
Perl version 5.20.1 documentation - perlhack

Page 1http://perldoc.perl.org

NAME
perlhack - How to hack on Perl

DESCRIPTION
This document explains how Perl development works. It includes details
 about the Perl 5 Porters
email list, the Perl repository, the Perlbug
 bug tracker, patch guidelines, and commentary on Perl
development
 philosophy.

SUPER QUICK PATCH GUIDE
If you just want to submit a single small patch like a pod fix, a test
 for a bug, comment fixes, etc., it's
easy! Here's how:

* Check out the source repository

The perl source is in a git repository. You can clone the repository
 with the following
command:

 % git clone git://perl5.git.perl.org/perl.git perl

* Ensure you're following the latest advice

In case the advice in this guide has been updated recently, read the
 latest version directly
from the perl source:

 % perldoc pod/perlhack.pod

* Make your change

Hack, hack, hack.

* Test your change

You can run all the tests with the following commands:

 % ./Configure -des -Dusedevel
 % make test

Keep hacking until the tests pass.

* Commit your change

Committing your work will save the change on your local system:

 % git commit -a -m 'Commit message goes here'

Make sure the commit message describes your change in a single
 sentence. For example,
"Fixed spelling errors in perlhack.pod".

* Send your change to perlbug

The next step is to submit your patch to the Perl core ticket system
 via email.

If your changes are in a single git commit, run the following commands
 to generate the patch
file and attach it to your bug report:

 % git format-patch -1
 % ./perl -Ilib utils/perlbug -p 0001-*.patch

The perlbug program will ask you a few questions about your email
 address and the patch
you're submitting. Once you've answered them it
 will submit your patch via email.

If your changes are in multiple commits, generate a patch file for each
 one and provide them
to perlbug's -p option separated by commas:

 % git format-patch -3
 % ./perl -Ilib utils/perlbug -p 0001-fix1.patch,0002-fix2.patch,\

Perl version 5.20.1 documentation - perlhack

Page 2http://perldoc.perl.org

 > 0003-fix3.patch

When prompted, pick a subject that summarizes your changes.

* Thank you

The porters appreciate the time you spent helping to make Perl better.
 Thank you!

* Next time

The next time you wish to make a patch, you need to start from the
 latest perl in a pristine
state. Check you don't have any local changes
 or added files in your perl check-out which you
wish to keep, then run
 these commands:

 % git pull
 % git reset --hard origin/blead
 % git clean -dxf

BUG REPORTING
If you want to report a bug in Perl, you must use the perlbug
 command line tool. This tool will ensure
that your bug report includes
 all the relevant system and configuration information.

To browse existing Perl bugs and patches, you can use the web interface
 at http://rt.perl.org/.

Please check the archive of the perl5-porters list (see below) and/or
 the bug tracking system before
submitting a bug report. Often, you'll
 find that the bug has been reported already.

You can log in to the bug tracking system and comment on existing bug
 reports. If you have additional
information regarding an existing bug,
 please add it. This will help the porters fix the bug.

PERL 5 PORTERS
The perl5-porters (p5p) mailing list is where the Perl standard
 distribution is maintained and
developed. The people who maintain Perl
 are also referred to as the "Perl 5 Porters", "p5p" or just the
"porters".

A searchable archive of the list is available at http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/.
There is
 also another archive at http://archive.develooper.com/perl5-porters@perl.org/.

perl-changes mailing list
The perl5-changes mailing list receives a copy of each patch that gets
 submitted to the maintenance
and development branches of the perl
 repository. See http://lists.perl.org/list/perl5-changes.html for

subscription and archive information.

#p5p on IRC
Many porters are also active on the irc://irc.perl.org/#p5p channel.
 Feel free to join the channel and
ask questions about hacking on the
 Perl core.

GETTING THE PERL SOURCE
All of Perl's source code is kept centrally in a Git repository at perl5.git.perl.org. The repository
contains many Perl revisions
 from Perl 1 onwards and all the revisions from Perforce, the previous

version control system.

