
Perl version 5.20.1 documentation - perlipc

Page 1http://perldoc.perl.org

NAME
perlipc - Perl interprocess communication (signals, fifos, pipes, safe subprocesses, sockets, and 
semaphores)

DESCRIPTION
The basic IPC facilities of Perl are built out of the good old Unix
 signals, named pipes, pipe opens, the
Berkeley socket routines, and SysV
 IPC calls. Each is used in slightly different situations.

Signals
Perl uses a simple signal handling model: the %SIG hash contains names
 or references of 
user-installed signal handlers. These handlers will
 be called with an argument which is the name of 
the signal that
 triggered it. A signal may be generated intentionally from a
 particular keyboard 
sequence like control-C or control-Z, sent to you
 from another process, or triggered automatically by 
the kernel when
 special events transpire, like a child process exiting, your own process
 running out of 
stack space, or hitting a process file-size limit.

For example, to trap an interrupt signal, set up a handler like this:

    our $shucks;

    sub catch_zap {
        my $signame = shift;
        $shucks++;
        die "Somebody sent me a SIG$signame";
    }
    $SIG{INT} = __PACKAGE__ . "::catch_zap";
    $SIG{INT} = \&catch_zap;  # best strategy

Prior to Perl 5.8.0 it was necessary to do as little as you possibly
 could in your handler; notice how all 
we do is set a global variable
 and then raise an exception. That's because on most systems,
 libraries 
are not re-entrant; particularly, memory allocation and I/O
 routines are not. That meant that doing 
nearly anything in your
 handler could in theory trigger a memory fault and subsequent core
 dump - 
see Deferred Signals (Safe Signals) below.

The names of the signals are the ones listed out by kill -l on your
 system, or you can retrieve 
them using the CPAN module IPC::Signal.

You may also choose to assign the strings "IGNORE" or "DEFAULT" as
 the handler, in which case 
Perl will try to discard the signal or do the
 default thing.

On most Unix platforms, the CHLD (sometimes also known as CLD) signal
 has special behavior with 
respect to a value of "IGNORE".
 Setting $SIG{CHLD} to "IGNORE" on such a platform has the effect
of
 not creating zombie processes when the parent process fails to wait()
 on its child processes (i.e.,
child processes are automatically reaped).
 Calling wait() with $SIG{CHLD} set to "IGNORE" 
usually returns -1 on such platforms.

Some signals can be neither trapped nor ignored, such as the KILL and STOP
 (but not the TSTP) 
signals. Note that ignoring signals makes them disappear.
 If you only want them blocked temporarily 
without them getting lost you'll
 have to use POSIX' sigprocmask.

Sending a signal to a negative process ID means that you send the signal
 to the entire Unix process 
group. This code sends a hang-up signal to all
 processes in the current process group, and also sets 
$SIG{HUP} to "IGNORE" so it doesn't kill itself:

    # block scope for local
    {
        local $SIG{HUP} = "IGNORE";
        kill HUP => -$$;



Perl version 5.20.1 documentation - perlipc

Page 2http://perldoc.perl.org

        # snazzy writing of: kill("HUP", -$$)
    }

Another interesting signal to send is signal number zero. This doesn't
 actually affect a child process, 
but instead checks whether it's alive
 or has changed its UIDs.

    unless (kill 0 => $kid_pid) {
        warn "something wicked happened to $kid_pid";
    }

Signal number zero may fail because you lack permission to send the
 signal when directed at a 
process whose real or saved UID is not
 identical to the real or effective UID of the sending process, 
even
 though the process is alive. You may be able to determine the cause of
 failure using $! or %!.

    unless (kill(0 => $pid) || $!{EPERM}) {
        warn "$pid looks dead";
    }

You might also want to employ anonymous functions for simple signal
 handlers:

    $SIG{INT} = sub { die "\nOutta here!\n" };

SIGCHLD handlers require some special care. If a second child dies
 while in the signal handler 
caused by the first death, we won't get
 another signal. So must loop here else we will leave the 
unreaped child
 as a zombie. And the next time two children die we get another zombie.
 And so on.

    use POSIX ":sys_wait_h";
    $SIG{CHLD} = sub {
        while ((my $child = waitpid(-1, WNOHANG)) > 0) {
            $Kid_Status{$child} = $?;
        }
    };
    # do something that forks...

Be careful: qx(), system(), and some modules for calling external commands
 do a fork(), then wait() 
for the result. Thus, your signal handler
 will be called. Because wait() was already called by system() 
or qx(),
 the wait() in the signal handler will see no more zombies and will
 therefore block.

The best way to prevent this issue is to use waitpid(), as in the following
 example:

    use POSIX ":sys_wait_h"; # for nonblocking read

    my %children;

    $SIG{CHLD} = sub {
        # don't change $! and $? outside handler
        local ($!, $?);
        while ( (my $pid = waitpid(-1, WNOHANG)) > 0 ) {
            delete $children{$pid};
            cleanup_child($pid, $?);
        }
    };

    while (1) {
        my $pid = fork();



Perl version 5.20.1 documentation - perlipc

Page 3http://perldoc.perl.org

        die "cannot fork" unless defined $pid;
        if ($pid == 0) {
            # ...
            exit 0;
        } else {
            $children{$pid}=1;
            # ...
            system($command);
            # ...
       }
    }

Signal handling is also used for timeouts in Unix. While safely
 protected within an eval{} block, you 
set a signal handler to trap
 alarm signals and then schedule to have one delivered to you in some

number of seconds. Then try your blocking operation, clearing the alarm
 when it's done but not before
you've exited your eval{} block. If it
 goes off, you'll use die() to jump out of the block.

Here's an example:

    my $ALARM_EXCEPTION = "alarm clock restart";
    eval {
        local $SIG{ALRM} = sub { die $ALARM_EXCEPTION };
        alarm 10;
        flock(FH, 2)    # blocking write lock
                        || die "cannot flock: $!";
        alarm 0;
    };
    if ($@ && $@ !~ quotemeta($ALARM_EXCEPTION)) { die }

If the operation being timed out is system() or qx(), this technique
 is liable to generate zombies. If this 
matters to you, you'll
 need to do your own fork() and exec(), and kill the errant child process.

