sv_does_pv(SV* sv, const char *const name,
		 U32 flags)

sv_does_pvn

Like sv_does_sv, but takes a string/length pair instead of an SV.

	 bool	 sv_does_pvn(SV* sv, const char *const name,

Perl version 5.20.1 documentation - perlapi

Page 98http://perldoc.perl.org

		 const STRLEN len, U32 flags)

sv_does_sv

Returns a boolean indicating whether the SV performs a specific, named role.
 The SV
can be a Perl object or the name of a Perl class.

	 bool	 sv_does_sv(SV* sv, SV* namesv, U32 flags)

sv_report_used

Dump the contents of all SVs not yet freed (debugging aid).

	 void	 sv_report_used()

sv_setsv_nomg

Like sv_setsv but doesn't process magic.

	 void	 sv_setsv_nomg(SV* dsv, SV* ssv)

sv_utf8_upgrade_nomg

Like sv_utf8_upgrade, but doesn't do magic on sv.

	 STRLEN	 sv_utf8_upgrade_nomg(NN SV *sv)

SV-Body Allocation
looks_like_number

Test if the content of an SV looks like a number (or is a number). Inf and Infinity
are treated as numbers (so will not issue a
 non-numeric warning), even if your atof()
doesn't grok them. Get-magic is
 ignored.

	 I32	 looks_like_number(SV *const sv)

newRV_noinc

Creates an RV wrapper for an SV. The reference count for the original
 SV is not
incremented.

	 SV*	 newRV_noinc(SV *const sv)

newSV

Creates a new SV. A non-zero len parameter indicates the number of
 bytes of
preallocated string space the SV should have. An extra byte for a
 trailing NUL is also
reserved. (SvPOK is not set for the SV even if string
 space is allocated.) The reference
count for the new SV is set to 1.

In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
 parameter, x, a
debug aid which allowed callers to identify themselves.
 This aid has been superseded
by a new build option, PERL_MEM_LOG (see "PERL_MEM_LOG" in perlhacktips).
The older API is still there for use in XS
 modules supporting older perls.

	 SV*	 newSV(const STRLEN len)

newSVhek

Creates a new SV from the hash key structure. It will generate scalars that
 point to the
shared string table where possible. Returns a new (undefined)
 SV if the hek is NULL.

	 SV*	 newSVhek(const HEK *const hek)

Perl version 5.20.1 documentation - perlapi

Page 99http://perldoc.perl.org

newSViv

Creates a new SV and copies an integer into it. The reference count for the
 SV is set
to 1.

	 SV*	 newSViv(const IV i)

newSVnv

Creates a new SV and copies a floating point value into it.
 The reference count for the
SV is set to 1.

	 SV*	 newSVnv(const NV n)

newSVpv

Creates a new SV and copies a string (which may contain NUL (\0)
 characters) into it.
The reference count for the
 SV is set to 1. If len is zero, Perl will compute the length
using
 strlen(), (which means if you use this option, that s can't have embedded NUL
characters and has to have a terminating NUL byte).

For efficiency, consider using newSVpvn instead.

	 SV*	 newSVpv(const char *const s, const STRLEN len)

newSVpvf

Creates a new SV and initializes it with the string formatted like sprintf.

	 SV*	 newSVpvf(const char *const pat, ...)

newSVpvn

Creates a new SV and copies a string into it, which may contain NUL characters
 (\0)
and other binary data. The reference count for the SV is set to 1.
 Note that if len is
zero, Perl will create a zero length (Perl) string. You
 are responsible for ensuring that
the source buffer is at least len bytes long. If the buffer argument is NULL the new
SV will be
 undefined.

	 SV*	 newSVpvn(const char *const s, const STRLEN len)

newSVpvn_flags

Creates a new SV and copies a string (which may contain NUL (\0)
 characters) into it.
The reference count for the
 SV is set to 1. Note that if len is zero, Perl will create a
zero length
 string. You are responsible for ensuring that the source string is at least
len bytes long. If the s argument is NULL the new SV will be undefined.
 Currently the
only flag bits accepted are SVf_UTF8 and SVs_TEMP.
 If SVs_TEMP is set, then
sv_2mortal() is called on the result before
 returning. If SVf_UTF8 is set, s
 is
considered to be in UTF-8 and the SVf_UTF8 flag will be set on the new SV.
newSVpvn_utf8() is a convenience wrapper for this function, defined as

 #define newSVpvn_utf8(s, len, u)			 \
	 newSVpvn_flags((s), (len), (u) ? SVf_UTF8 : 0)

	 SV*	 newSVpvn_flags(const char *const s,
		 const STRLEN len,
		 const U32 flags)

newSVpvn_share

Creates a new SV with its SvPVX_const pointing to a shared string in the string
 table.
If the string does not already exist in the table, it is
 created first. Turns on the

Perl version 5.20.1 documentation - perlapi

Page 100http://perldoc.perl.org

SvIsCOW flag (or READONLY
 and FAKE in 5.16 and earlier). If the hash parameter
 is
non-zero, that value is used; otherwise the hash is computed.
 The string's hash can
later be retrieved from the SV
 with the SvSHARED_HASH() macro. The idea here is

that as the string table is used for shared hash keys these strings will have

SvPVX_const == HeKEY and hash lookup will avoid string compare.

	 SV*	 newSVpvn_share(const char* s, I32 len, U32 hash)

newSVpvs

Like newSVpvn, but takes a literal NUL-terminated string instead of a
 string/length pair.

	 SV*	 newSVpvs(const char* s)

newSVpvs_flags

Like newSVpvn_flags, but takes a literal NUL-terminated string instead of
 a
string/length pair.

	 SV*	 newSVpvs_flags(const char* s, U32 flags)

newSVpvs_share

Like newSVpvn_share, but takes a literal NUL-terminated string instead of
 a
string/length pair and omits the hash parameter.

	 SV*	 newSVpvs_share(const char* s)

newSVpv_share

Like newSVpvn_share, but takes a NUL-terminated string instead of a
 string/length
pair.

	 SV*	 newSVpv_share(const char* s, U32 hash)

newSVrv

Creates a new SV for the existing RV, rv, to point to. If rv is not an
 RV then it will be
upgraded to one. If classname is non-null then the new
 SV will be blessed in the
specified package. The new SV is returned and its
 reference count is 1. The reference
count 1 is owned by rv.

	 SV*	 newSVrv(SV *const rv,
		 const char *const classname)

newSVsv

Creates a new SV which is an exact duplicate of the original SV.
 (Uses sv_setsv.)

	 SV*	 newSVsv(SV *const old)

newSVuv

Creates a new SV and copies an unsigned integer into it.
 The reference count for the
SV is set to 1.

	 SV*	 newSVuv(const UV u)

newSV_type

Creates a new SV, of the type specified. The reference count for the new SV
 is set to
1.

	 SV*	 newSV_type(const svtype type)

Perl version 5.20.1 documentation - perlapi

Page 101http://perldoc.perl.org

sv_2bool

This macro is only used by sv_true() or its macro equivalent, and only if
 the latter's
argument is neither SvPOK, SvIOK nor SvNOK.
 It calls sv_2bool_flags with the
SV_GMAGIC flag.

	 bool	 sv_2bool(SV *const sv)

sv_2bool_flags

This function is only used by sv_true() and friends, and only if
 the latter's argument is
neither SvPOK, SvIOK nor SvNOK. If the flags
 contain SV_GMAGIC, then it does an
mg_get() first.

	 bool	 sv_2bool_flags(SV *sv, I32 flags)

sv_2cv

Using various gambits, try to get a CV from an SV; in addition, try if
 possible to set *st
and *gvp to the stash and GV associated with it.
 The flags in lref are passed to
gv_fetchsv.

	 CV*	 sv_2cv(SV* sv, HV **const st, GV **const gvp,
		 const I32 lref)

sv_2io

Using various gambits, try to get an IO from an SV: the IO slot if its a
 GV; or the
recursive result if we're an RV; or the IO slot of the symbol
 named after the PV if we're
a string.

'Get' magic is ignored on the sv passed in, but will be called on SvRV(sv) if sv is an
RV.

	 IO*	 sv_2io(SV *const sv)

sv_2iv_flags

Return the integer value of an SV, doing any necessary string
 conversion. If flags
includes SV_GMAGIC, does an mg_get() first.
 Normally used via the SvIV(sv) and
SvIVx(sv) macros.

	 IV	 sv_2iv_flags(SV *const sv, const I32 flags)

sv_2mortal

Marks an existing SV as mortal. The SV will be destroyed "soon", either
 by an explicit
call to FREETMPS, or by an implicit call at places such as
 statement boundaries.
SvTEMP() is turned on which means that the SV's
 string buffer can be "stolen" if this
SV is copied. See also sv_newmortal
 and sv_mortalcopy.

	 SV*	 sv_2mortal(SV *const sv)

sv_2nv_flags

Return the num value of an SV, doing any necessary string or integer
 conversion. If
flags includes SV_GMAGIC, does an mg_get() first.
 Normally used via the SvNV(sv)
and SvNVx(sv) macros.

	 NV	 sv_2nv_flags(SV *const sv, const I32 flags)

sv_2pvbyte

Return a pointer to the byte-encoded representation of the SV, and set *lp
 to its length.

Perl version 5.20.1 documentation - perlapi

Page 102http://perldoc.perl.org

May cause the SV to be downgraded from UTF-8 as a
 side-effect.

Usually accessed via the SvPVbyte macro.

	 char*	 sv_2pvbyte(SV *sv, STRLEN *const lp)

sv_2pvutf8

Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
 to its
length. May cause the SV to be upgraded to UTF-8 as a side-effect.

Usually accessed via the SvPVutf8 macro.

	 char*	 sv_2pvutf8(SV *sv, STRLEN *const lp)

sv_2pv_flags

Returns a pointer to the string value of an SV, and sets *lp to its length.
 If flags
includes SV_GMAGIC, does an mg_get() first. Coerces sv to a
 string if necessary.
Normally invoked via the SvPV_flags macro. sv_2pv() and sv_2pv_nomg usually
end up here too.

	 char*	 sv_2pv_flags(SV *const sv, STRLEN *const lp,
		 const I32 flags)

sv_2uv_flags

Return the unsigned integer value of an SV, doing any necessary string
 conversion. If
flags includes SV_GMAGIC, does an mg_get() first.
 Normally used via the SvUV(sv)
and SvUVx(sv) macros.

	 UV	 sv_2uv_flags(SV *const sv, const I32 flags)

sv_backoff

Remove any string offset. You should normally use the SvOOK_off macro
 wrapper
instead.

	 int	 sv_backoff(SV *const sv)

sv_bless

Blesses an SV into a specified package. The SV must be an RV. The package
 must
be designated by its stash (see gv_stashpv()). The reference count
 of the SV is
unaffected.