For much more detail on using git with the Perl repository, please see perlgit.

Read access via Git
You will need a copy of Git for your computer. You can fetch a copy of
 the repository using the git
protocol:

 % git clone git://perl5.git.perl.org/perl.git perl

Perl version 5.20.1 documentation - perlhack

Page 3http://perldoc.perl.org

This clones the repository and makes a local copy in the perl
 directory.

If you cannot use the git protocol for firewall reasons, you can also
 clone via http, though this is much
slower:

 % git clone http://perl5.git.perl.org/perl.git perl

Read access via the web
You may access the repository over the web. This allows you to browse
 the tree, see recent commits,
subscribe to RSS feeds for the changes,
 search for particular commits and more. You may access it
at http://perl5.git.perl.org/perl.git. A mirror of the repository is
 found at https://github.com/Perl/perl5.

Read access via rsync
You can also choose to use rsync to get a copy of the current source
 tree for the bleadperl branch
and all maintenance branches:

 % rsync -avz rsync://perl5.git.perl.org/perl-current .
 % rsync -avz rsync://perl5.git.perl.org/perl-5.12.x .
 % rsync -avz rsync://perl5.git.perl.org/perl-5.10.x .
 % rsync -avz rsync://perl5.git.perl.org/perl-5.8.x .
 % rsync -avz rsync://perl5.git.perl.org/perl-5.6.x .
 % rsync -avz rsync://perl5.git.perl.org/perl-5.005xx .

(Add the --delete option to remove leftover files.)

To get a full list of the available sync points:

 % rsync perl5.git.perl.org::

Write access via git
If you have a commit bit, please see perlgit for more details on
 using git.

PATCHING PERL
If you're planning to do more extensive work than a single small fix,
 we encourage you to read the
documentation below. This will help you
 focus your work and make your patches easier to incorporate
into the
 Perl source.

Submitting patches
If you have a small patch to submit, please submit it via perlbug. You
 can also send email directly to
perlbug@perl.org. Please note that
 messages sent to perlbug may be held in a moderation queue, so
you
 won't receive a response immediately.

You'll know your submission has been processed when you receive an
 email from our ticket tracking
system. This email will give you a
 ticket number. Once your patch has made it to the ticket tracking

system, it will also be sent to the perl5-porters@perl.org list.

Patches are reviewed and discussed on the p5p list. Simple,
 uncontroversial patches will usually be
applied without any discussion.
 When the patch is applied, the ticket will be updated and you will

receive email. In addition, an email will be sent to the p5p list.

In other cases, the patch will need more work or discussion. That will
 happen on the p5p list.

You are encouraged to participate in the discussion and advocate for
 your patch. Sometimes your
patch may get lost in the shuffle. It's
 appropriate to send a reminder email to p5p if no action has been
taken
 in a month. Please remember that the Perl 5 developers are all
 volunteers, and be polite.

Changes are always applied directly to the main development branch,
 called "blead". Some patches
may be backported to a maintenance
 branch. If you think your patch is appropriate for the

Perl version 5.20.1 documentation - perlhack

Page 4http://perldoc.perl.org

maintenance
 branch (see "MAINTENANCE BRANCHES" in perlpolicy), please explain why
 when you
submit it.

Getting your patch accepted
If you are submitting a code patch there are several things that you
 can do to help the Perl 5 Porters
accept your patch.

Patch style

If you used git to check out the Perl source, then using git
 format-patch will produce a patch in a
style suitable for Perl. The format-patch command produces one patch file for each commit you

made. If you prefer to send a single patch for all commits, you can
 use git diff.

 % git checkout blead
 % git pull
 % git diff blead my-branch-name

This produces a patch based on the difference between blead and your
 current branch. It's important
to make sure that blead is up to date
 before producing the diff, that's why we call git pull first.

We strongly recommend that you use git if possible. It will make your
 life easier, and ours as well.