For more complex signal handling, you might see the standard POSIX
 module. Lamentably, this is 
almost entirely undocumented, but
 the t/lib/posix.t file from the Perl source distribution has some

examples in it.

Handling the SIGHUP Signal in Daemons
A process that usually starts when the system boots and shuts down
 when the system is shut down is
called a daemon (Disk And Execution
 MONitor). If a daemon process has a configuration file which is

modified after the process has been started, there should be a way to
 tell that process to reread its 
configuration file without stopping
 the process. Many daemons provide this mechanism using a 
SIGHUP
 signal handler. When you want to tell the daemon to reread the file,
 simply send it the 
SIGHUP signal.

The following example implements a simple daemon, which restarts
 itself every time the SIGHUP 
signal is received. The actual code is
 located in the subroutine code(), which just prints some 
debugging
 info to show that it works; it should be replaced with the real code.

  #!/usr/bin/perl -w

  use POSIX ();
  use FindBin ();
  use File::Basename ();
  use File::Spec::Functions;

  $| = 1;



Perl version 5.20.1 documentation - perlipc

Page 4http://perldoc.perl.org

  # make the daemon cross-platform, so exec always calls the script
  # itself with the right path, no matter how the script was invoked.
  my $script = File::Basename::basename($0);
  my $SELF  = catfile($FindBin::Bin, $script);

  # POSIX unmasks the sigprocmask properly
  $SIG{HUP} = sub {
      print "got SIGHUP\n";
      exec($SELF, @ARGV)        || die "$0: couldn't restart: $!";
  };

  code();

  sub code {
      print "PID: $$\n";
      print "ARGV: @ARGV\n";
      my $count = 0;
      while (++$count) {
          sleep 2;
          print "$count\n";
      }
  }

Deferred Signals (Safe Signals)
Before Perl 5.8.0, installing Perl code to deal with signals exposed you to
 danger from two things. 
First, few system library functions are
 re-entrant. If the signal interrupts while Perl is executing one 
function
 (like malloc(3) or printf(3)), and your signal handler then calls the same
 function again, you 
could get unpredictable behavior--often, a core dump.
 Second, Perl isn't itself re-entrant at the lowest 
levels. If the signal
 interrupts Perl while Perl is changing its own internal data structures,
 similarly 
unpredictable behavior may result.

There were two things you could do, knowing this: be paranoid or be
 pragmatic. The paranoid 
approach was to do as little as possible in your
 signal handler. Set an existing integer variable that 
already has a
 value, and return. This doesn't help you if you're in a slow system call,
 which will just 
restart. That means you have to die to longjmp(3) out
 of the handler. Even this is a little cavalier for 
the true paranoiac,
 who avoids die in a handler because the system is out to get you.
 The pragmatic 
approach was to say "I know the risks, but prefer the
 convenience", and to do anything you wanted in 
your signal handler,
 and be prepared to clean up core dumps now and again.

Perl 5.8.0 and later avoid these problems by "deferring" signals. That is,
 when the signal is delivered 
to the process by the system (to the C code
 that implements Perl) a flag is set, and the handler 
returns immediately.
 Then at strategic "safe" points in the Perl interpreter (e.g. when it is
 about to 
execute a new opcode) the flags are checked and the Perl level
 handler from %SIG is executed. The 
"deferred" scheme allows much more
 flexibility in the coding of signal handlers as we know the Perl

interpreter is in a safe state, and that we are not in a system library
 function when the handler is 
called. However the implementation does
 differ from previous Perls in the following ways:

Long-running opcodes

As the Perl interpreter looks at signal flags only when it is about
 to execute a new opcode, a 
signal that arrives during a long-running
 opcode (e.g. a regular expression operation on a very
large string) will
 not be seen until the current opcode completes.

If a signal of any given type fires multiple times during an opcode (such as from a fine-grained 
timer), the handler for that signal will
 be called only once, after the opcode completes; all other
instances will be discarded. Furthermore, if your system's signal queue
 gets flooded to the 
point that there are signals that have been raised
 but not yet caught (and thus not deferred) at 



Perl version 5.20.1 documentation - perlipc

Page 5http://perldoc.perl.org

the time an opcode
 completes, those signals may well be caught and deferred during

subsequent opcodes, with sometimes surprising results. For example, you
 may see alarms 
delivered even after calling alarm(0) as the latter
 stops the raising of alarms but does not 
cancel the delivery of alarms
 raised but not yet caught. Do not depend on the behaviors 
described in
 this paragraph as they are side effects of the current implementation and
 may 
change in future versions of Perl.

Interrupting IO

When a signal is delivered (e.g., SIGINT from a control-C) the operating
 system breaks into IO
operations like read(2), which is used to
 implement Perl's readline() function, the <> operator. 
On older
 Perls the handler was called immediately (and as read is not "unsafe",
 this worked 
well). With the "deferred" scheme the handler is not called
 immediately, and if Perl is using the
system's stdio library that
 library may restart the read without returning to Perl to give it a

chance to call the %SIG handler. If this happens on your system the
 solution is to use the 
:perlio layer to do IO--at least on those handles
 that you want to be able to break into with 
signals. (The :perlio layer
 checks the signal flags and calls %SIG handlers before resuming
IO
 operation.)

The default in Perl 5.8.0 and later is to automatically use
 the :perlio layer.

Note that it is not advisable to access a file handle within a signal
 handler where that signal 
has interrupted an I/O operation on that same
 handle. While perl will at least try hard not to 
crash, there are no
 guarantees of data integrity; for example, some data might get dropped or

written twice.

Some networking library functions like gethostbyname() are known to have
 their own 
implementations of timeouts which may conflict with your
 timeouts. If you have problems with 
such functions, try using the POSIX
 sigaction() function, which bypasses Perl safe signals. Be 
warned that
 this does subject you to possible memory corruption, as described above.

Instead of setting $SIG{ALRM}:

   local $SIG{ALRM} = sub { die "alarm" };

try something like the following:

  use POSIX qw(SIGALRM);
  POSIX::sigaction(SIGALRM, POSIX::SigAction->new(sub { die "alarm" 
}))
          || die "Error setting SIGALRM handler: $!\n";

Another way to disable the safe signal behavior locally is to use
 the 
Perl::Unsafe::Signals module from CPAN, which affects
 all signals.