	 SV*	 sv_bless(SV *const sv, HV *const stash)

sv_catpv

Concatenates the NUL-terminated string onto the end of the string which is
 in the SV.
 If
the SV has the UTF-8 status set, then the bytes appended should be
 valid UTF-8.
Handles 'get' magic, but not 'set' magic. See sv_catpv_mg.

	 void	 sv_catpv(SV *const sv, const char* ptr)

sv_catpvf

Processes its arguments like sprintf and appends the formatted
 output to an SV. If
the appended data contains "wide" characters
 (including, but not limited to, SVs with a
UTF-8 PV formatted with %s,
 and characters >255 formatted with %c), the original SV
might get
 upgraded to UTF-8. Handles 'get' magic, but not 'set' magic. See
sv_catpvf_mg. If the original SV was UTF-8, the pattern should be
 valid UTF-8; if the
original SV was bytes, the pattern should be too.

Perl version 5.20.1 documentation - perlapi

Page 103http://perldoc.perl.org

	 void	 sv_catpvf(SV *const sv, const char *const pat,
		 ...)

sv_catpvf_mg

Like sv_catpvf, but also handles 'set' magic.

	 void	 sv_catpvf_mg(SV *const sv,
		 const char *const pat, ...)

sv_catpvn

Concatenates the string onto the end of the string which is in the SV. The len
indicates number of bytes to copy. If the SV has the UTF-8
 status set, then the bytes
appended should be valid UTF-8.
 Handles 'get' magic, but not 'set' magic. See
sv_catpvn_mg.

	 void	 sv_catpvn(SV *dsv, const char *sstr, STRLEN len)

sv_catpvn_flags

Concatenates the string onto the end of the string which is in the SV. The len
indicates number of bytes to copy. If the SV has the UTF-8
 status set, then the bytes
appended should be valid UTF-8.
 If flags has the SV_SMAGIC bit set, will mg_set on
dsv afterwards if appropriate. sv_catpvn and sv_catpvn_nomg are implemented
 in
terms of this function.

	 void	 sv_catpvn_flags(SV *const dstr,
		 const char *sstr,
		 const STRLEN len,
		 const I32 flags)

sv_catpvs

Like sv_catpvn, but takes a literal string instead of a string/length pair.

	 void	 sv_catpvs(SV* sv, const char* s)

sv_catpvs_flags

Like sv_catpvn_flags, but takes a literal NUL-terminated string instead
 of a
string/length pair.

	 void	 sv_catpvs_flags(SV* sv, const char* s,
		 I32 flags)

sv_catpvs_mg

Like sv_catpvn_mg, but takes a literal string instead of a
 string/length pair.

	 void	 sv_catpvs_mg(SV* sv, const char* s)

sv_catpvs_nomg

Like sv_catpvn_nomg, but takes a literal string instead of a
 string/length pair.

	 void	 sv_catpvs_nomg(SV* sv, const char* s)

sv_catpv_flags

Concatenates the NUL-terminated string onto the end of the string which is
 in the SV.
 If
the SV has the UTF-8 status set, then the bytes appended should
 be valid UTF-8. If
flags has the SV_SMAGIC bit set, will mg_set
 on the modified SV if appropriate.

Perl version 5.20.1 documentation - perlapi

Page 104http://perldoc.perl.org

	 void	 sv_catpv_flags(SV *dstr, const char *sstr,
		 const I32 flags)

sv_catpv_mg

Like sv_catpv, but also handles 'set' magic.

	 void	 sv_catpv_mg(SV *const sv, const char *const ptr)

sv_catsv

Concatenates the string from SV ssv onto the end of the string in SV dsv. If ssv is
null, does nothing; otherwise modifies only dsv.
 Handles 'get' magic on both SVs, but
no 'set' magic. See sv_catsv_mg and sv_catsv_nomg.

	 void	 sv_catsv(SV *dstr, SV *sstr)

sv_catsv_flags

Concatenates the string from SV ssv onto the end of the string in SV dsv. If ssv is
null, does nothing; otherwise modifies only dsv.
 If flags include SV_GMAGIC bit set,
will call mg_get on both SVs if
 appropriate. If flags include SV_SMAGIC, mg_set will
be called on
 the modified SV afterward, if appropriate. sv_catsv, sv_catsv_nomg,

and sv_catsv_mg are implemented in terms of this function.

	 void	 sv_catsv_flags(SV *const dsv, SV *const ssv,
		 const I32 flags)

sv_chop

Efficient removal of characters from the beginning of the string buffer.
 SvPOK(sv), or at
least SvPOKp(sv), must be true and the ptr must be a
 pointer to somewhere inside
the string buffer. The ptr becomes the first
 character of the adjusted string. Uses the
"OOK hack". On return, only
 SvPOK(sv) and SvPOKp(sv) among the OK flags will be
true.

Beware: after this function returns, ptr and SvPVX_const(sv) may no longer
 refer to
the same chunk of data.

The unfortunate similarity of this function's name to that of Perl's chop
 operator is
strictly coincidental. This function works from the left; chop works from the right.

	 void	 sv_chop(SV *const sv, const char *const ptr)

sv_clear

Clear an SV: call any destructors, free up any memory used by the body,
 and free the
body itself. The SV's head is not freed, although
 its type is set to all 1's so that it won't
inadvertently be assumed
 to be live during global destruction etc.
 This function should
only be called when REFCNT is zero. Most of the time
 you'll want to call sv_free()
(or its macro wrapper SvREFCNT_dec)
 instead.

	 void	 sv_clear(SV *const orig_sv)

sv_cmp

Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
 string in
sv1 is less than, equal to, or greater than the string in sv2. Is UTF-8 and 'use bytes'
aware, handles get magic, and will
 coerce its args to strings if necessary. See also
sv_cmp_locale.

	 I32	 sv_cmp(SV *const sv1, SV *const sv2)

Perl version 5.20.1 documentation - perlapi

Page 105http://perldoc.perl.org

sv_cmp_flags

Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
 string in
sv1 is less than, equal to, or greater than the string in sv2. Is UTF-8 and 'use bytes'
aware and will coerce its args to strings
 if necessary. If the flags include SV_GMAGIC,
it handles get magic. See
 also sv_cmp_locale_flags.

	 I32	 sv_cmp_flags(SV *const sv1, SV *const sv2,
		 const U32 flags)

sv_cmp_locale

Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and
 'use bytes'
aware, handles get magic, and will coerce its args to strings
 if necessary. See also
sv_cmp.

	 I32	 sv_cmp_locale(SV *const sv1, SV *const sv2)

sv_cmp_locale_flags

Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and
 'use bytes'
aware and will coerce its args to strings if necessary. If the
 flags contain SV_GMAGIC,
it handles get magic. See also sv_cmp_flags.

	 I32	 sv_cmp_locale_flags(SV *const sv1,
		 SV *const sv2,
		 const U32 flags)

sv_collxfrm

This calls sv_collxfrm_flags with the SV_GMAGIC flag. See
sv_collxfrm_flags.

	 char*	 sv_collxfrm(SV *const sv, STRLEN *const nxp)

sv_collxfrm_flags

Add Collate Transform magic to an SV if it doesn't already have it. If the
 flags contain
SV_GMAGIC, it handles get-magic.

Any scalar variable may carry PERL_MAGIC_collxfrm magic that contains the
 scalar
data of the variable, but transformed to such a format that a normal
 memory
comparison can be used to compare the data according to the locale
 settings.

	 char*	 sv_collxfrm_flags(SV *const sv,
		 STRLEN *const nxp,
		 I32 const flags)

sv_copypv_flags

Implementation of sv_copypv and sv_copypv_nomg. Calls get magic iff flags
 include
SV_GMAGIC.

	 void	 sv_copypv_flags(SV *const dsv, SV *const ssv,
		 const I32 flags)

sv_copypv_nomg

Like sv_copypv, but doesn't invoke get magic first.

	 void	 sv_copypv_nomg(SV *const dsv, SV *const ssv)

sv_dec

Perl version 5.20.1 documentation - perlapi

Page 106http://perldoc.perl.org

Auto-decrement of the value in the SV, doing string to numeric conversion
 if
necessary. Handles 'get' magic and operator overloading.

	 void	 sv_dec(SV *const sv)

sv_dec_nomg

Auto-decrement of the value in the SV, doing string to numeric conversion
 if
necessary. Handles operator overloading. Skips handling 'get' magic.

	 void	 sv_dec_nomg(SV *const sv)

sv_eq

Returns a boolean indicating whether the strings in the two SVs are
 identical. Is UTF-8
and 'use bytes' aware, handles get magic, and will
 coerce its args to strings if
necessary.

	 I32	 sv_eq(SV* sv1, SV* sv2)

sv_eq_flags

Returns a boolean indicating whether the strings in the two SVs are
 identical. Is UTF-8
and 'use bytes' aware and coerces its args to strings
 if necessary. If the flags include
SV_GMAGIC, it handles get-magic, too.

	 I32	 sv_eq_flags(SV* sv1, SV* sv2, const U32 flags)

sv_force_normal_flags

Undo various types of fakery on an SV, where fakery means
 "more than" a string: if the
PV is a shared string, make
 a private copy; if we're a ref, stop refing; if we're a glob,
downgrade to
 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when

we do the copy, and is also used locally; if this is a
 vstring, drop the vstring magic. If
SV_COW_DROP_PV is set
 then a copy-on-write scalar drops its PV buffer (if any) and
becomes
 SvPOK_off rather than making a copy. (Used where this
 scalar is about to be
set to some other value.) In addition,
 the flags parameter gets passed to
sv_unref_flags()
 when unreffing. sv_force_normal calls this function
 with flags
set to 0.

This function is expected to be used to signal to perl that this SV is
 about to be written
to, and any extra book-keeping needs to be taken care
 of. Hence, it croaks on
read-only values.

	 void	 sv_force_normal_flags(SV *const sv,
		 const U32 flags)

sv_free

Decrement an SV's reference count, and if it drops to zero, call sv_clear to invoke
destructors and free up any memory used by
 the body; finally, deallocate the SV's
head itself.
 Normally called via a wrapper macro SvREFCNT_dec.

	 void	 sv_free(SV *const sv)

sv_gets

Get a line from the filehandle and store it into the SV, optionally
 appending to the
currently-stored string. If append is not 0, the
 line is appended to the SV instead of
overwriting it. append should
 be set to the byte offset that the appended string should
start at
 in the SV (typically, SvCUR(sv) is a suitable choice).

	 char*	 sv_gets(SV *const sv, PerlIO *const fp,

Perl version 5.20.1 documentation - perlapi

Page 107http://perldoc.perl.org

		 I32 append)

sv_grow

Expands the character buffer in the SV. If necessary, uses sv_unref and
 upgrades
the SV to SVt_PV. Returns a pointer to the character buffer.
 Use the SvGROW wrapper
instead.

	 char*	 sv_grow(SV *const sv, STRLEN newlen)

sv_inc

Auto-increment of the value in the SV, doing string to numeric conversion
 if necessary.
Handles 'get' magic and operator overloading.

	 void	 sv_inc(SV *const sv)

sv_inc_nomg

Auto-increment of the value in the SV, doing string to numeric conversion
 if necessary.
Handles operator overloading. Skips handling 'get' magic.

	 void	 sv_inc_nomg(SV *const sv)

sv_insert

Inserts a string at the specified offset/length within the SV. Similar to
 the Perl substr()
function. Handles get magic.

	 void	 sv_insert(SV *const bigstr, const STRLEN offset,
		 const STRLEN len,
		 const char *const little,
		 const STRLEN littlelen)

sv_insert_flags

Same as sv_insert, but the extra flags are passed to the SvPV_force_flags
that applies to bigstr.

	 void	 sv_insert_flags(SV *const bigstr,
		 const STRLEN offset,
		 const STRLEN len,
		 const char *const little,
		 const STRLEN littlelen,
		 const U32 flags)

sv_isa

Returns a boolean indicating whether the SV is blessed into the specified
 class. This
does not check for subtypes; use sv_derived_from to verify
 an inheritance
relationship.

	 int	 sv_isa(SV* sv, const char *const name)

sv_isobject

Returns a boolean indicating whether the SV is an RV pointing to a blessed
 object. If
the SV is not an RV, or if the object is not blessed, then this
 will return false.

	 int	 sv_isobject(SV* sv)

sv_len

Perl version 5.20.1 documentation - perlapi

Page 108http://perldoc.perl.org

Returns the length of the string in the SV. Handles magic and type
 coercion and sets
the UTF8 flag appropriately. See also SvCUR, which
 gives raw access to the xpv_cur
slot.