However, if you're not using git, you can still produce a suitable
 patch. You'll need a pristine copy of
the Perl source to diff against.
 The porters prefer unified diffs. Using GNU diff, you can produce a

diff like this:

 % diff -Npurd perl.pristine perl.mine

Make sure that you make realclean in your copy of Perl to remove any
 build artifacts, or you may
get a confusing result.

Commit message

As you craft each patch you intend to submit to the Perl core, it's
 important to write a good commit
message. This is especially important
 if your submission will consist of a series of commits.

The first line of the commit message should be a short description
 without a period. It should be no
longer than the subject line of an
 email, 50 characters being a good rule of thumb.

A lot of Git tools (Gitweb, GitHub, git log --pretty=oneline, ...) will
 only display the first line (cut off at 50
characters) when presenting
 commit summaries.

The commit message should include a description of the problem that the
 patch corrects or new
functionality that the patch adds.

As a general rule of thumb, your commit message should help a
 programmer who knows the Perl
core quickly understand what you were
 trying to do, how you were trying to do it, and why the change
matters
 to Perl.

* Why

Your commit message should describe why the change you are making is
 important. When
someone looks at your change in six months or six
 years, your intent should be clear.

If you're deprecating a feature with the intent of later simplifying
 another bit of code, say so. If
you're fixing a performance problem or
 adding a new feature to support some other bit of the
core, mention
 that.

* What

Your commit message should describe what part of the Perl core you're
 changing and what
you expect your patch to do.

Perl version 5.20.1 documentation - perlhack

Page 5http://perldoc.perl.org

* How

While it's not necessary for documentation changes, new tests or
 trivial patches, it's often
worth explaining how your change works.
 Even if it's clear to you today, it may not be clear to
a porter next
 month or next year.

A commit message isn't intended to take the place of comments in your
 code. Commit messages
should describe the change you made, while code
 comments should describe the current state of the
code.

If you've just implemented a new feature, complete with doc, tests and
 well-commented code, a brief
commit message will often suffice. If,
 however, you've just changed a single character deep in the
parser or
 lexer, you might need to write a small novel to ensure that future
 readers understand what
you did and why you did it.

Comments, Comments, Comments

Be sure to adequately comment your code. While commenting every line
 is unnecessary, anything
that takes advantage of side effects of
 operators, that creates changes that will be felt outside of the

function being patched, or that others may find confusing should be
 documented. If you are going to
err, it is better to err on the side
 of adding too many comments than too few.

The best comments explain why the code does what it does, not what
 it does.

Style

In general, please follow the particular style of the code you are
 patching.

In particular, follow these general guidelines for patching Perl
 sources:

8-wide tabs (no exceptions!)

4-wide indents for code, 2-wide indents for nested CPP #defines

Try hard not to exceed 79-columns

ANSI C prototypes

Uncuddled elses and "K&R" style for indenting control constructs

No C++ style (//) comments

Mark places that need to be revisited with XXX (and revisit often!)

Opening brace lines up with "if" when conditional spans multiple lines;
 should be at end-of-line
otherwise

In function definitions, name starts in column 0 (return value is on
 previous line)

Single space after keywords that are followed by parens, no space
 between function name
and following paren

Avoid assignments in conditionals, but if they're unavoidable, use
 extra paren, e.g. "if (a && (b
= c)) ..."

"return foo;" rather than "return(foo);"

"if (!foo) ..." rather than "if (foo == FALSE) ..." etc.

Do not declare variables using "register". It may be counterproductive
 with modern compilers,
and is deprecated in C++, under which the Perl
 source is regularly compiled.

In-line functions that are in headers that are accessible to XS code
 need to be able to compile
without warnings with commonly used extra
 compilation flags, such as gcc's
-Wswitch-default which warns
 whenever a switch statement does not have a "default"

Perl version 5.20.1 documentation - perlhack

Page 6http://perldoc.perl.org

case. The use of
 these extra flags is to catch potential problems in legal C code, and
 is often
used by Perl aggregators, such as Linux distributors.

Test suite

If your patch changes code (rather than just changing documentation),
 you should also include one or
more test cases which illustrate the bug
 you're fixing or validate the new functionality you're adding. In
general, you should update an existing test file rather than create a
 new one.