Restartable system calls

On systems that supported it, older versions of Perl used the
 SA_RESTART flag when 
installing %SIG handlers. This meant that
 restartable system calls would continue rather than 
returning when
 a signal arrived. In order to deliver deferred signals promptly,
 Perl 5.8.0 and 
later do not use SA_RESTART. Consequently, restartable system calls can fail (with $! set to 
EINTR) in places
 where they previously would have succeeded.

The default :perlio layer retries read, write
 and close as described above; interrupted 
wait and waitpid calls will always be retried.

Signals as "faults"

Certain signals like SEGV, ILL, and BUS are generated by virtual memory
 addressing errors 
and similar "faults". These are normally fatal: there is
 little a Perl-level handler can do with 
them. So Perl delivers them
 immediately rather than attempting to defer them.

Signals triggered by operating system state

On some operating systems certain signal handlers are supposed to "do
 something" before 



Perl version 5.20.1 documentation - perlipc

Page 6http://perldoc.perl.org

returning. One example can be CHLD or CLD, which
 indicates a child process has completed.
On some operating systems the
 signal handler is expected to wait for the completed child

process. On such systems the deferred signal scheme will not work for
 those signals: it does 
not do the wait. Again the failure will
 look like a loop as the operating system will reissue the 
signal because
 there are completed child processes that have not yet been waited for.

If you want the old signal behavior back despite possible
 memory corruption, set the environment 
variable PERL_SIGNALS to "unsafe". This feature first appeared in Perl 5.8.1.

Named Pipes
A named pipe (often referred to as a FIFO) is an old Unix IPC
 mechanism for processes 
communicating on the same machine. It works
 just like regular anonymous pipes, except that the

processes rendezvous using a filename and need not be related.

To create a named pipe, use the POSIX::mkfifo() function.

    use POSIX qw(mkfifo);
    mkfifo($path, 0700)     ||  die "mkfifo $path failed: $!";

You can also use the Unix command mknod(1), or on some
 systems, mkfifo(1). These may not be in 
your normal path, though.

    # system return val is backwards, so && not ||
    #
    $ENV{PATH} .= ":/etc:/usr/etc";
    if  (      system("mknod",  $path, "p")
            && system("mkfifo", $path) )
    {
        die "mk{nod,fifo} $path failed";
    }

A fifo is convenient when you want to connect a process to an unrelated
 one. When you open a fifo, 
the program will block until there's something
 on the other end.

For example, let's say you'd like to have your .signature file be a
 named pipe that has a Perl program 
on the other end. Now every time any
 program (like a mailer, news reader, finger program, etc.) tries 
to read
 from that file, the reading program will read the new signature from your
 program. We'll use 
the pipe-checking file-test operator, -p, to find
 out whether anyone (or anything) has accidentally 
removed our fifo.

    chdir();    # go home
    my $FIFO = ".signature";

    while (1) {
        unless (-p $FIFO) {
            unlink $FIFO;   # discard any failure, will catch later
            require POSIX;  # delayed loading of heavy module
            POSIX::mkfifo($FIFO, 0700)
                                || die "can't mkfifo $FIFO: $!";
        }

        # next line blocks till there's a reader
        open (FIFO, "> $FIFO")  || die "can't open $FIFO: $!";
        print FIFO "John Smith (smith\@host.org)\n", `fortune -s`;
        close(FIFO)             || die "can't close $FIFO: $!";
        sleep 2;                # to avoid dup signals
    }



Perl version 5.20.1 documentation - perlipc

Page 7http://perldoc.perl.org

Using open() for IPC
Perl's basic open() statement can also be used for unidirectional
 interprocess communication by 
either appending or prepending a pipe
 symbol to the second argument to open(). Here's how to start

something up in a child process you intend to write to:

    open(SPOOLER, "| cat -v | lpr -h 2>/dev/null")
                        || die "can't fork: $!";
    local $SIG{PIPE} = sub { die "spooler pipe broke" };
    print SPOOLER "stuff\n";
    close SPOOLER       || die "bad spool: $! $?";

And here's how to start up a child process you intend to read from:

    open(STATUS, "netstat -an 2>&1 |")
                        || die "can't fork: $!";
    while (<STATUS>) {
        next if /^(tcp|udp)/;
        print;
    }
    close STATUS        || die "bad netstat: $! $?";

If one can be sure that a particular program is a Perl script expecting
 filenames in @ARGV, the clever
programmer can write something like this:

    % program f1 "cmd1|" - f2 "cmd2|" f3 < tmpfile

and no matter which sort of shell it's called from, the Perl program will
 read from the file f1, the 
process cmd1, standard input (tmpfile 
 in this case), the f2 file, the cmd2 command, and finally the f3

file. Pretty nifty, eh?

You might notice that you could use backticks for much the
 same effect as opening a pipe for reading:

    print grep { !/^(tcp|udp)/ } `netstat -an 2>&1`;
    die "bad netstatus ($?)" if $?;

While this is true on the surface, it's much more efficient to process the
 file one line or record at a time
because then you don't have to read the
 whole thing into memory at once. It also gives you finer 
control of the
 whole process, letting you kill off the child process early if you'd like.

Be careful to check the return values from both open() and close(). If
 you're writing to a pipe, you 
should also trap SIGPIPE. Otherwise,
 think of what happens when you start up a pipe to a command 
that doesn't
 exist: the open() will in all likelihood succeed (it only reflects the
 fork()'s success), but 
then your output will fail--spectacularly. Perl
 can't know whether the command worked, because your 
command is actually
 running in a separate process whose exec() might have failed. Therefore,
 while 
readers of bogus commands return just a quick EOF, writers
 to bogus commands will get hit with a 
signal, which they'd best be prepared
 to handle. Consider:

    open(FH, "|bogus")      || die "can't fork: $!";
    print FH "bang\n";      #  neither necessary nor sufficient
                            #  to check print retval!
    close(FH)               || die "can't close: $!";

The reason for not checking the return value from print() is because of
 pipe buffering; physical writes 
are delayed. That won't blow up until the
 close, and it will blow up with a SIGPIPE. To catch it, you 
could use
 this:

    $SIG{PIPE} = "IGNORE";



Perl version 5.20.1 documentation - perlipc

Page 8http://perldoc.perl.org

    open(FH, "|bogus")  || die "can't fork: $!";
    print FH "bang\n";
    close(FH)           || die "can't close: status=$?";

Filehandles
Both the main process and any child processes it forks share the same
 STDIN, STDOUT, and 
STDERR filehandles. If both processes try to access
 them at once, strange things can happen. You 
may also want to close
 or reopen the filehandles for the child. You can get around this by
 opening 
your pipe with open(), but on some systems this means that the
 child process cannot outlive the 
parent.