	 STRLEN	 sv_len(SV *const sv)

sv_len_utf8

Returns the number of characters in the string in an SV, counting wide
 UTF-8 bytes as
a single character. Handles magic and type coercion.

	 STRLEN	 sv_len_utf8(SV *const sv)

sv_magic

Adds magic to an SV. First upgrades sv to type SVt_PVMG if
 necessary, then adds a
new magic item of type how to the head of the
 magic list.

See sv_magicext (which sv_magic now calls) for a description of the
 handling of
the name and namlen arguments.

You need to use sv_magicext to add magic to SvREADONLY SVs and also
 to add
more than one instance of the same 'how'.

	 void	 sv_magic(SV *const sv, SV *const obj,
		 const int how, const char *const name,
		 const I32 namlen)

sv_magicext

Adds magic to an SV, upgrading it if necessary. Applies the
 supplied vtable and
returns a pointer to the magic added.

Note that sv_magicext will allow things that sv_magic will not.
 In particular, you can
add magic to SvREADONLY SVs, and add more than
 one instance of the same 'how'.

If namlen is greater than zero then a savepvn copy of name is
 stored, if namlen is
zero then name is stored as-is and - as another
 special case - if (name && namlen
== HEf_SVKEY) then name is assumed
 to contain an SV* and is stored as-is with its
REFCNT incremented.

(This is now used as a subroutine by sv_magic.)

	 MAGIC *	 sv_magicext(SV *const sv, SV *const obj,
		 const int how,
		 const MGVTBL *const vtbl,
		 const char *const name,
		 const I32 namlen)

sv_mortalcopy

Creates a new SV which is a copy of the original SV (using sv_setsv).
 The new SV is
marked as mortal. It will be destroyed "soon", either by an
 explicit call to FREETMPS,
or by an implicit call at places such as
 statement boundaries. See also
sv_newmortal and sv_2mortal.

	 SV*	 sv_mortalcopy(SV *const oldsv)

sv_newmortal

Creates a new null SV which is mortal. The reference count of the SV is
 set to 1. It will
be destroyed "soon", either by an explicit call to
 FREETMPS, or by an implicit call at
places such as statement boundaries.
 See also sv_mortalcopy and sv_2mortal.

	 SV*	 sv_newmortal()

Perl version 5.20.1 documentation - perlapi

Page 109http://perldoc.perl.org

sv_newref

Increment an SV's reference count. Use the SvREFCNT_inc() wrapper
 instead.

	 SV*	 sv_newref(SV *const sv)

sv_pos_b2u

Converts the value pointed to by offsetp from a count of bytes from the
 start of the
string, to a count of the equivalent number of UTF-8 chars.
 Handles magic and type
coercion.

Use sv_pos_b2u_flags in preference, which correctly handles strings
 longer than
2Gb.

	 void	 sv_pos_b2u(SV *const sv, I32 *const offsetp)

sv_pos_b2u_flags

Converts the offset from a count of bytes from the start of the string, to
 a count of the
equivalent number of UTF-8 chars. Handles type coercion. flags is passed to
SvPV_flags, and usually should be SV_GMAGIC|SV_CONST_RETURN to handle
magic.

	 STRLEN	 sv_pos_b2u_flags(SV *const sv,
		 STRLEN const offset, U32 flags)

sv_pos_u2b

Converts the value pointed to by offsetp from a count of UTF-8 chars from
 the start of
the string, to a count of the equivalent number of bytes; if
 lenp is non-zero, it does the
same to lenp, but this time starting from
 the offset, rather than from the start of the
string. Handles magic and
 type coercion.

Use sv_pos_u2b_flags in preference, which correctly handles strings longer
 than
2Gb.

	 void	 sv_pos_u2b(SV *const sv, I32 *const offsetp,
		 I32 *const lenp)

sv_pos_u2b_flags

Converts the offset from a count of UTF-8 chars from
 the start of the string, to a count
of the equivalent number of bytes; if
 lenp is non-zero, it does the same to lenp, but this
time starting from
 the offset, rather than from the start
 of the string. Handles type
coercion. flags is passed to SvPV_flags, and usually should be
SV_GMAGIC|SV_CONST_RETURN to handle magic.

	 STRLEN	 sv_pos_u2b_flags(SV *const sv, STRLEN uoffset,
		 STRLEN *const lenp, U32 flags)

sv_pvbyten_force

The backend for the SvPVbytex_force macro. Always use the macro
 instead.

	 char*	 sv_pvbyten_force(SV *const sv, STRLEN *const lp)

sv_pvn_force

Get a sensible string out of the SV somehow.
 A private implementation of the
SvPV_force macro for compilers which
 can't cope with complex macro expressions.
Always use the macro instead.

	 char*	 sv_pvn_force(SV* sv, STRLEN* lp)

Perl version 5.20.1 documentation - perlapi

Page 110http://perldoc.perl.org

sv_pvn_force_flags

Get a sensible string out of the SV somehow.
 If flags has SV_GMAGIC bit set, will
mg_get on sv if
 appropriate, else not. sv_pvn_force and sv_pvn_force_nomg
are
 implemented in terms of this function.
 You normally want to use the various
wrapper macros instead: see SvPV_force and SvPV_force_nomg

	 char*	 sv_pvn_force_flags(SV *const sv,
		 STRLEN *const lp,
		 const I32 flags)

sv_pvutf8n_force

The backend for the SvPVutf8x_force macro. Always use the macro
 instead.

	 char*	 sv_pvutf8n_force(SV *const sv, STRLEN *const lp)

sv_reftype

Returns a string describing what the SV is a reference to.

	 const char* sv_reftype(const SV *const sv, const int ob)

sv_replace

Make the first argument a copy of the second, then delete the original.
 The target SV
physically takes over ownership of the body of the source SV
 and inherits its flags;
however, the target keeps any magic it owns,
 and any magic in the source is
discarded.
 Note that this is a rather specialist SV copying operation; most of the
 time
you'll want to use sv_setsv or one of its many macro front-ends.

	 void	 sv_replace(SV *const sv, SV *const nsv)

sv_reset

Underlying implementation for the reset Perl function.
 Note that the perl-level
function is vaguely deprecated.

	 void	 sv_reset(const char* s, HV *const stash)

sv_rvweaken

Weaken a reference: set the SvWEAKREF flag on this RV; give the
 referred-to SV
PERL_MAGIC_backref magic if it hasn't already; and
 push a back-reference to this
RV onto the array of backreferences
 associated with that magic. If the RV is magical,
set magic will be
 called after the RV is cleared.

	 SV*	 sv_rvweaken(SV *const sv)

sv_setiv

Copies an integer into the given SV, upgrading first if necessary.
 Does not handle 'set'
magic. See also sv_setiv_mg.

	 void	 sv_setiv(SV *const sv, const IV num)

sv_setiv_mg

Like sv_setiv, but also handles 'set' magic.

	 void	 sv_setiv_mg(SV *const sv, const IV i)

sv_setnv

Copies a double into the given SV, upgrading first if necessary.
 Does not handle 'set'

Perl version 5.20.1 documentation - perlapi

Page 111http://perldoc.perl.org

magic. See also sv_setnv_mg.

	 void	 sv_setnv(SV *const sv, const NV num)

sv_setnv_mg

Like sv_setnv, but also handles 'set' magic.

	 void	 sv_setnv_mg(SV *const sv, const NV num)

sv_setpv

Copies a string into an SV. The string must be terminated with a NUL
 character.
 Does
not handle 'set' magic. See sv_setpv_mg.

	 void	 sv_setpv(SV *const sv, const char *const ptr)

sv_setpvf

Works like sv_catpvf but copies the text into the SV instead of
 appending it. Does
not handle 'set' magic. See sv_setpvf_mg.

	 void	 sv_setpvf(SV *const sv, const char *const pat,
		 ...)

sv_setpvf_mg

Like sv_setpvf, but also handles 'set' magic.

	 void	 sv_setpvf_mg(SV *const sv,
		 const char *const pat, ...)

sv_setpviv

Copies an integer into the given SV, also updating its string value.
 Does not handle
'set' magic. See sv_setpviv_mg.

	 void	 sv_setpviv(SV *const sv, const IV num)

sv_setpviv_mg

Like sv_setpviv, but also handles 'set' magic.

	 void	 sv_setpviv_mg(SV *const sv, const IV iv)

sv_setpvn

Copies a string (possibly containing embedded NUL characters) into an SV.
 The len
parameter indicates the number of
 bytes to be copied. If the ptr argument is NULL
the SV will become
 undefined. Does not handle 'set' magic. See sv_setpvn_mg.

	 void	 sv_setpvn(SV *const sv, const char *const ptr,
		 const STRLEN len)

sv_setpvn_mg

Like sv_setpvn, but also handles 'set' magic.

	 void	 sv_setpvn_mg(SV *const sv,
		 const char *const ptr,
		 const STRLEN len)

sv_setpvs

Like sv_setpvn, but takes a literal string instead of a string/length pair.

Perl version 5.20.1 documentation - perlapi

Page 112http://perldoc.perl.org

	 void	 sv_setpvs(SV* sv, const char* s)

sv_setpvs_mg

Like sv_setpvn_mg, but takes a literal string instead of a
 string/length pair.

	 void	 sv_setpvs_mg(SV* sv, const char* s)

sv_setpv_mg

Like sv_setpv, but also handles 'set' magic.

	 void	 sv_setpv_mg(SV *const sv, const char *const ptr)

sv_setref_iv

Copies an integer into a new SV, optionally blessing the SV. The rv
 argument will be
upgraded to an RV. That RV will be modified to point to
 the new SV. The classname
argument indicates the package for the
 blessing. Set classname to NULL to avoid the
blessing. The new SV
 will have a reference count of 1, and the RV will be returned.