Your test suite additions should generally follow these guidelines
 (courtesy of Gurusamy Sarathy
<gsar@activestate.com>):

Know what you're testing. Read the docs, and the source.

Tend to fail, not succeed.

Interpret results strictly.

Use unrelated features (this will flush out bizarre interactions).

Use non-standard idioms (otherwise you are not testing TIMTOWTDI).

Avoid using hardcoded test numbers whenever possible (the EXPECTED/GOT
 found in
t/op/tie.t is much more maintainable, and gives better failure
 reports).

Give meaningful error messages when a test fails.

Avoid using qx// and system() unless you are testing for them. If you
 do use them, make sure
that you cover _all_ perl platforms.

Unlink any temporary files you create.

Promote unforeseen warnings to errors with $SIG{__WARN__}.

Be sure to use the libraries and modules shipped with the version being
 tested, not those that
were already installed.

Add comments to the code explaining what you are testing for.

Make updating the '1..42' string unnecessary. Or make sure that you
 update it.

Test _all_ behaviors of a given operator, library, or function.

Test all optional arguments.

Test return values in various contexts (boolean, scalar, list, lvalue).

Use both global and lexical variables.

Don't forget the exceptional, pathological cases.

Patching a core module
This works just like patching anything else, with one extra
 consideration.

Modules in the cpan/ directory of the source tree are maintained
 outside of the Perl core. When the
author updates the module, the
 updates are simply copied into the core. See that module's

documentation or its listing on http://search.cpan.org/ for more
 information on reporting bugs and
submitting patches.

In most cases, patches to modules in cpan/ should be sent upstream
 and should not be applied to the
Perl core individually. If a patch to
 a file in cpan/ absolutely cannot wait for the fix to be made

upstream, released to CPAN and copied to blead, you must add (or
 update) a CUSTOMIZED entry in
the "Porting/Maintainers.pl" file
 to flag that a local modification has been made. See
"Porting/Maintainers.pl" for more details.

In contrast, modules in the dist/ directory are maintained in the
 core.

Perl version 5.20.1 documentation - perlhack

Page 7http://perldoc.perl.org

Updating perldelta
For changes significant enough to warrant a pod/perldelta.pod entry,
 the porters will greatly
appreciate it if you submit a delta entry
 along with your actual change. Significant changes include,
but are
 not limited to:

Adding, deprecating, or removing core features

Adding, deprecating, removing, or upgrading core or dual-life modules

Adding new core tests

Fixing security issues and user-visible bugs in the core

Changes that might break existing code, either on the perl or C level

Significant performance improvements

Adding, removing, or significantly changing documentation in the pod/ directory

Important platform-specific changes

Please make sure you add the perldelta entry to the right section
 within pod/perldelta.pod. More
information on how to write good
 perldelta entries is available in the Style section of
Porting/how_to_write_a_perldelta.pod.

What makes for a good patch?
New features and extensions to the language can be contentious. There
 is no specific set of criteria
which determine what features get added,
 but here are some questions to consider when developing
a patch:

Does the concept match the general goals of Perl?

Our goals include, but are not limited to:

1. Keep it fast, simple, and useful.

2. Keep features/concepts as orthogonal as possible.

3. No arbitrary limits (platforms, data sizes, cultures).

4. Keep it open and exciting to use/patch/advocate Perl everywhere.

5. Either assimilate new technologies, or build bridges to them.

Where is the implementation?

All the talk in the world is useless without an implementation. In
 almost every case, the person or
people who argue for a new feature
 will be expected to be the ones who implement it. Porters capable
of
 coding new features have their own agendas, and are not available to
 implement your (possibly
good) idea.

Backwards compatibility

It's a cardinal sin to break existing Perl programs. New warnings can
 be contentious--some say that a
program that emits warnings is not
 broken, while others say it is. Adding keywords has the potential to
break programs, changing the meaning of existing token sequences or
 functions might break
programs.