Background Processes
You can run a command in the background with:

    system("cmd &");

The command's STDOUT and STDERR (and possibly STDIN, depending on your
 shell) will be the 
same as the parent's. You won't need to catch
 SIGCHLD because of the double-fork taking place; see
below for details.

Complete Dissociation of Child from Parent
In some cases (starting server processes, for instance) you'll want to
 completely dissociate the child 
process from the parent. This is
 often called daemonization. A well-behaved daemon will also chdir()

to the root directory so it doesn't prevent unmounting the filesystem
 containing the directory from 
which it was launched, and redirect its
 standard file descriptors from and to /dev/null so that random

output doesn't wind up on the user's terminal.

    use POSIX "setsid";

    sub daemonize {
        chdir("/")                      || die "can't chdir to /: $!";
        open(STDIN,  "< /dev/null")     || die "can't read /dev/null: $!";
        open(STDOUT, "> /dev/null")     || die "can't write to /dev/null: 
$!";
        defined(my $pid = fork())       || die "can't fork: $!";
        exit if $pid;                   # non-zero now means I am the 
parent
        (setsid() != -1)                || die "Can't start a new session: 
$!";
        open(STDERR, ">&STDOUT")        || die "can't dup stdout: $!";
    }

The fork() has to come before the setsid() to ensure you aren't a
 process group leader; the setsid() 
will fail if you are. If your
 system doesn't have the setsid() function, open /dev/tty and use the 
TIOCNOTTY ioctl() on it instead. See tty(4) for details.

Non-Unix users should check their Your_OS::Process module for other possible solutions.

Safe Pipe Opens
Another interesting approach to IPC is making your single program go
 multiprocess and communicate
between--or even amongst--yourselves. The
 open() function will accept a file argument of either "-|"
or "|-"
 to do a very interesting thing: it forks a child connected to the
 filehandle you've opened. The 
child is running the same program as the
 parent. This is useful for safely opening a file when running 
under an
 assumed UID or GID, for example. If you open a pipe to minus, you can
 write to the 
filehandle you opened and your kid will find it in his
 STDIN. If you open a pipe from minus, you can 



Perl version 5.20.1 documentation - perlipc

Page 9http://perldoc.perl.org

read from the filehandle
 you opened whatever your kid writes to his STDOUT.

    use English;
    my $PRECIOUS = "/path/to/some/safe/file";
    my $sleep_count;
    my $pid;

    do {
        $pid = open(KID_TO_WRITE, "|-");
        unless (defined $pid) {
            warn "cannot fork: $!";
            die "bailing out" if $sleep_count++ > 6;
            sleep 10;
        }
    } until defined $pid;

    if ($pid) {                 # I am the parent
        print KID_TO_WRITE @some_data;
        close(KID_TO_WRITE)     || warn "kid exited $?";
    } else {                    # I am the child
        # drop permissions in setuid and/or setgid programs:
        ($EUID, $EGID) = ($UID, $GID);
        open (OUTFILE, "> $PRECIOUS")
                                || die "can't open $PRECIOUS: $!";
        while (<STDIN>) {
            print OUTFILE;      # child's STDIN is parent's KID_TO_WRITE
        }
        close(OUTFILE)          || die "can't close $PRECIOUS: $!";
        exit(0);                # don't forget this!!
    }

Another common use for this construct is when you need to execute
 something without the shell's 
interference. With system(), it's
 straightforward, but you can't use a pipe open or backticks safely.

That's because there's no way to stop the shell from getting its hands on
 your arguments. Instead, 
use lower-level control to call exec() directly.

Here's a safe backtick or pipe open for read:

    my $pid = open(KID_TO_READ, "-|");
    defined($pid)           || die "can't fork: $!";

    if ($pid) {             # parent
        while (<KID_TO_READ>) {
                            # do something interesting
        }
        close(KID_TO_READ)  || warn "kid exited $?";

    } else {                # child
        ($EUID, $EGID) = ($UID, $GID); # suid only
        exec($program, @options, @args)
                            || die "can't exec program: $!";
        # NOTREACHED
    }

And here's a safe pipe open for writing:



Perl version 5.20.1 documentation - perlipc

Page 10http://perldoc.perl.org

    my $pid = open(KID_TO_WRITE, "|-");
    defined($pid)           || die "can't fork: $!";

    $SIG{PIPE} = sub { die "whoops, $program pipe broke" };

    if ($pid) {             # parent
        print KID_TO_WRITE @data;
        close(KID_TO_WRITE) || warn "kid exited $?";

    } else {                # child
        ($EUID, $EGID) = ($UID, $GID);
        exec($program, @options, @args)
                            || die "can't exec program: $!";
        # NOTREACHED
    }

It is very easy to dead-lock a process using this form of open(), or
 indeed with any use of pipe() with 
multiple subprocesses. The example above is "safe" because it is simple and calls exec(). See 
Avoiding Pipe Deadlocks for general safety principles, but there
 are extra gotchas with Safe Pipe 
Opens.

In particular, if you opened the pipe using open FH, "|-", then you
 cannot simply use close() in the
parent process to close an unwanted
 writer. Consider this code:

    my $pid = open(WRITER, "|-");        # fork open a kid
    defined($pid)               || die "first fork failed: $!";
    if ($pid) {
        if (my $sub_pid = fork()) {
            defined($sub_pid)   || die "second fork failed: $!";
            close(WRITER)       || die "couldn't close WRITER: $!";
            # now do something else...
        }
        else {
            # first write to WRITER
            # ...
            # then when finished
            close(WRITER)       || die "couldn't close WRITER: $!";
            exit(0);
        }
    }
    else {
        # first do something with STDIN, then
        exit(0);
    }

In the example above, the true parent does not want to write to the WRITER
 filehandle, so it closes it. 
However, because WRITER was opened using open FH, "|-", it has a special behavior: closing it 
calls
 waitpid() (see "waitpid" in perlfunc), which waits for the subprocess
 to exit. If the child process 
ends up waiting for something happening
 in the section marked "do something else", you have 
deadlock.