	 SV*	 sv_setref_iv(SV *const rv,
		 const char *const classname,
		 const IV iv)

sv_setref_nv

Copies a double into a new SV, optionally blessing the SV. The rv
 argument will be
upgraded to an RV. That RV will be modified to point to
 the new SV. The classname
argument indicates the package for the
 blessing. Set classname to NULL to avoid the
blessing. The new SV
 will have a reference count of 1, and the RV will be returned.

	 SV*	 sv_setref_nv(SV *const rv,
		 const char *const classname,
		 const NV nv)

sv_setref_pv

Copies a pointer into a new SV, optionally blessing the SV. The rv
 argument will be
upgraded to an RV. That RV will be modified to point to
 the new SV. If the pv
argument is NULL then PL_sv_undef will be placed
 into the SV. The classname
argument indicates the package for the
 blessing. Set classname to NULL to avoid the
blessing. The new SV
 will have a reference count of 1, and the RV will be returned.

Do not use with other Perl types such as HV, AV, SV, CV, because those
 objects will
become corrupted by the pointer copy process.

Note that sv_setref_pvn copies the string while this copies the pointer.

	 SV*	 sv_setref_pv(SV *const rv,
		 const char *const classname,
		 void *const pv)

sv_setref_pvn

Copies a string into a new SV, optionally blessing the SV. The length of the
 string must
be specified with n. The rv argument will be upgraded to
 an RV. That RV will be
modified to point to the new SV. The classname
 argument indicates the package for
the blessing. Set classname to NULL to avoid the blessing. The new SV will have a
reference count
 of 1, and the RV will be returned.

Note that sv_setref_pv copies the pointer while this copies the string.

	 SV*	 sv_setref_pvn(SV *const rv,

Perl version 5.20.1 documentation - perlapi

Page 113http://perldoc.perl.org

		 const char *const classname,
		 const char *const pv,
		 const STRLEN n)

sv_setref_pvs

Like sv_setref_pvn, but takes a literal string instead of a
 string/length pair.

	 SV *	 sv_setref_pvs(const char* s)

sv_setref_uv

Copies an unsigned integer into a new SV, optionally blessing the SV. The rv

argument will be upgraded to an RV. That RV will be modified to point to
 the new SV.
The classname argument indicates the package for the
 blessing. Set classname to
NULL to avoid the blessing. The new SV
 will have a reference count of 1, and the RV
will be returned.

	 SV*	 sv_setref_uv(SV *const rv,
		 const char *const classname,
		 const UV uv)

sv_setsv

Copies the contents of the source SV ssv into the destination SV dsv. The source SV
may be destroyed if it is mortal, so don't use this
 function if the source SV needs to be
reused. Does not handle 'set' magic on
 destination SV. Calls 'get' magic on source SV.
Loosely speaking, it
 performs a copy-by-value, obliterating any previous content of the

destination.

You probably want to use one of the assortment of wrappers, such as SvSetSV,
SvSetSV_nosteal, SvSetMagicSV and SvSetMagicSV_nosteal.

	 void	 sv_setsv(SV *dstr, SV *sstr)

sv_setsv_flags

Copies the contents of the source SV ssv into the destination SV dsv. The source SV
may be destroyed if it is mortal, so don't use this
 function if the source SV needs to be
reused. Does not handle 'set' magic.
 Loosely speaking, it performs a copy-by-value,
obliterating any previous
 content of the destination.
 If the flags parameter has the
SV_GMAGIC bit set, will mg_get on ssv if appropriate, else not. If the flags

parameter has the SV_NOSTEAL bit set then the
 buffers of temps will not be stolen.
<sv_setsv>
 and sv_setsv_nomg are implemented in terms of this function.

You probably want to use one of the assortment of wrappers, such as SvSetSV,
SvSetSV_nosteal, SvSetMagicSV and SvSetMagicSV_nosteal.

This is the primary function for copying scalars, and most other
 copy-ish functions and
macros use this underneath.

	 void	 sv_setsv_flags(SV *dstr, SV *sstr,
		 const I32 flags)

sv_setsv_mg

Like sv_setsv, but also handles 'set' magic.

	 void	 sv_setsv_mg(SV *const dstr, SV *const sstr)

sv_setuv

Copies an unsigned integer into the given SV, upgrading first if necessary.
 Does not

Perl version 5.20.1 documentation - perlapi

Page 114http://perldoc.perl.org

handle 'set' magic. See also sv_setuv_mg.

	 void	 sv_setuv(SV *const sv, const UV num)

sv_setuv_mg

Like sv_setuv, but also handles 'set' magic.

	 void	 sv_setuv_mg(SV *const sv, const UV u)

sv_tainted

Test an SV for taintedness. Use SvTAINTED instead.

	 bool	 sv_tainted(SV *const sv)

sv_true

Returns true if the SV has a true value by Perl's rules.
 Use the SvTRUE macro instead,
which may call sv_true() or may
 instead use an in-line version.

	 I32	 sv_true(SV *const sv)

sv_unmagic

Removes all magic of type type from an SV.

	 int	 sv_unmagic(SV *const sv, const int type)

sv_unmagicext

Removes all magic of type type with the specified vtbl from an SV.

	 int	 sv_unmagicext(SV *const sv, const int type,
		 MGVTBL *vtbl)

sv_unref_flags

Unsets the RV status of the SV, and decrements the reference count of
 whatever was
being referenced by the RV. This can almost be thought of
 as a reversal of newSVrv.
The cflags argument can contain SV_IMMEDIATE_UNREF to force the reference
count to be decremented
 (otherwise the decrementing is conditional on the reference
count being
 different from one or the reference being a readonly SV).
 See SvROK_off
.

	 void	 sv_unref_flags(SV *const ref, const U32 flags)

sv_untaint

Untaint an SV. Use SvTAINTED_off instead.

	 void	 sv_untaint(SV *const sv)

sv_upgrade

Upgrade an SV to a more complex form. Generally adds a new body type to the
 SV,
then copies across as much information as possible from the old body.
 It croaks if the
SV is already in a more complex form than requested. You
 generally want to use the
SvUPGRADE macro wrapper, which checks the type
 before calling sv_upgrade, and
hence does not croak. See also svtype.

	 void	 sv_upgrade(SV *const sv, svtype new_type)

sv_usepvn_flags

Perl version 5.20.1 documentation - perlapi

Page 115http://perldoc.perl.org

Tells an SV to use ptr to find its string value. Normally the
 string is stored inside the
SV, but sv_usepvn allows the SV to use an
 outside string. The ptr should point to
memory that was allocated
 by Newx. It must be
 the start of a Newx-ed block of
memory, and not a pointer to the
 middle of it (beware of OOK and copy-on-write),
 and
not be from a non-Newx memory allocator like malloc. The
 string length, len, must
be supplied. By default this function
 will Renew (i.e. realloc, move) the memory pointed
to by ptr,
 so that pointer should not be freed or used by the programmer after
 giving it
to sv_usepvn, and neither should any pointers from "behind"
 that pointer (e.g. ptr + 1)
be used.

If flags & SV_SMAGIC is true, will call SvSETMAGIC. If flags &

SV_HAS_TRAILING_NUL is true, then ptr[len] must be NUL, and the realloc
 will be
skipped (i.e. the buffer is actually at least 1 byte longer than len, and already meets
the requirements for storing in SvPVX).

	 void	 sv_usepvn_flags(SV *const sv, char* ptr,
		 const STRLEN len,
		 const U32 flags)

sv_utf8_decode

NOTE: this function is experimental and may change or be
 removed without notice.

If the PV of the SV is an octet sequence in UTF-8
 and contains a multiple-byte
character, the SvUTF8 flag is turned on
 so that it looks like a character. If the PV
contains only single-byte
 characters, the SvUTF8 flag stays off.
 Scans PV for validity
and returns false if the PV is invalid UTF-8.

	 bool	 sv_utf8_decode(SV *const sv)

sv_utf8_downgrade

NOTE: this function is experimental and may change or be
 removed without notice.

Attempts to convert the PV of an SV from characters to bytes.
 If the PV contains a
character that cannot fit
 in a byte, this conversion will fail;
 in this case, either returns
false or, if fail_ok is not
 true, croaks.

This is not a general purpose Unicode to byte encoding interface:
 use the Encode
extension for that.

	 bool	 sv_utf8_downgrade(SV *const sv,
		 const bool fail_ok)

sv_utf8_encode

Converts the PV of an SV to UTF-8, but then turns the SvUTF8
 flag off so that it looks
like octets again.

	 void	 sv_utf8_encode(SV *const sv)

sv_utf8_upgrade

Converts the PV of an SV to its UTF-8-encoded form.
 Forces the SV to string form if it
is not already.
 Will mg_get on sv if appropriate.
 Always sets the SvUTF8 flag to avoid
future validity checks even
 if the whole string is the same in UTF-8 as not.
 Returns the
number of bytes in the converted string

This is not a general purpose byte encoding to Unicode interface:
 use the Encode
extension for that.

	 STRLEN	 sv_utf8_upgrade(SV *sv)

sv_utf8_upgrade_flags

Perl version 5.20.1 documentation - perlapi

Page 116http://perldoc.perl.org

Converts the PV of an SV to its UTF-8-encoded form.
 Forces the SV to string form if it
is not already.
 Always sets the SvUTF8 flag to avoid future validity checks even
 if all
the bytes are invariant in UTF-8.
 If flags has SV_GMAGIC bit set,
 will mg_get on sv if
appropriate, else not.

If flags has SV_FORCE_UTF8_UPGRADE set, this function assumes that the PV

will expand when converted to UTF-8, and skips the extra work of checking for
 that.
Typically this flag is used by a routine that has already parsed the
 string and found
such characters, and passes this information on so that the
 work doesn't have to be
repeated.

Returns the number of bytes in the converted string.

This is not a general purpose byte encoding to Unicode interface:
 use the Encode
extension for that.

	 STRLEN	 sv_utf8_upgrade_flags(SV *const sv,
		 const I32 flags)

sv_utf8_upgrade_flags_grow

Like sv_utf8_upgrade_flags, but has an additional parameter extra, which is
 the
number of unused bytes the string of 'sv' is guaranteed to have free after
 it upon
return. This allows the caller to reserve extra space that it intends
 to fill, to avoid extra
grows.

sv_utf8_upgrade, sv_utf8_upgrade_nomg, and sv_utf8_upgrade_flags
 are
implemented in terms of this function.

Returns the number of bytes in the converted string (not including the spares).

	 STRLEN	 sv_utf8_upgrade_flags_grow(SV *const sv,
		 const I32 flags,
		 STRLEN extra)

sv_utf8_upgrade_nomg

Like sv_utf8_upgrade, but doesn't do magic on sv.

	 STRLEN	 sv_utf8_upgrade_nomg(SV *sv)

sv_vcatpvf

Processes its arguments like vsprintf and appends the formatted output
 to an SV.
Does not handle 'set' magic. See sv_vcatpvf_mg.