The Perl 5 core includes mechanisms to help porters make backwards
 incompatible changes more
compatible such as the feature and deprecate modules. Please use them when appropriate.

Could it be a module instead?

Perl 5 has extension mechanisms, modules and XS, specifically to avoid
 the need to keep changing
the Perl interpreter. You can write modules
 that export functions, you can give those functions

Perl version 5.20.1 documentation - perlhack

Page 8http://perldoc.perl.org

prototypes so they
 can be called like built-in functions, you can even write XS code to
 mess with the
runtime data structures of the Perl interpreter if you
 want to implement really complicated things.

Whenever possible, new features should be prototyped in a CPAN module
 before they will be
considered for the core.

Is the feature generic enough?

Is this something that only the submitter wants added to the language,
 or is it broadly useful?
Sometimes, instead of adding a feature with a
 tight focus, the porters might decide to wait until
someone implements
 the more generalized feature.

Does it potentially introduce new bugs?

Radical rewrites of large chunks of the Perl interpreter have the
 potential to introduce new bugs.

How big is it?

The smaller and more localized the change, the better. Similarly, a
 series of small patches is greatly
preferred over a single large patch.

Does it preclude other desirable features?

A patch is likely to be rejected if it closes off future avenues of
 development. For instance, a patch
that placed a true and final
 interpretation on prototypes is likely to be rejected because there are
 still
options for the future of prototypes that haven't been addressed.

Is the implementation robust?

Good patches (tight code, complete, correct) stand more chance of going
 in. Sloppy or incorrect
patches might be placed on the back burner
 until the pumpking has time to fix, or might be discarded
altogether
 without further notice.

Is the implementation generic enough to be portable?

The worst patches make use of system-specific features. It's highly
 unlikely that non-portable
additions to the Perl language will be
 accepted.

Is the implementation tested?

Patches which change behaviour (fixing bugs or introducing new
 features) must include regression
tests to verify that everything works
 as expected.

Without tests provided by the original author, how can anyone else
 changing perl in the future be sure
that they haven't unwittingly
 broken the behaviour the patch implements? And without tests, how can

the patch's author be confident that his/her hard work put into the
 patch won't be accidentally thrown
away by someone in the future?

Is there enough documentation?

Patches without documentation are probably ill-thought out or
 incomplete. No features can be added
or changed without documentation,
 so submitting a patch for the appropriate pod docs as well as the

source code is important.

Is there another way to do it?

Larry said "Although the Perl Slogan is There's More Than One Way to
 Do It, I hesitate to make 10
ways to do something". This is a tricky
 heuristic to navigate, though--one man's essential addition is
another
 man's pointless cruft.

Does it create too much work?

Work for the pumpking, work for Perl programmers, work for module
 authors, ... Perl is supposed to
be easy.

Perl version 5.20.1 documentation - perlhack

Page 9http://perldoc.perl.org

Patches speak louder than words

Working code is always preferred to pie-in-the-sky ideas. A patch to
 add a feature stands a much
higher chance of making it to the language
 than does a random feature request, no matter how
fervently argued the
 request might be. This ties into "Will it be useful?", as the fact
 that someone took
the time to make the patch demonstrates a strong
 desire for the feature.

TESTING
The core uses the same testing style as the rest of Perl, a simple
 "ok/not ok" run through
Test::Harness, but there are a few special
 considerations.

There are three ways to write a test in the core: Test::More, t/test.pl and ad hoc print $test ?
"ok 42\n" : "not ok 42\n".
 The decision of which to use depends on what part of the test
suite
 you're working on. This is a measure to prevent a high-level failure
 (such as Config.pm breaking)
from causing basic functionality tests to
 fail.

The t/test.pl library provides some of the features of Test::More, but avoids loading most modules and
uses as few core
 features as possible.

If you write your own test, use the Test Anything Protocol.

* t/base, t/comp and t/opbasic

Since we don't know if require works, or even subroutines, use ad hoc
 tests for these three.
Step carefully to avoid using the feature being
 tested. Tests in t/opbasic, for instance, have
been placed there
 rather than in t/op because they test functionality which t/test.pl presumes
has already been demonstrated to work.