This can also be a problem with intermediate subprocesses in more
 complicated code, which will call 
waitpid() on all open filehandles
 during global destruction--in no predictable order.

To solve this, you must manually use pipe(), fork(), and the form of
 open() which sets one file 
descriptor to another, as shown below:



Perl version 5.20.1 documentation - perlipc

Page 11http://perldoc.perl.org

    pipe(READER, WRITER)        || die "pipe failed: $!";
    $pid = fork();
    defined($pid)               || die "first fork failed: $!";
    if ($pid) {
        close READER;
        if (my $sub_pid = fork()) {
            defined($sub_pid)   || die "first fork failed: $!";
            close(WRITER)       || die "can't close WRITER: $!";
        }
        else {
            # write to WRITER...
            # ...
            # then  when finished
            close(WRITER)       || die "can't close WRITER: $!";
            exit(0);
        }
        # write to WRITER...
    }
    else {
        open(STDIN, "<&READER") || die "can't reopen STDIN: $!";
        close(WRITER)           || die "can't close WRITER: $!";
        # do something...
        exit(0);
    }

Since Perl 5.8.0, you can also use the list form of open for pipes.
 This is preferred when you wish to 
avoid having the shell interpret
 metacharacters that may be in your command string.

So for example, instead of using:

    open(PS_PIPE, "ps aux|")    || die "can't open ps pipe: $!";

One would use either of these:

    open(PS_PIPE, "-|", "ps", "aux")
                                || die "can't open ps pipe: $!";

    @ps_args = qw[ ps aux ];
    open(PS_PIPE, "-|", @ps_args)
                                || die "can't open @ps_args|: $!";

Because there are more than three arguments to open(), forks the ps(1)
 command without spawning 
a shell, and reads its standard output via the PS_PIPE filehandle. The corresponding syntax to write 
to command
 pipes is to use "|-" in place of "-|".

This was admittedly a rather silly example, because you're using string
 literals whose content is 
perfectly safe. There is therefore no cause to
 resort to the harder-to-read, multi-argument form of pipe
open(). However,
 whenever you cannot be assured that the program arguments are free of shell

metacharacters, the fancier form of open() should be used. For example:

    @grep_args = ("egrep", "-i", $some_pattern, @many_files);
    open(GREP_PIPE, "-|", @grep_args)
                        || die "can't open @grep_args|: $!";

Here the multi-argument form of pipe open() is preferred because the
 pattern and indeed even the 
filenames themselves might hold metacharacters.



Perl version 5.20.1 documentation - perlipc

Page 12http://perldoc.perl.org

Be aware that these operations are full Unix forks, which means they may
 not be correctly 
implemented on all alien systems.

Avoiding Pipe Deadlocks
Whenever you have more than one subprocess, you must be careful that each
 closes whichever half 
of any pipes created for interprocess communication
 it is not using. This is because any child process 
reading from the pipe
 and expecting an EOF will never receive it, and therefore never exit. A
 single 
process closing a pipe is not enough to close it; the last process
 with the pipe open must close it for it 
to read EOF.

Certain built-in Unix features help prevent this most of the time. For
 instance, filehandles have a 
"close on exec" flag, which is set en masse 
 under control of the $^F variable. This is so any 
filehandles you
 didn't explicitly route to the STDIN, STDOUT or STDERR of a child program will be 
automatically closed.

Always explicitly and immediately call close() on the writable end of any
 pipe, unless that process is 
actually writing to it. Even if you don't
 explicitly call close(), Perl will still close() all filehandles during

global destruction. As previously discussed, if those filehandles have
 been opened with Safe Pipe 
Open, this will result in calling waitpid(),
 which may again deadlock.

Bidirectional Communication with Another Process
While this works reasonably well for unidirectional communication, what
 about bidirectional 
communication? The most obvious approach doesn't work:

    # THIS DOES NOT WORK!!
    open(PROG_FOR_READING_AND_WRITING, "| some program |")

If you forget to use warnings, you'll miss out entirely on the
 helpful diagnostic message:

    Can't do bidirectional pipe at -e line 1.

If you really want to, you can use the standard open2() from the IPC::Open2 module to catch both 
ends. There's also an open3() in IPC::Open3 for tridirectional I/O so you can also catch your child's

STDERR, but doing so would then require an awkward select() loop and
 wouldn't allow you to use 
normal Perl input operations.

If you look at its source, you'll see that open2() uses low-level
 primitives like the pipe() and exec() 
syscalls to create all the
 connections. Although it might have been more efficient by using

socketpair(), this would have been even less portable than it already
 is. The open2() and open3() 
functions are unlikely to work anywhere
 except on a Unix system, or at least one purporting POSIX 
compliance.

Here's an example of using open2():

    use FileHandle;
    use IPC::Open2;
    $pid = open2(*Reader, *Writer, "cat -un");
    print Writer "stuff\n";
    $got = <Reader>;

The problem with this is that buffering is really going to ruin your
 day. Even though your Writer 
filehandle is auto-flushed so the process
 on the other end gets your data in a timely manner, you can't
usually do
 anything to force that process to give its data to you in a similarly quick
 fashion. In this 
special case, we could actually so, because we gave cat a -u flag to make it unbuffered. But very few 
commands are
 designed to operate over pipes, so this seldom works unless you yourself
 wrote the 
program on the other end of the double-ended pipe.

A solution to this is to use a library which uses pseudottys to make your
 program behave more 



Perl version 5.20.1 documentation - perlipc

Page 13http://perldoc.perl.org

reasonably. This way you don't have to have control
 over the source code of the program you're 
using. The Expect module
 from CPAN also addresses this kind of thing. This module requires two

other modules from CPAN, IO::Pty and IO::Stty. It sets up a pseudo
 terminal to interact with 
programs that insist on talking to the terminal
 device driver. If your system is supported, this may be 
your best bet.