Usually used via its frontend sv_catpvf.

	 void	 sv_vcatpvf(SV *const sv, const char *const pat,
		 va_list *const args)

sv_vcatpvfn

	 void	 sv_vcatpvfn(SV *const sv, const char *const pat,
		 const STRLEN patlen,
		 va_list *const args,
		 SV **const svargs, const I32 svmax,
		 bool *const maybe_tainted)

sv_vcatpvfn_flags

Processes its arguments like vsprintf and appends the formatted output
 to an SV.
Uses an array of SVs if the C style variable argument list is
 missing (NULL). When
running with taint checks enabled, indicates via maybe_tainted if results are

Perl version 5.20.1 documentation - perlapi

Page 117http://perldoc.perl.org

untrustworthy (often due to the use of
 locales).

If called as sv_vcatpvfn or flags include SV_GMAGIC, calls get magic.

Usually used via one of its frontends sv_vcatpvf and sv_vcatpvf_mg.

	 void	 sv_vcatpvfn_flags(SV *const sv,
		 const char *const pat,
		 const STRLEN patlen,
		 va_list *const args,
		 SV **const svargs,
		 const I32 svmax,
		 bool *const maybe_tainted,
		 const U32 flags)

sv_vcatpvf_mg

Like sv_vcatpvf, but also handles 'set' magic.

Usually used via its frontend sv_catpvf_mg.

	 void	 sv_vcatpvf_mg(SV *const sv,
		 const char *const pat,
		 va_list *const args)

sv_vsetpvf

Works like sv_vcatpvf but copies the text into the SV instead of
 appending it. Does
not handle 'set' magic. See sv_vsetpvf_mg.

Usually used via its frontend sv_setpvf.

	 void	 sv_vsetpvf(SV *const sv, const char *const pat,
		 va_list *const args)

sv_vsetpvfn

Works like sv_vcatpvfn but copies the text into the SV instead of
 appending it.

Usually used via one of its frontends sv_vsetpvf and sv_vsetpvf_mg.

	 void	 sv_vsetpvfn(SV *const sv, const char *const pat,
		 const STRLEN patlen,
		 va_list *const args,
		 SV **const svargs, const I32 svmax,
		 bool *const maybe_tainted)

sv_vsetpvf_mg

Like sv_vsetpvf, but also handles 'set' magic.

Usually used via its frontend sv_setpvf_mg.

	 void	 sv_vsetpvf_mg(SV *const sv,
		 const char *const pat,
		 va_list *const args)

Unicode Support
bytes_cmp_utf8

Compares the sequence of characters (stored as octets) in b, blen with the
 sequence
of characters (stored as UTF-8)
 in u, ulen. Returns 0 if they are
 equal, -1 or -2 if the
first string is less than the second string, +1 or +2
 if the first string is greater than the
second string.

Perl version 5.20.1 documentation - perlapi

Page 118http://perldoc.perl.org

-1 or +1 is returned if the shorter string was identical to the start of the
 longer string. -2
or +2 is returned if
 there was a difference between characters
 within the strings.

	 int	 bytes_cmp_utf8(const U8 *b, STRLEN blen,
		 const U8 *u, STRLEN ulen)

bytes_from_utf8

NOTE: this function is experimental and may change or be
 removed without notice.

Converts a string s of length len from UTF-8 into native byte encoding.
 Unlike
utf8_to_bytes but like bytes_to_utf8, returns a pointer to
 the newly-created string, and
updates len to contain the new
 length. Returns the original string if no conversion
occurs, len
 is unchanged. Do nothing if is_utf8 points to 0. Sets is_utf8 to
 0 if s
is converted or consisted entirely of characters that are invariant
 in utf8 (i.e., US-ASCII
on non-EBCDIC machines).

	 U8*	 bytes_from_utf8(const U8 *s, STRLEN *len,
		 bool *is_utf8)

bytes_to_utf8

NOTE: this function is experimental and may change or be
 removed without notice.

Converts a string s of length len bytes from the native encoding into
 UTF-8.
 Returns a
pointer to the newly-created string, and sets len to
 reflect the new length in bytes.

A NUL character will be written after the end of the string.

If you want to convert to UTF-8 from encodings other than
 the native (Latin1 or
EBCDIC),
 see sv_recode_to_utf8().

	 U8*	 bytes_to_utf8(const U8 *s, STRLEN *len)

foldEQ_utf8

Returns true if the leading portions of the strings s1 and s2 (either or both
 of which
may be in UTF-8) are the same case-insensitively; false otherwise.
 How far into the
strings to compare is determined by other input parameters.

If u1 is true, the string s1 is assumed to be in UTF-8-encoded Unicode;
 otherwise it is
assumed to be in native 8-bit encoding. Correspondingly for u2
 with respect to s2.

If the byte length l1 is non-zero, it says how far into s1 to check for fold
 equality. In
other words, s1+l1 will be used as a goal to reach. The
 scan will not be considered to
be a match unless the goal is reached, and
 scanning won't continue past that goal.
Correspondingly for l2 with respect to s2.

If pe1 is non-NULL and the pointer it points to is not NULL, that pointer is
 considered
an end pointer to the position 1 byte past the maximum point
 in s1 beyond which
scanning will not continue under any circumstances.
 (This routine assumes that UTF-8
encoded input strings are not malformed;
 malformed input can cause it to read past
pe1).
 This means that if both l1 and pe1 are specified, and pe1
 is less than s1+l1,
the match will never be successful because it can
 never
 get as far as its goal (and in
fact is asserted against). Correspondingly for pe2 with respect to s2.

At least one of s1 and s2 must have a goal (at least one of l1 and l2 must be
non-zero), and if both do, both have to be
 reached for a successful match. Also, if the
fold of a character is multiple
 characters, all of them must be matched (see tr21
reference below for
 'folding').

Upon a successful match, if pe1 is non-NULL,
 it will be set to point to the beginning of
the next character of s1
 beyond what was matched. Correspondingly for pe2 and s2.

For case-insensitiveness, the "casefolding" of Unicode is used
 instead of
upper/lowercasing both the characters, see

Perl version 5.20.1 documentation - perlapi

Page 119http://perldoc.perl.org

http://www.unicode.org/unicode/reports/tr21/ (Case Mappings).

	 I32	 foldEQ_utf8(const char *s1, char **pe1, UV l1,
		 bool u1, const char *s2, char **pe2,
		 UV l2, bool u2)

is_ascii_string

Returns true if the first len bytes of the string s are the same whether
 or not the string
is encoded in UTF-8 (or UTF-EBCDIC on EBCDIC machines). That
 is, if they are
invariant. On ASCII-ish machines, only ASCII characters
 fit this definition, hence the
function's name.

If len is 0, it will be calculated using strlen(s), (which means if you
 use this option,
that s can't have embedded NUL characters and has to
 have a terminating NUL byte).

See also is_utf8_string(), is_utf8_string_loclen(), and is_utf8_string_loc().

	 bool	 is_ascii_string(const U8 *s, STRLEN len)

is_utf8_char

DEPRECATED! It is planned to remove this function from a
 future release of Perl. Do
not use it for new code; remove it from
 existing code.

Tests if some arbitrary number of bytes begins in a valid UTF-8
 character. Note that an
INVARIANT (i.e. ASCII on non-EBCDIC machines)
 character is a valid UTF-8
character. The actual number of bytes in the UTF-8
 character will be returned if it is
valid, otherwise 0.

This function is deprecated due to the possibility that malformed input could
 cause
reading beyond the end of the input buffer. Use is_utf8_char_buf
 instead.

	 STRLEN	 is_utf8_char(const U8 *s)

is_utf8_char_buf

Returns the number of bytes that comprise the first UTF-8 encoded character in
 buffer
buf. buf_end should point to one position beyond the end of the
 buffer. 0 is returned
if buf does not point to a complete, valid UTF-8
 encoded character.

Note that an INVARIANT character (i.e. ASCII on non-EBCDIC
 machines) is a valid
UTF-8 character.

	 STRLEN	 is_utf8_char_buf(const U8 *buf,
		 const U8 *buf_end)

is_utf8_string

Returns true if the first len bytes of string s form a valid
 UTF-8 string, false otherwise.
If len is 0, it will be calculated
 using strlen(s) (which means if you use this option,
that s can't have
 embedded NUL characters and has to have a terminating NUL byte).
Note
 that all characters being ASCII constitute 'a valid UTF-8 string'.

See also is_ascii_string(), is_utf8_string_loclen(), and is_utf8_string_loc().

	 bool	 is_utf8_string(const U8 *s, STRLEN len)

is_utf8_string_loc

Like is_utf8_string but stores the location of the failure (in the
 case of "utf8ness
failure") or the location s+len (in the case of
 "utf8ness success") in the ep.

See also is_utf8_string_loclen() and is_utf8_string().

	 bool	 is_utf8_string_loc(const U8 *s, STRLEN len,

Perl version 5.20.1 documentation - perlapi

Page 120http://perldoc.perl.org

		 const U8 **ep)

is_utf8_string_loclen

Like is_utf8_string() but stores the location of the failure (in the
 case of "utf8ness
failure") or the location s+len (in the case of
 "utf8ness success") in the ep, and the
number of UTF-8
 encoded characters in the el.

See also is_utf8_string_loc() and is_utf8_string().

	 bool	 is_utf8_string_loclen(const U8 *s, STRLEN len,
		 const U8 **ep, STRLEN *el)

pv_uni_display

Build to the scalar dsv a displayable version of the string spv,
 length len, the
displayable version being at most pvlim bytes long
 (if longer, the rest is truncated and
"..." will be appended).

The flags argument can have UNI_DISPLAY_ISPRINT set to display
 isPRINT()able
characters as themselves, UNI_DISPLAY_BACKSLASH
 to display the \\[nrfta\\] as the
backslashed versions (like '\n')
 (UNI_DISPLAY_BACKSLASH is preferred over
UNI_DISPLAY_ISPRINT for \\).
 UNI_DISPLAY_QQ (and its alias
UNI_DISPLAY_REGEX) have both
 UNI_DISPLAY_BACKSLASH and
UNI_DISPLAY_ISPRINT turned on.

The pointer to the PV of the dsv is returned.

	 char*	 pv_uni_display(SV *dsv, const U8 *spv,
		 STRLEN len, STRLEN pvlim,
		 UV flags)

sv_cat_decode

The encoding is assumed to be an Encode object, the PV of the ssv is
 assumed to be
octets in that encoding and decoding the input starts
 from the position which (PV +
*offset) pointed to. The dsv will be
 concatenated the decoded UTF-8 string from ssv.
Decoding will terminate
 when the string tstr appears in decoding output or the input
ends on
 the PV of the ssv. The value which the offset points will be modified
 to the last
input position on the ssv.

Returns TRUE if the terminator was found, else returns FALSE.

	 bool	 sv_cat_decode(SV* dsv, SV *encoding, SV *ssv,
		 int *offset, char* tstr, int tlen)

sv_recode_to_utf8

The encoding is assumed to be an Encode object, on entry the PV
 of the sv is
assumed to be octets in that encoding, and the sv
 will be converted into Unicode (and
UTF-8).