* t/cmd, t/run, t/io and t/op

Now that basic require() and subroutines are tested, you can use the t/test.pl library.

You can also use certain libraries like Config conditionally, but be
 sure to skip the test
gracefully if it's not there.

* Everything else

Now that the core of Perl is tested, Test::More can and should be
 used. You can also use the
full suite of core modules in the tests.

When you say "make test", Perl uses the t/TEST program to run the
 test suite (except under Win32
where it uses t/harness instead).
 All tests are run from the t/ directory, not the directory which

contains the test. This causes some problems with the tests in lib/, so here's some opportunity for
some patching.

You must be triply conscious of cross-platform concerns. This usually
 boils down to using File::Spec
and avoiding things like fork()
 and system() unless absolutely necessary.

Special make test targets
There are various special make targets that can be used to test Perl
 slightly differently than the
standard "test" target. Not all them are
 expected to give a 100% success rate. Many of them have
several
 aliases, and many of them are not available on certain operating
 systems.

* test_porting

This runs some basic sanity tests on the source tree and helps catch
 basic errors before you
submit a patch.

* minitest

Run miniperl on t/base, t/comp, t/cmd, t/run, t/io, t/op, t/uni and t/mro tests.

* test.valgrind check.valgrind

(Only in Linux) Run all the tests using the memory leak + naughty
 memory access tool

Perl version 5.20.1 documentation - perlhack

Page 10http://perldoc.perl.org

"valgrind". The log files will be named testname.valgrind.

* test_harness

Run the test suite with the t/harness controlling program, instead
 of t/TEST. t/harness is more
sophisticated, and uses the Test::Harness module, thus using this test target supposes that
perl
 mostly works. The main advantage for our purposes is that it prints a
 detailed summary of
failed tests at the end. Also, unlike t/TEST,
 it doesn't redirect stderr to stdout.

Note that under Win32 t/harness is always used instead of t/TEST,
 so there is no special
"test_harness" target.

Under Win32's "test" target you may use the TEST_SWITCHES and
 TEST_FILES
environment variables to control the behaviour of t/harness. This means you can say

 nmake test TEST_FILES="op/*.t"
 nmake test TEST_SWITCHES="-torture" TEST_FILES="op/*.t"

* test-notty test_notty

Sets PERL_SKIP_TTY_TEST to true before running normal test.

Parallel tests
The core distribution can now run its regression tests in parallel on
 Unix-like platforms. Instead of
running make test, set TEST_JOBS
 in your environment to the number of tests to run in parallel,
and run make test_harness. On a Bourne-like shell, this can be done as

 TEST_JOBS=3 make test_harness # Run 3 tests in parallel

An environment variable is used, rather than parallel make itself,
 because TAP::Harness needs to be
able to schedule individual
 non-conflicting test scripts itself, and there is no standard interface
 to make
utilities to interact with their job schedulers.

Note that currently some test scripts may fail when run in parallel
 (most notably ext/IO/t/io_dir.t). If
necessary, run just the
 failing scripts again sequentially and see if the failures go away.

Running tests by hand
You can run part of the test suite by hand by using one of the
 following commands from the t/
directory:

 ./perl -I../lib TEST list-of-.t-files

or

 ./perl -I../lib harness list-of-.t-files

(If you don't specify test scripts, the whole test suite will be run.)

Using t/harness for testing
If you use harness for testing, you have several command line
 options available to you. The
arguments are as follows, and are in the
 order that they must appear if used together.

 harness -v -torture -re=pattern LIST OF FILES TO TEST
 harness -v -torture -re LIST OF PATTERNS TO MATCH

If LIST OF FILES TO TEST is omitted, the file list is obtained from
 the manifest. The file list may
include shell wildcards which will be
 expanded out.

* -v

Run the tests under verbose mode so you can see what tests were run,
 and debug output.

Perl version 5.20.1 documentation - perlhack

Page 11http://perldoc.perl.org

* -torture

Run the torture tests as well as the normal set.