Bidirectional Communication with Yourself
If you want, you may make low-level pipe() and fork() syscalls to stitch
 this together by hand. This 
example only talks to itself, but you could
 reopen the appropriate handles to STDIN and STDOUT and
call other processes.
 (The following example lacks proper error checking.)

    #!/usr/bin/perl -w
    # pipe1 - bidirectional communication using two pipe pairs
    #         designed for the socketpair-challenged
    use IO::Handle;               # thousands of lines just for autoflush 
:-(
    pipe(PARENT_RDR, CHILD_WTR);  # XXX: check failure?
    pipe(CHILD_RDR,  PARENT_WTR); # XXX: check failure?
    CHILD_WTR->autoflush(1);
    PARENT_WTR->autoflush(1);

    if ($pid = fork()) {
        close PARENT_RDR;
        close PARENT_WTR;
        print CHILD_WTR "Parent Pid $$ is sending this\n";
        chomp($line = <CHILD_RDR>);
        print "Parent Pid $$ just read this: '$line'\n";
        close CHILD_RDR; close CHILD_WTR;
        waitpid($pid, 0);
    } else {
        die "cannot fork: $!" unless defined $pid;
        close CHILD_RDR;
        close CHILD_WTR;
        chomp($line = <PARENT_RDR>);
        print "Child Pid $$ just read this: '$line'\n";
        print PARENT_WTR "Child Pid $$ is sending this\n";
        close PARENT_RDR;
        close PARENT_WTR;
        exit(0);
    }

But you don't actually have to make two pipe calls. If you
 have the socketpair() system call, it will do 
this all for you.

    #!/usr/bin/perl -w
    # pipe2 - bidirectional communication using socketpair
    #   "the best ones always go both ways"

    use Socket;
    use IO::Handle;  # thousands of lines just for autoflush :-(

    # We say AF_UNIX because although *_LOCAL is the
    # POSIX 1003.1g form of the constant, many machines
    # still don't have it.
    socketpair(CHILD, PARENT, AF_UNIX, SOCK_STREAM, PF_UNSPEC)



Perl version 5.20.1 documentation - perlipc

Page 14http://perldoc.perl.org

                                ||  die "socketpair: $!";

    CHILD->autoflush(1);
    PARENT->autoflush(1);

    if ($pid = fork()) {
        close PARENT;
        print CHILD "Parent Pid $$ is sending this\n";
        chomp($line = <CHILD>);
        print "Parent Pid $$ just read this: '$line'\n";
        close CHILD;
        waitpid($pid, 0);
    } else {
        die "cannot fork: $!" unless defined $pid;
        close CHILD;
        chomp($line = <PARENT>);
        print "Child Pid $$ just read this: '$line'\n";
        print PARENT "Child Pid $$ is sending this\n";
        close PARENT;
        exit(0);
    }

Sockets: Client/Server Communication
While not entirely limited to Unix-derived operating systems (e.g., WinSock
 on PCs provides socket 
support, as do some VMS libraries), you might not have
 sockets on your system, in which case this 
section probably isn't going to
 do you much good. With sockets, you can do both virtual circuits like 
TCP
 streams and datagrams like UDP packets. You may be able to do even more
 depending on your 
system.

The Perl functions for dealing with sockets have the same names as
 the corresponding system calls 
in C, but their arguments tend to differ
 for two reasons. First, Perl filehandles work differently than C 
file
 descriptors. Second, Perl already knows the length of its strings, so you
 don't need to pass that 
information.

One of the major problems with ancient, antemillennial socket code in Perl
 was that it used 
hard-coded values for some of the constants, which
 severely hurt portability. If you ever see code that
does anything like
 explicitly setting $AF_INET = 2, you know you're in for big trouble. An 
immeasurably superior approach is to use the Socket module, which more
 reliably grants access to 
the various constants and functions you'll need.

If you're not writing a server/client for an existing protocol like
 NNTP or SMTP, you should give some 
thought to how your server will
 know when the client has finished talking, and vice-versa. Most

protocols are based on one-line messages and responses (so one party
 knows the other has finished 
when a "\n" is received) or multi-line
 messages and responses that end with a period on an empty line
("\n.\n" terminates a message/response).

Internet Line Terminators
The Internet line terminator is "\015\012". Under ASCII variants of
 Unix, that could usually be written 
as "\r\n", but under other systems,
 "\r\n" might at times be "\015\015\012", "\012\012\015", or 
something
 completely different. The standards specify writing "\015\012" to be
 conformant (be strict in
what you provide), but they also recommend
 accepting a lone "\012" on input (be lenient in what you 
require).
 We haven't always been very good about that in the code in this manpage,
 but unless you're 
on a Mac from way back in its pre-Unix dark ages, you'll probably be ok.



Perl version 5.20.1 documentation - perlipc

Page 15http://perldoc.perl.org

Internet TCP Clients and Servers
Use Internet-domain sockets when you want to do client-server
 communication that might extend to 
machines outside of your own system.

Here's a sample TCP client using Internet-domain sockets:

    #!/usr/bin/perl -w
    use strict;
    use Socket;
    my ($remote, $port, $iaddr, $paddr, $proto, $line);

    $remote  = shift || "localhost";
    $port    = shift || 2345;  # random port
    if ($port =~ /\D/) { $port = getservbyname($port, "tcp") }
    die "No port" unless $port;
    $iaddr   = inet_aton($remote)       || die "no host: $remote";
    $paddr   = sockaddr_in($port, $iaddr);

    $proto   = getprotobyname("tcp");
    socket(SOCK, PF_INET, SOCK_STREAM, $proto)  || die "socket: $!";
    connect(SOCK, $paddr)               || die "connect: $!";
    while ($line = <SOCK>) {
        print $line;
    }

    close (SOCK)                        || die "close: $!";
    exit(0);

And here's a corresponding server to go along with it. We'll
 leave the address as INADDR_ANY so that
the kernel can choose
 the appropriate interface on multihomed hosts. If you want sit
 on a particular 
interface (like the external side of a gateway
 or firewall machine), fill this in with your real address 
instead.