If the sv already is UTF-8 (or if it is not POK), or if the encoding
 is not a reference,
nothing is done to the sv. If the encoding is not
 an Encode::XS Encoding object, bad
things will happen.
 (See lib/encoding.pm and Encode.)

The PV of the sv is returned.

	 char*	 sv_recode_to_utf8(SV* sv, SV *encoding)

sv_uni_display

Build to the scalar dsv a displayable version of the scalar sv,
 the displayable version
being at most pvlim bytes long
 (if longer, the rest is truncated and "..." will be

Perl version 5.20.1 documentation - perlapi

Page 121http://perldoc.perl.org

appended).The flags argument is as in pv_uni_display().

The pointer to the PV of the dsv is returned.

	 char*	 sv_uni_display(SV *dsv, SV *ssv, STRLEN pvlim,
		 UV flags)

to_utf8_case

p contains the pointer to the UTF-8 string encoding
 the character that is being
converted. This routine assumes that the character
 at p is well-formed.

ustrp is a pointer to the character buffer to put the
 conversion result to. lenp is a
pointer to the length
 of the result.

swashp is a pointer to the swash to use.

Both the special and normal mappings are stored in lib/unicore/To/Foo.pl,
 and loaded
by SWASHNEW, using lib/utf8_heavy.pl. special (usually,
 but not always, a
multicharacter mapping), is tried first.

special is a string, normally NULL or "". NULL means to not use
 any special
mappings; "" means to use the special mappings. Values other
 than these two are
treated as the name of the hash containing the special
 mappings, like
"utf8::ToSpecLower".

normal is a string like "ToLower" which means the swash
 %utf8::ToLower.

	 UV	 to_utf8_case(const U8 *p, U8* ustrp,
		 STRLEN *lenp, SV **swashp,
		 const char *normal,
		 const char *special)

to_utf8_fold

Instead use toFOLD_utf8.

	 UV	 to_utf8_fold(const U8 *p, U8* ustrp,
		 STRLEN *lenp)

to_utf8_lower

Instead use toLOWER_utf8.

	 UV	 to_utf8_lower(const U8 *p, U8* ustrp,
		 STRLEN *lenp)

to_utf8_title

Instead use toTITLE_utf8.

	 UV	 to_utf8_title(const U8 *p, U8* ustrp,
		 STRLEN *lenp)

to_utf8_upper

Instead use toUPPER_utf8.

	 UV	 to_utf8_upper(const U8 *p, U8* ustrp,
		 STRLEN *lenp)

utf8n_to_uvchr

THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED
CIRCUMSTANCES.
 Most code should use utf8_to_uvchr_buf() rather than call this
directly.

Perl version 5.20.1 documentation - perlapi

Page 122http://perldoc.perl.org

Bottom level UTF-8 decode routine.
 Returns the native code point value of the first
character in the string s,
 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding,
and no longer than curlen bytes; *retlen (if retlen isn't NULL) will be set to
 the
length, in bytes, of that character.

The value of flags determines the behavior when s does not point to a
 well-formed
UTF-8 character. If flags is 0, when a malformation is found,
 zero is returned and
*retlen is set so that (s + *retlen) is the
 next possible position in s that could
begin a non-malformed character.
 Also, if UTF-8 warnings haven't been lexically
disabled, a warning is raised.

Various ALLOW flags can be set in flags to allow (and not warn on)
 individual types
of malformations, such as the sequence being overlong (that
 is, when there is a
shorter sequence that can express the same code point;
 overlong sequences are
expressly forbidden in the UTF-8 standard due to
 potential security issues). Another
malformation example is the first byte of
 a character not being a legal first byte. See
utf8.h for the list of such
 flags. For allowed 0 length strings, this function returns 0; for
allowed
 overlong sequences, the computed code point is returned; for all other allowed
malformations, the Unicode REPLACEMENT CHARACTER is returned, as these have
no
 determinable reasonable value.

The UTF8_CHECK_ONLY flag overrides the behavior when a non-allowed (by other

flags) malformation is found. If this flag is set, the routine assumes that
 the caller will
raise a warning, and this function will silently just set retlen to -1 (cast to STRLEN)
and return zero.

Note that this API requires disambiguation between successful decoding a NUL

character, and an error return (unless the UTF8_CHECK_ONLY flag is set), as
 in both
cases, 0 is returned. To disambiguate, upon a zero return, see if the
 first byte of s is 0
as well. If so, the input was a NUL; if not, the
 input had an error.

Certain code points are considered problematic. These are Unicode surrogates,

Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.

By default these are considered regular code points, but certain situations
 warrant
special handling for them. If flags contains

UTF8_DISALLOW_ILLEGAL_INTERCHANGE, all three classes are treated as

malformations and handled as such. The flags UTF8_DISALLOW_SURROGATE,

UTF8_DISALLOW_NONCHAR, and UTF8_DISALLOW_SUPER (meaning above the
legal Unicode
 maximum) can be set to disallow these categories individually.

The flags UTF8_WARN_ILLEGAL_INTERCHANGE, UTF8_WARN_SURROGATE,

UTF8_WARN_NONCHAR, and UTF8_WARN_SUPER will cause warning messages
to be raised
 for their respective categories, but otherwise the code points are
considered
 valid (not malformations). To get a category to both be treated as a

malformation and raise a warning, specify both the WARN and DISALLOW flags.
 (But
note that warnings are not raised if lexically disabled nor if
 UTF8_CHECK_ONLY is
also specified.)

Very large code points (above 0x7FFF_FFFF) are considered more problematic than

the others that are above the Unicode legal maximum. There are several
 reasons: they
requre at least 32 bits to represent them on ASCII platforms, are
 not representable at
all on EBCDIC platforms, and the original UTF-8
 specification never went above this
number (the current 0x10FFFF limit was
 imposed later). (The smaller ones, those that
fit into 32 bits, are
 representable by a UV on ASCII platforms, but not by an IV, which
means that
 the number of operations that can be performed on them is quite
restricted.)
 The UTF-8 encoding on ASCII platforms for these large code points begins
with a
 byte containing 0xFE or 0xFF. The UTF8_DISALLOW_FE_FF flag will cause
them to
 be treated as malformations, while allowing smaller above-Unicode code
points.
 (Of course UTF8_DISALLOW_SUPER will treat all above-Unicode code points,
including these, as malformations.)
 Similarly, UTF8_WARN_FE_FF acts just like
 the
other WARN flags, but applies just to these code points.

Perl version 5.20.1 documentation - perlapi

Page 123http://perldoc.perl.org

All other code points corresponding to Unicode characters, including private
 use and
those yet to be assigned, are never considered malformed and never
 warn.

	 UV	 utf8n_to_uvchr(const U8 *s, STRLEN curlen,
		 STRLEN *retlen, U32 flags)

utf8n_to_uvuni

Instead use utf8_to_uvchr_buf, or rarely, utf8n_to_uvchr.

This function was useful for code that wanted to handle both EBCDIC and
 ASCII
platforms with Unicode properties, but starting in Perl v5.20, the
 distinctions between
the platforms have mostly been made invisible to most
 code, so this function is quite
unlikely to be what you want. If you do need
 this precise functionality, use instead
NATIVE_TO_UNI(utf8_to_uvchr_buf(...))
 or
NATIVE_TO_UNI(utf8n_to_uvchr(...)).

	 UV	 utf8n_to_uvuni(const U8 *s, STRLEN curlen,
		 STRLEN *retlen, U32 flags)

utf8_distance

Returns the number of UTF-8 characters between the UTF-8 pointers a
 and b.

WARNING: use only if you *know* that the pointers point inside the
 same UTF-8
buffer.

	 IV	 utf8_distance(const U8 *a, const U8 *b)

utf8_hop

Return the UTF-8 pointer s displaced by off characters, either
 forward or backward.

WARNING: do not use the following unless you *know* off is within
 the UTF-8 data
pointed to by s *and* that on entry s is aligned
 on the first byte of character or just
after the last byte of a character.

	 U8*	 utf8_hop(const U8 *s, I32 off)

utf8_length

Return the length of the UTF-8 char encoded string s in characters.
 Stops at e
(inclusive). If e < s or if the scan would end
 up past e, croaks.

	 STRLEN	 utf8_length(const U8* s, const U8 *e)

utf8_to_bytes

NOTE: this function is experimental and may change or be
 removed without notice.

Converts a string s of length len from UTF-8 into native byte encoding.
 Unlike
bytes_to_utf8, this over-writes the original string, and
 updates len to contain the new
length.
 Returns zero on failure, setting len to -1.

If you need a copy of the string, see bytes_from_utf8.

	 U8*	 utf8_to_bytes(U8 *s, STRLEN *len)

utf8_to_uvchr

DEPRECATED! It is planned to remove this function from a
 future release of Perl. Do
not use it for new code; remove it from
 existing code.

Returns the native code point of the first character in the string s
 which is assumed to
be in UTF-8 encoding; retlen will be set to the
 length, in bytes, of that character.

Some, but not all, UTF-8 malformations are detected, and in fact, some
 malformed

Perl version 5.20.1 documentation - perlapi

Page 124http://perldoc.perl.org

input could cause reading beyond the end of the input buffer, which
 is why this function
is deprecated. Use utf8_to_uvchr_buf instead.

If s points to one of the detected malformations, and UTF8 warnings are
 enabled, zero
is returned and *retlen is set (if retlen isn't
 NULL) to -1. If those warnings are off,
the computed value if well-defined (or
 the Unicode REPLACEMENT CHARACTER, if
not) is silently returned, and *retlen
 is set (if retlen isn't NULL) so that (s +
*retlen) is the
 next possible position in s that could begin a non-malformed
character.
 See utf8n_to_uvchr for details on when the REPLACEMENT CHARACTER
is returned.

	 UV	 utf8_to_uvchr(const U8 *s, STRLEN *retlen)

utf8_to_uvchr_buf

Returns the native code point of the first character in the string s which
 is assumed to
be in UTF-8 encoding; send points to 1 beyond the end of s. *retlen will be set to
the length, in bytes, of that character.

If s does not point to a well-formed UTF-8 character and UTF8 warnings are
 enabled,
zero is returned and *retlen is set (if retlen isn't
 NULL) to -1. If those warnings are
off, the computed value, if well-defined
 (or the Unicode REPLACEMENT
CHARACTER if not), is silently returned, and *retlen is set (if retlen isn't NULL)
so that (s + *retlen) is
 the next possible position in s that could begin a
non-malformed character.
 See utf8n_to_uvchr for details on when the
REPLACEMENT CHARACTER is
 returned.

	 UV	 utf8_to_uvchr_buf(const U8 *s, const U8 *send,
		 STRLEN *retlen)

utf8_to_uvuni

DEPRECATED! It is planned to remove this function from a
 future release of Perl. Do
not use it for new code; remove it from
 existing code.

Returns the Unicode code point of the first character in the string s
 which is assumed
to be in UTF-8 encoding; retlen will be set to the
 length, in bytes, of that character.