* -re=PATTERN

Filter the file list so that all the test files run match PATTERN.
 Note that this form is distinct
from the -re LIST OF PATTERNS form
 below in that it allows the file list to be provided as
well.

* -re LIST OF PATTERNS

Filter the file list so that all the test files run match
 /(LIST|OF|PATTERNS)/. Note that with this
form the patterns are joined
 by '|' and you cannot supply a list of files, instead the test files
 are
obtained from the MANIFEST.

You can run an individual test by a command similar to

 ./perl -I../lib path/to/foo.t

except that the harnesses set up some environment variables that may
 affect the execution of the
test:

* PERL_CORE=1

indicates that we're running this test as part of the perl core test
 suite. This is useful for
modules that have a dual life on CPAN.

* PERL_DESTRUCT_LEVEL=2

is set to 2 if it isn't set already (see "PERL_DESTRUCT_LEVEL" in perlhacktips).

* PERL

(used only by t/TEST) if set, overrides the path to the perl
 executable that should be used to
run the tests (the default being ./perl).

* PERL_SKIP_TTY_TEST

if set, tells to skip the tests that need a terminal. It's actually
 set automatically by the Makefile,
but can also be forced artificially
 by running 'make test_notty'.

Other environment variables that may influence tests

* PERL_TEST_Net_Ping

Setting this variable runs all the Net::Ping modules tests, otherwise
 some tests that interact
with the outside world are skipped. See perl58delta.

* PERL_TEST_NOVREXX

Setting this variable skips the vrexx.t tests for OS2::REXX.

* PERL_TEST_NUMCONVERTS

This sets a variable in op/numconvert.t.

* PERL_TEST_MEMORY

Setting this variable includes the tests in t/bigmem/. This should
 be set to the number of
gigabytes of memory available for testing, eg. PERL_TEST_MEMORY=4 indicates that tests that
require 4GiB of
 available memory can be run safely.

See also the documentation for the Test and Test::Harness modules, for
 more environment variables
that affect testing.

Perl version 5.20.1 documentation - perlhack

Page 12http://perldoc.perl.org

MORE READING FOR GUTS HACKERS
To hack on the Perl guts, you'll need to read the following things:

* perlsource

An overview of the Perl source tree. This will help you find the files
 you're looking for.

* perlinterp

An overview of the Perl interpreter source code and some details on how
 Perl does what it
does.

* perlhacktut

This document walks through the creation of a small patch to Perl's C
 code. If you're just
getting started with Perl core hacking, this will
 help you understand how it works.

* perlhacktips

More details on hacking the Perl core. This document focuses on lower
 level details such as
how to write tests, compilation issues,
 portability, debugging, etc.

If you plan on doing serious C hacking, make sure to read this.

* perlguts

This is of paramount importance, since it's the documentation of what
 goes where in the Perl
source. Read it over a couple of times and it
 might start to make sense - don't worry if it
doesn't yet, because the
 best way to study it is to read it in conjunction with poking at Perl

source, and we'll do that later on.

Gisle Aas's "illustrated perlguts", also known as illguts, has very
 helpful pictures:

http://search.cpan.org/dist/illguts/

* perlxstut and perlxs

A working knowledge of XSUB programming is incredibly useful for core
 hacking; XSUBs use
techniques drawn from the PP code, the portion of
 the guts that actually executes a Perl
program. It's a lot gentler to
 learn those techniques from simple examples and explanation
than from
 the core itself.

* perlapi

The documentation for the Perl API explains what some of the internal
 functions do, as well as
the many macros used in the source.

* Porting/pumpkin.pod

This is a collection of words of wisdom for a Perl porter; some of it
 is only useful to the
pumpkin holder, but most of it applies to anyone
 wanting to go about Perl development.

CPAN TESTERS AND PERL SMOKERS
The CPAN testers (http://testers.cpan.org/) are a group of volunteers
 who test CPAN modules on a
variety of platforms.