    #!/usr/bin/perl -Tw
    use strict;
    BEGIN { $ENV{PATH} = "/usr/bin:/bin" }
    use Socket;
    use Carp;
    my $EOL = "\015\012";

    sub logmsg { print "$0 $$: @_ at ", scalar localtime(), "\n" }

    my $port  = shift || 2345;
    die "invalid port" unless if $port =~ /^ \d+ $/x;

    my $proto = getprotobyname("tcp");

    socket(Server, PF_INET, SOCK_STREAM, $proto)    || die "socket: $!";
    setsockopt(Server, SOL_SOCKET, SO_REUSEADDR, pack("l", 1))
                                                    || die "setsockopt: 
$!";
    bind(Server, sockaddr_in($port, INADDR_ANY))    || die "bind: $!";
    listen(Server, SOMAXCONN)                       || die "listen: $!";



Perl version 5.20.1 documentation - perlipc

Page 16http://perldoc.perl.org

    logmsg "server started on port $port";

    my $paddr;

    $SIG{CHLD} = \&REAPER;

    for ( ; $paddr = accept(Client, Server); close Client) {
        my($port, $iaddr) = sockaddr_in($paddr);
        my $name = gethostbyaddr($iaddr, AF_INET);

        logmsg "connection from $name [",
                inet_ntoa($iaddr), "]
                at port $port";

        print Client "Hello there, $name, it's now ",
                        scalar localtime(), $EOL;
    }

And here's a multitasking version. It's multitasked in that
 like most typical servers, it spawns (fork()s) a
slave server to
 handle the client request so that the master server can quickly
 go back to service a 
new client.

    #!/usr/bin/perl -Tw
    use strict;
    BEGIN { $ENV{PATH} = "/usr/bin:/bin" }
    use Socket;
    use Carp;
    my $EOL = "\015\012";

    sub spawn;  # forward declaration
    sub logmsg { print "$0 $$: @_ at ", scalar localtime(), "\n" }

    my $port  = shift || 2345;
    die "invalid port" unless $port =~ /^ \d+ $/x;

    my $proto = getprotobyname("tcp");

    socket(Server, PF_INET, SOCK_STREAM, $proto)    || die "socket: $!";
    setsockopt(Server, SOL_SOCKET, SO_REUSEADDR, pack("l", 1))
                                                    || die "setsockopt: 
$!";
    bind(Server, sockaddr_in($port, INADDR_ANY))    || die "bind: $!";
    listen(Server, SOMAXCONN)                       || die "listen: $!";

    logmsg "server started on port $port";

    my $waitedpid = 0;
    my $paddr;

    use POSIX ":sys_wait_h";
    use Errno;



Perl version 5.20.1 documentation - perlipc

Page 17http://perldoc.perl.org

    sub REAPER {
        local $!;   # don't let waitpid() overwrite current error
        while ((my $pid = waitpid(-1, WNOHANG)) > 0 && WIFEXITED($?)) {
            logmsg "reaped $waitedpid" . ($? ? " with exit $?" : "");
        }
        $SIG{CHLD} = \&REAPER;  # loathe SysV
    }

    $SIG{CHLD} = \&REAPER;

    while (1) {
        $paddr = accept(Client, Server) || do {
            # try again if accept() returned because got a signal
            next if $!{EINTR};
            die "accept: $!";
        };
        my ($port, $iaddr) = sockaddr_in($paddr);
        my $name = gethostbyaddr($iaddr, AF_INET);

        logmsg "connection from $name [",
               inet_ntoa($iaddr),
               "] at port $port";

        spawn sub {
            $| = 1;
            print "Hello there, $name, it's now ", scalar localtime(), 
$EOL;
            exec "/usr/games/fortune"       # XXX: "wrong" line terminators
                or confess "can't exec fortune: $!";
        };
        close Client;
    }

    sub spawn {
        my $coderef = shift;

        unless (@_ == 0 && $coderef && ref($coderef) eq "CODE") {
            confess "usage: spawn CODEREF";
        }

        my $pid;
        unless (defined($pid = fork())) {
            logmsg "cannot fork: $!";
            return;
        }
        elsif ($pid) {
            logmsg "begat $pid";
            return; # I'm the parent
        }
        # else I'm the child -- go spawn

        open(STDIN,  "<&Client")    || die "can't dup client to stdin";
        open(STDOUT, ">&Client")    || die "can't dup client to stdout";



Perl version 5.20.1 documentation - perlipc

Page 18http://perldoc.perl.org

        ## open(STDERR, ">&STDOUT") || die "can't dup stdout to stderr";
        exit($coderef->());
    }

This server takes the trouble to clone off a child version via fork()
 for each incoming request. That way
it can handle many requests at
 once, which you might not always want. Even if you don't fork(), the

listen() will allow that many pending connections. Forking servers
 have to be particularly careful about
cleaning up their dead children
 (called "zombies" in Unix parlance), because otherwise you'll quickly

fill up your process table. The REAPER subroutine is used here to
 call waitpid() for any child 
processes that have finished, thereby
 ensuring that they terminate cleanly and don't join the ranks of 
the
 living dead.

Within the while loop we call accept() and check to see if it returns
 a false value. This would normally 
indicate a system error needs
 to be reported. However, the introduction of safe signals (see Deferred 
Signals (Safe Signals) above) in Perl 5.8.0 means that
 accept() might also be interrupted when the 
process receives a signal.
 This typically happens when one of the forked subprocesses exits and

notifies the parent process with a CHLD signal.

If accept() is interrupted by a signal, $! will be set to EINTR.
 If this happens, we can safely continue to
the next iteration of
 the loop and another call to accept(). It is important that your
 signal handling code
not modify the value of $!, or else this test will likely fail. In the REAPER subroutine we create a local 
version
 of $! before calling waitpid(). When waitpid() sets $! to ECHILD as
 it inevitably does when it 
has no more children waiting, it updates the local copy and leaves the original unchanged.

You should use the -T flag to enable taint checking (see perlsec)
 even if we aren't running setuid or 
setgid. This is always a good idea
 for servers or any program run on behalf of someone else (like CGI
scripts), because it lessens the chances that people from the outside will
 be able to compromise your 
system.