Some, but not all, UTF-8 malformations are detected, and in fact, some
 malformed
input could cause reading beyond the end of the input buffer, which
 is one reason why
this function is deprecated. The other is that only in
 extremely limited circumstances
should the Unicode versus native code point be
 of any interest to you. See
utf8_to_uvuni_buf for alternatives.

If s points to one of the detected malformations, and UTF8 warnings are
 enabled, zero
is returned and *retlen is set (if retlen doesn't point to
 NULL) to -1. If those
warnings are off, the computed value if well-defined (or
 the Unicode REPLACEMENT
CHARACTER, if not) is silently returned, and *retlen
 is set (if retlen isn't NULL)
so that (s + *retlen) is the
 next possible position in s that could begin a
non-malformed character.
 See utf8n_to_uvchr for details on when the
REPLACEMENT CHARACTER is returned.

	 UV	 utf8_to_uvuni(const U8 *s, STRLEN *retlen)

utf8_to_uvuni_buf

DEPRECATED! It is planned to remove this function from a
 future release of Perl. Do
not use it for new code; remove it from
 existing code.

Only in very rare circumstances should code need to be dealing in Unicode
 (as
opposed to native) code points. In those few cases, use
NATIVE_TO_UNI(utf8_to_uvchr_buf(...)) instead.

Returns the Unicode (not-native) code point of the first character in the
 string s which

Perl version 5.20.1 documentation - perlapi

Page 125http://perldoc.perl.org

is assumed to be in UTF-8 encoding; send points to 1 beyond the end of s. retlen
will be set to the length, in bytes, of that character.

If s does not point to a well-formed UTF-8 character and UTF8 warnings are
 enabled,
zero is returned and *retlen is set (if retlen isn't
 NULL) to -1. If those warnings are
off, the computed value if well-defined (or
 the Unicode REPLACEMENT
CHARACTER, if not) is silently returned, and *retlen
 is set (if retlen isn't NULL)
so that (s + *retlen) is the
 next possible position in s that could begin a
non-malformed character.
 See utf8n_to_uvchr for details on when the
REPLACEMENT CHARACTER is returned.

	 UV	 utf8_to_uvuni_buf(const U8 *s, const U8 *send,
		 STRLEN *retlen)

uvchr_to_utf8

Adds the UTF-8 representation of the native code point uv to the end
 of the string d; d
should have at least UNISKIP(uv)+1 (up to UTF8_MAXBYTES+1) free bytes
available. The return value is the pointer to
 the byte after the end of the new character.
In other words,

 d = uvchr_to_utf8(d, uv);

is the recommended wide native character-aware way of saying

 *(d++) = uv;

This function accepts any UV as input. To forbid or warn on non-Unicode code
 points,
or those that may be problematic, see uvchr_to_utf8_flags.

	 U8*	 uvchr_to_utf8(U8 *d, UV uv)

uvchr_to_utf8_flags

Adds the UTF-8 representation of the native code point uv to the end
 of the string d; d
should have at least UNISKIP(uv)+1 (up to UTF8_MAXBYTES+1) free bytes
available. The return value is the pointer to
 the byte after the end of the new character.
In other words,

 d = uvchr_to_utf8_flags(d, uv, flags);

or, in most cases,

 d = uvchr_to_utf8_flags(d, uv, 0);

This is the Unicode-aware way of saying

 *(d++) = uv;

This function will convert to UTF-8 (and not warn) even code points that aren't
 legal
Unicode or are problematic, unless flags contains one or more of the
 following flags:

If uv is a Unicode surrogate code point and UNICODE_WARN_SURROGATE is set,

the function will raise a warning, provided UTF8 warnings are enabled. If instead

UNICODE_DISALLOW_SURROGATE is set, the function will fail and return NULL.
 If
both flags are set, the function will both warn and return NULL.

The UNICODE_WARN_NONCHAR and UNICODE_DISALLOW_NONCHAR flags

affect how the function handles a Unicode non-character. And likewise, the

UNICODE_WARN_SUPER and UNICODE_DISALLOW_SUPER flags affect the
handling of
 code points that are
 above the Unicode maximum of 0x10FFFF. Code
points above 0x7FFF_FFFF (which are
 even less portable) can be warned and/or
disallowed even if other above-Unicode
 code points are accepted, by the

Perl version 5.20.1 documentation - perlapi

Page 126http://perldoc.perl.org

UNICODE_WARN_FE_FF and UNICODE_DISALLOW_FE_FF
 flags.

And finally, the flag UNICODE_WARN_ILLEGAL_INTERCHANGE selects all four of
the
 above WARN flags; and UNICODE_DISALLOW_ILLEGAL_INTERCHANGE
selects all four
 DISALLOW flags.

	 U8*	 uvchr_to_utf8_flags(U8 *d, UV uv, UV flags)

uvoffuni_to_utf8_flags

THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED
CIRCUMSTANCES.
 Instead, Almost all code should use uvchr_to_utf8 or
uvchr_to_utf8_flags.

This function is like them, but the input is a strict Unicode
 (as opposed to native) code
point. Only in very rare circumstances should code
 not be using the native code point.

For details, see the description for uvchr_to_utf8_flags>.

	 U8*	 uvoffuni_to_utf8_flags(U8 *d, UV uv, UV flags)

uvuni_to_utf8_flags

Instead you almost certainly want to use uvchr_to_utf8 or uvchr_to_utf8_flags>.

This function is a deprecated synonym for uvoffuni_to_utf8_flags,
 which itself, while
not deprecated, should be used only in isolated
 circumstances. These functions were
useful for code that wanted to handle
 both EBCDIC and ASCII platforms with Unicode
properties, but starting in Perl
 v5.20, the distinctions between the platforms have
mostly been made invisible
 to most code, so this function is quite unlikely to be what
you want.

	 U8*	 uvuni_to_utf8_flags(U8 *d, UV uv, UV flags)

Variables created by xsubpp and xsubpp internal functions
ax

Variable which is setup by xsubpp to indicate the stack base offset,
 used by the ST,
XSprePUSH and XSRETURN macros. The dMARK macro
 must be called prior to setup
the MARK variable.

	 I32	 ax

CLASS

Variable which is setup by xsubpp to indicate the class name for a C++ XS
constructor. This is always a char*. See THIS.

	 char*	 CLASS

dAX

Sets up the ax variable.
 This is usually handled automatically by xsubpp by calling
dXSARGS.

		 dAX;

dAXMARK

Sets up the ax variable and stack marker variable mark.
 This is usually handled
automatically by xsubpp by calling dXSARGS.

		 dAXMARK;

dITEMS

Perl version 5.20.1 documentation - perlapi

Page 127http://perldoc.perl.org

Sets up the items variable.
 This is usually handled automatically by xsubpp by
calling dXSARGS.

		 dITEMS;

dUNDERBAR

Sets up any variable needed by the UNDERBAR macro. It used to define padoff_du,
but it is currently a noop. However, it is strongly advised
 to still use it for ensuring past
and future compatibility.

		 dUNDERBAR;

dXSARGS

Sets up stack and mark pointers for an XSUB, calling dSP and dMARK.
 Sets up the
ax and items variables by calling dAX and dITEMS.
 This is usually handled
automatically by xsubpp.

		 dXSARGS;

dXSI32

Sets up the ix variable for an XSUB which has aliases. This is usually
 handled
automatically by xsubpp.

		 dXSI32;

items

Variable which is setup by xsubpp to indicate the number of items on the stack. See
"Variable-length Parameter Lists" in perlxs.

	 I32	 items

ix

Variable which is setup by xsubpp to indicate which of an XSUB's aliases was used to
invoke it. See "The ALIAS: Keyword" in perlxs.

	 I32	 ix

newXSproto

Used by xsubpp to hook up XSUBs as Perl subs. Adds Perl prototypes to
 the subs.

RETVAL

Variable which is setup by xsubpp to hold the return value for an XSUB. This is
always the proper type for the XSUB. See "The RETVAL Variable" in perlxs.

	 (whatever)	 RETVAL

ST

Used to access elements on the XSUB's stack.

	 SV*	 ST(int ix)

THIS

Variable which is setup by xsubpp to designate the object in a C++ XSUB. This is
always the proper type for the C++ object. See CLASS and "Using XS With C++" in
perlxs.

	 (whatever)	 THIS

Perl version 5.20.1 documentation - perlapi

Page 128http://perldoc.perl.org

UNDERBAR

The SV* corresponding to the $_ variable. Works even if there
 is a lexical $_ in scope.

XS

Macro to declare an XSUB and its C parameter list. This is handled by xsubpp. It is
the same as using the more explicit XS_EXTERNAL macro.

XS_APIVERSION_BOOTCHECK

Macro to verify that the perl api version an XS module has been compiled against

matches the api version of the perl interpreter it's being loaded into.

		 XS_APIVERSION_BOOTCHECK;

XS_EXTERNAL

Macro to declare an XSUB and its C parameter list explicitly exporting the symbols.

XS_INTERNAL

Macro to declare an XSUB and its C parameter list without exporting the symbols.
 This
is handled by xsubpp and generally preferable over exporting the XSUB
 symbols
unnecessarily.

XS_VERSION

The version identifier for an XS module. This is usually
 handled automatically by
ExtUtils::MakeMaker. See XS_VERSION_BOOTCHECK.

XS_VERSION_BOOTCHECK

Macro to verify that a PM module's $VERSION variable matches the XS
 module's
XS_VERSION variable. This is usually handled automatically by xsubpp. See "The
VERSIONCHECK: Keyword" in perlxs.

		 XS_VERSION_BOOTCHECK;

Warning and Dieing
croak

This is an XS interface to Perl's die function.

Take a sprintf-style format pattern and argument list. These are used to
 generate a
string message. If the message does not end with a newline,
 then it will be extended
with some indication of the current location
 in the code, as described for mess_sv.

The error message will be used as an exception, by default
 returning control to the
nearest enclosing eval, but subject to
 modification by a $SIG{__DIE__} handler. In
any case, the croak
 function never returns normally.

For historical reasons, if pat is null then the contents of ERRSV
 ($@) will be used as an
error message or object instead of building an
 error message from arguments. If you
want to throw a non-string object,
 or build an error message in an SV yourself, it is
preferable to use
 the croak_sv function, which does not involve clobbering ERRSV.

	 void	 croak(const char *pat, ...)

croak_no_modify

Exactly equivalent to Perl_croak(aTHX_ "%s", PL_no_modify), but generates

terser object code than using Perl_croak. Less code used on exception code
 paths
reduces CPU cache pressure.

	 void	 croak_no_modify()

Perl version 5.20.1 documentation - perlapi

Page 129http://perldoc.perl.org

croak_sv

This is an XS interface to Perl's die function.

baseex is the error message or object. If it is a reference, it
 will be used as-is.
Otherwise it is used as a string, and if it does
 not end with a newline then it will be
extended with some indication of
 the current location in the code, as described for
mess_sv.

The error message or object will be used as an exception, by default
 returning control
to the nearest enclosing eval, but subject to
 modification by a $SIG{__DIE__}
handler. In any case, the croak_sv
 function never returns normally.