Perl Smokers (http://www.nntp.perl.org/group/perl.daily-build/ and

http://www.nntp.perl.org/group/perl.daily-build.reports/)
 automatically test Perl source releases on
platforms with various
 configurations.

Both efforts welcome volunteers. In order to get involved in smoke
 testing of the perl itself visit
http://search.cpan.org/dist/Test-Smoke/. In order to start smoke
 testing CPAN modules visit
http://search.cpan.org/dist/CPANPLUS-YACSmoke/ or http://search.cpan.org/dist/minismokebox/ or
http://search.cpan.org/dist/CPAN-Reporter/.

Perl version 5.20.1 documentation - perlhack

Page 13http://perldoc.perl.org

WHAT NEXT?
If you've read all the documentation in the document and the ones
 listed above, you're more than
ready to hack on Perl.

Here's some more recommendations

Subscribe to perl5-porters, follow the patches and try and understand
 them; don't be afraid to
ask if there's a portion you're not clear on -
 who knows, you may unearth a bug in the patch...

Do read the README associated with your operating system, e.g.
 README.aix on the IBM
AIX OS. Don't hesitate to supply patches to that
 README if you find anything missing or
changed over a new OS release.

Find an area of Perl that seems interesting to you, and see if you can
 work out how it works.
Scan through the source, and step over it in
 the debugger. Play, poke, investigate, fiddle!
You'll probably get to
 understand not just your chosen area but a much wider range of perl's
activity as well, and probably sooner than you'd think.

"The Road goes ever on and on, down from the door where it began."
If you can do these things, you've started on the long road to Perl
 porting. Thanks for wanting to help
make Perl better - and happy
 hacking!

Metaphoric Quotations
If you recognized the quote about the Road above, you're in luck.

Most software projects begin each file with a literal description of
 each file's purpose. Perl instead
begins each with a literary allusion
 to that file's purpose.

Like chapters in many books, all top-level Perl source files (along
 with a few others here and there)
begin with an epigrammatic
 inscription that alludes, indirectly and metaphorically, to the
 material
you're about to read.

Quotations are taken from writings of J.R.R. Tolkien pertaining to his
 Legendarium, almost always
from The Lord of the Rings. Chapters and
 page numbers are given using the following editions:

The Hobbit, by J.R.R. Tolkien. The hardcover, 70th-anniversary
 edition of 2007 was used,
published in the UK by Harper Collins
 Publishers and in the US by the Houghton Mifflin
Company.

The Lord of the Rings, by J.R.R. Tolkien. The hardcover,
 50th-anniversary edition of 2004 was
used, published in the UK by
 Harper Collins Publishers and in the US by the Houghton Mifflin

Company.

The Lays of Beleriand, by J.R.R. Tolkien and published posthumously
 by his son and literary
executor, C.J.R. Tolkien, being the 3rd of the
 12 volumes in Christopher's mammoth History of
Middle Earth. Page
 numbers derive from the hardcover edition, first published in 1983 by

George Allen & Unwin; no page numbers changed for the special 3-volume
 omnibus edition of
2002 or the various trade-paper editions, all again
 now by Harper Collins or Houghton Mifflin.

Other JRRT books fair game for quotes would thus include The
 Adventures of Tom Bombadil, The
Silmarillion, Unfinished Tales,
 and The Tale of the Children of Hurin, all but the first
 posthumously
assembled by CJRT. But The Lord of the Rings itself is
 perfectly fine and probably best to quote from,
provided you can find a
 suitable quote there.

So if you were to supply a new, complete, top-level source file to add
 to Perl, you should conform to
this peculiar practice by yourself
 selecting an appropriate quotation from Tolkien, retaining the original
spelling and punctuation and using the same format the rest of the
 quotes are in. Indirect and oblique
is just fine; remember, it's a
 metaphor, so being meta is, after all, what it's for.

Perl version 5.20.1 documentation - perlhack

Page 14http://perldoc.perl.org

AUTHOR
This document was originally written by Nathan Torkington, and is
 maintained by the perl5-porters
mailing list.