To die with a simple string message, the croak function may be
 more convenient.

	 void	 croak_sv(SV *baseex)

die

Behaves the same as croak, except for the return type.
 It should be used only where
the OP * return type is required.
 The function never actually returns.

	 OP *	 die(const char *pat, ...)

die_sv

Behaves the same as croak_sv, except for the return type.
 It should be used only
where the OP * return type is required.
 The function never actually returns.

	 OP *	 die_sv(SV *baseex)

vcroak

This is an XS interface to Perl's die function.

pat and args are a sprintf-style format pattern and encapsulated
 argument list. These
are used to generate a string message. If the
 message does not end with a newline,
then it will be extended with
 some indication of the current location in the code, as
described for mess_sv.

The error message will be used as an exception, by default
 returning control to the
nearest enclosing eval, but subject to
 modification by a $SIG{__DIE__} handler. In
any case, the croak
 function never returns normally.

For historical reasons, if pat is null then the contents of ERRSV
 ($@) will be used as an
error message or object instead of building an
 error message from arguments. If you
want to throw a non-string object,
 or build an error message in an SV yourself, it is
preferable to use
 the croak_sv function, which does not involve clobbering ERRSV.

	 void	 vcroak(const char *pat, va_list *args)

vwarn

This is an XS interface to Perl's warn function.

pat and args are a sprintf-style format pattern and encapsulated
 argument list. These
are used to generate a string message. If the
 message does not end with a newline,
then it will be extended with
 some indication of the current location in the code, as
described for mess_sv.

The error message or object will by default be written to standard error,
 but this is
subject to modification by a $SIG{__WARN__} handler.

Unlike with vcroak, pat is not permitted to be null.

	 void	 vwarn(const char *pat, va_list *args)

Perl version 5.20.1 documentation - perlapi

Page 130http://perldoc.perl.org

warn

This is an XS interface to Perl's warn function.

Take a sprintf-style format pattern and argument list. These are used to
 generate a
string message. If the message does not end with a newline,
 then it will be extended
with some indication of the current location
 in the code, as described for mess_sv.

The error message or object will by default be written to standard error,
 but this is
subject to modification by a $SIG{__WARN__} handler.

Unlike with croak, pat is not permitted to be null.

	 void	 warn(const char *pat, ...)

warn_sv

This is an XS interface to Perl's warn function.

baseex is the error message or object. If it is a reference, it
 will be used as-is.
Otherwise it is used as a string, and if it does
 not end with a newline then it will be
extended with some indication of
 the current location in the code, as described for
mess_sv.

The error message or object will by default be written to standard error,
 but this is
subject to modification by a $SIG{__WARN__} handler.

To warn with a simple string message, the warn function may be
 more convenient.

	 void	 warn_sv(SV *baseex)

Undocumented functions
The following functions have been flagged as part of the public API,
 but are currently undocumented.
Use them at your own risk, as the
 interfaces are subject to change. Functions that are not listed in this
document are not intended for public use, and should NOT be used under any
 circumstances.

If you use one of the undocumented functions below, you may wish to consider
 creating and
submitting documentation
 for it. If your patch is accepted, this
 will indicate that the interface is stable
(unless it is explicitly marked
 otherwise).

GetVars

Gv_AMupdate

PerlIO_clearerr

PerlIO_close

PerlIO_context_layers

PerlIO_eof

PerlIO_error

PerlIO_fileno

PerlIO_fill

PerlIO_flush

PerlIO_get_base

PerlIO_get_bufsiz

PerlIO_get_cnt

PerlIO_get_ptr

PerlIO_read

PerlIO_seek

PerlIO_set_cnt

Perl version 5.20.1 documentation - perlapi

Page 131http://perldoc.perl.org

PerlIO_set_ptrcnt

PerlIO_setlinebuf

PerlIO_stderr

PerlIO_stdin

PerlIO_stdout

PerlIO_tell

PerlIO_unread

PerlIO_write

amagic_call

amagic_deref_call

any_dup

atfork_lock

atfork_unlock

av_arylen_p

av_iter_p

block_gimme

call_atexit

call_list

calloc

cast_i32

cast_iv

cast_ulong

cast_uv

ck_warner

ck_warner_d

ckwarn

ckwarn_d

clone_params_del

clone_params_new

croak_memory_wrap

croak_nocontext

csighandler

cx_dump

cx_dup

cxinc

deb

deb_nocontext

debop

debprofdump

debstack

debstackptrs

delimcpy

Perl version 5.20.1 documentation - perlapi

Page 132http://perldoc.perl.org

despatch_signals

die_nocontext

dirp_dup

do_aspawn

do_binmode

do_close

do_gv_dump

do_gvgv_dump

do_hv_dump

do_join

do_magic_dump

do_op_dump

do_open

do_open9

do_openn

do_pmop_dump

do_spawn

do_spawn_nowait

do_sprintf

do_sv_dump

doing_taint

doref

dounwind

dowantarray

dump_eval

dump_form

dump_indent

dump_mstats

dump_sub

dump_vindent

filter_add

filter_del

filter_read

foldEQ_latin1

form_nocontext

fp_dup

fprintf_nocontext

free_global_struct

free_tmps

get_context

get_mstats

get_op_descs

Perl version 5.20.1 documentation - perlapi

Page 133http://perldoc.perl.org

get_op_names

get_ppaddr

get_vtbl

gp_dup

gp_free

gp_ref

gv_AVadd

gv_HVadd

gv_IOadd

gv_SVadd

gv_add_by_type

gv_autoload4

gv_autoload_pv

gv_autoload_pvn

gv_autoload_sv

gv_check

gv_dump

gv_efullname

gv_efullname3

gv_efullname4

gv_fetchfile

gv_fetchfile_flags

gv_fetchpv

gv_fetchpvn_flags

gv_fetchsv

gv_fullname

gv_fullname3

gv_fullname4

gv_handler

gv_name_set

he_dup

hek_dup

hv_common

hv_common_key_len

hv_delayfree_ent

hv_eiter_p

hv_eiter_set

hv_free_ent

hv_ksplit

hv_name_set

hv_placeholders_get

hv_placeholders_set

Perl version 5.20.1 documentation - perlapi

Page 134http://perldoc.perl.org

hv_rand_set

hv_riter_p

hv_riter_set

init_global_struct

init_stacks

init_tm

instr

is_lvalue_sub

leave_scope

load_module_nocontext

magic_dump

malloc

markstack_grow

mess_nocontext

mfree

mg_dup

mg_size

mini_mktime

moreswitches

mro_get_from_name

mro_get_private_data

mro_set_mro

mro_set_private_data

my_atof

my_atof2

my_bcopy

my_bzero

my_chsize

my_cxt_index

my_cxt_init

my_dirfd

my_exit

my_failure_exit

my_fflush_all

my_fork

my_lstat

my_memcmp

my_memset

my_pclose

my_popen

my_popen_list

my_setenv

Perl version 5.20.1 documentation - perlapi

Page 135http://perldoc.perl.org

my_socketpair

my_stat

my_strftime

newANONATTRSUB

newANONHASH

newANONLIST

newANONSUB

newATTRSUB

newAVREF

newCVREF

newFORM

newGVREF

newGVgen

newGVgen_flags

newHVREF

newHVhv

newIO

newMYSUB

newPROG

newRV

newSUB

newSVREF

newSVpvf_nocontext

new_stackinfo

ninstr

op_refcnt_lock

op_refcnt_unlock

parser_dup

perl_alloc_using

perl_clone_using

pmop_dump

pop_scope

pregcomp

pregexec

pregfree

pregfree2

printf_nocontext

ptr_table_fetch

ptr_table_free

ptr_table_new

ptr_table_split

ptr_table_store

Perl version 5.20.1 documentation - perlapi

Page 136http://perldoc.perl.org

push_scope

re_compile

re_dup_guts

re_intuit_start

re_intuit_string

realloc

reentrant_free

reentrant_init

reentrant_retry

reentrant_size

ref

reg_named_buff_all

reg_named_buff_exists

reg_named_buff_fetch

reg_named_buff_firstkey

reg_named_buff_nextkey

reg_named_buff_scalar

regclass_swash

regdump

regdupe_internal

regexec_flags

regfree_internal

reginitcolors

regnext

repeatcpy

rninstr

rsignal

rsignal_state

runops_debug

runops_standard

rvpv_dup

safesyscalloc

safesysfree

safesysmalloc

safesysrealloc

save_I16

save_I32

save_I8

save_adelete

save_aelem

save_aelem_flags

save_alloc

Perl version 5.20.1 documentation - perlapi

Page 137http://perldoc.perl.org

save_aptr

save_ary

save_bool

save_clearsv

save_delete

save_destructor

save_destructor_x

save_freeop

save_freepv

save_freesv

save_generic_pvref

save_generic_svref

save_gp

save_hash

save_hdelete

save_helem

save_helem_flags

save_hints

save_hptr

save_int

save_item

save_iv

save_list

save_long

save_mortalizesv

save_nogv

save_op

save_padsv_and_mortalize

save_pptr

save_pushi32ptr

save_pushptr

save_pushptrptr

save_re_context

save_scalar

save_set_svflags

save_shared_pvref

save_sptr

save_svref

save_vptr

savestack_grow

savestack_grow_cnt

scan_num

Perl version 5.20.1 documentation - perlapi

Page 138http://perldoc.perl.org

scan_vstring

screaminstr

seed

set_context

set_numeric_local

set_numeric_radix

set_numeric_standard

share_hek

si_dup

ss_dup

stack_grow

start_subparse

str_to_version

sv_2iv

sv_2pv

sv_2uv

sv_catpvf_mg_nocontext

sv_catpvf_nocontext

sv_dup

sv_dup_inc

sv_peek

sv_pvn_nomg

sv_setpvf_mg_nocontext

sv_setpvf_nocontext

swash_fetch

swash_init

sys_init

sys_init3

sys_intern_clear

sys_intern_dup

sys_intern_init

sys_term

taint_env

taint_proper

tmps_grow

unlnk

unsharepvn

utf16_to_utf8

utf16_to_utf8_reversed

uvuni_to_utf8

vdeb

vform

Perl version 5.20.1 documentation - perlapi

Page 139http://perldoc.perl.org

vload_module

vnewSVpvf

vwarner

warn_nocontext

warner

warner_nocontext

whichsig

whichsig_pv

whichsig_pvn

whichsig_sv

AUTHORS
Until May 1997, this document was maintained by Jeff Okamoto
 <okamoto@corp.hp.com>. It is now
maintained as part of Perl itself.

With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
 Andreas Koenig, Paul
Hudson, Ilya Zakharevich, Paul Marquess, Neil
 Bowers, Matthew Green, Tim Bunce, Spider
Boardman, Ulrich Pfeifer,
 Stephen McCamant, and Gurusamy Sarathy.

API Listing originally by Dean Roehrich <roehrich@cray.com>.

Updated to be autogenerated from comments in the source by Benjamin Stuhl.

SEE ALSO
perlguts, perlxs, perlxstut, perlintern