Let's look at another TCP client. This one connects to the TCP "time"
 service on a number of different 
machines and shows how far their clocks
 differ from the system on which it's being run:

    #!/usr/bin/perl  -w
    use strict;
    use Socket;

    my $SECS_OF_70_YEARS = 2208988800;
    sub ctime { scalar localtime(shift() || time()) }

    my $iaddr = gethostbyname("localhost");
    my $proto = getprotobyname("tcp");
    my $port = getservbyname("time", "tcp");
    my $paddr = sockaddr_in(0, $iaddr);
    my($host);

    $| = 1;
    printf "%-24s %8s %s\n", "localhost", 0, ctime();

    foreach $host (@ARGV) {
        printf "%-24s ", $host;
        my $hisiaddr = inet_aton($host)     || die "unknown host";
        my $hispaddr = sockaddr_in($port, $hisiaddr);
        socket(SOCKET, PF_INET, SOCK_STREAM, $proto)
                                            || die "socket: $!";
        connect(SOCKET, $hispaddr)          || die "connect: $!";
        my $rtime = pack("C4", ());



Perl version 5.20.1 documentation - perlipc

Page 19http://perldoc.perl.org

        read(SOCKET, $rtime, 4);
        close(SOCKET);
        my $histime = unpack("N", $rtime) - $SECS_OF_70_YEARS;
        printf "%8d %s\n", $histime - time(), ctime($histime);
    }

Unix-Domain TCP Clients and Servers
That's fine for Internet-domain clients and servers, but what about local
 communications? While you 
can use the same setup, sometimes you don't
 want to. Unix-domain sockets are local to the current 
host, and are often
 used internally to implement pipes. Unlike Internet domain sockets, Unix
 domain 
sockets can show up in the file system with an ls(1) listing.

    % ls -l /dev/log
    srw-rw-rw-  1 root            0 Oct 31 07:23 /dev/log

You can test for these with Perl's -S file test:

    unless (-S "/dev/log") {
        die "something's wicked with the log system";
    }

Here's a sample Unix-domain client:

    #!/usr/bin/perl -w
    use Socket;
    use strict;
    my ($rendezvous, $line);

    $rendezvous = shift || "catsock";
    socket(SOCK, PF_UNIX, SOCK_STREAM, 0)     || die "socket: $!";
    connect(SOCK, sockaddr_un($rendezvous))   || die "connect: $!";
    while (defined($line = <SOCK>)) {
        print $line;
    }
    exit(0);

And here's a corresponding server. You don't have to worry about silly
 network terminators here 
because Unix domain sockets are guaranteed
 to be on the localhost, and thus everything works right.

    #!/usr/bin/perl -Tw
    use strict;
    use Socket;
    use Carp;

    BEGIN { $ENV{PATH} = "/usr/bin:/bin" }
    sub spawn;  # forward declaration
    sub logmsg { print "$0 $$: @_ at ", scalar localtime(), "\n" }

    my $NAME = "catsock";
    my $uaddr = sockaddr_un($NAME);
    my $proto = getprotobyname("tcp");

    socket(Server, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!";
    unlink($NAME);



Perl version 5.20.1 documentation - perlipc

Page 20http://perldoc.perl.org

    bind  (Server, $uaddr)                  || die "bind: $!";
    listen(Server, SOMAXCONN)               || die "listen: $!";

    logmsg "server started on $NAME";

    my $waitedpid;

    use POSIX ":sys_wait_h";
    sub REAPER {
        my $child;
        while (($waitedpid = waitpid(-1, WNOHANG)) > 0) {
            logmsg "reaped $waitedpid" . ($? ? " with exit $?" : "");
        }
        $SIG{CHLD} = \&REAPER;  # loathe SysV
    }

    $SIG{CHLD} = \&REAPER;

    for ( $waitedpid = 0;
          accept(Client, Server) || $waitedpid;
          $waitedpid = 0, close Client)
    {
        next if $waitedpid;
        logmsg "connection on $NAME";
        spawn sub {
            print "Hello there, it's now ", scalar localtime(), "\n";
            exec("/usr/games/fortune")  || die "can't exec fortune: $!";
        };
    }

    sub spawn {
        my $coderef = shift();

        unless (@_ == 0 && $coderef && ref($coderef) eq "CODE") {
            confess "usage: spawn CODEREF";
        }

        my $pid;
        unless (defined($pid = fork())) {
            logmsg "cannot fork: $!";
            return;
        }
        elsif ($pid) {
            logmsg "begat $pid";
            return; # I'm the parent
        }
        else {
            # I'm the child -- go spawn
        }

        open(STDIN,  "<&Client")    || die "can't dup client to stdin";
        open(STDOUT, ">&Client")    || die "can't dup client to stdout";
        ## open(STDERR, ">&STDOUT") || die "can't dup stdout to stderr";



Perl version 5.20.1 documentation - perlipc

Page 21http://perldoc.perl.org

        exit($coderef->());
    }

As you see, it's remarkably similar to the Internet domain TCP server, so
 much so, in fact, that we've 
omitted several duplicate functions--spawn(),
 logmsg(), ctime(), and REAPER()--which are the same 
as in the other server.

So why would you ever want to use a Unix domain socket instead of a
 simpler named pipe? Because 
a named pipe doesn't give you sessions. You
 can't tell one process's data from another's. With socket
programming,
 you get a separate session for each client; that's why accept() takes two
 arguments.

For example, let's say that you have a long-running database server daemon
 that you want folks to be
able to access from the Web, but only
 if they go through a CGI interface. You'd have a small, simple 
CGI
 program that does whatever checks and logging you feel like, and then acts
 as a Unix-domain 
client and connects to your private server.

TCP Clients with IO::Socket
For those preferring a higher-level interface to socket programming, the
 IO::Socket module provides 
an object-oriented approach. If for some reason
 you lack this module, you can just fetch IO::Socket 
from CPAN, where you'll also
 find modules providing easy interfaces to the following systems: DNS, 
FTP,
 Ident (RFC 931), NIS and NISPlus, NNTP, Ping, POP3, SMTP, SNMP, SSLeay,
 Telnet, and 
Time--to name just a few.

A Simple Client
Here's a client that creates a TCP connection to the "daytime"
 service at port 13 of the host name 
"localhost" and prints out everything
 that the server there cares to provide.

    #!/usr/bin/perl -w
    use IO::Socket;
    $remote = IO::Socket::INET->new(
                        Proto    => "tcp",
                        PeerAddr => "localhost",
                        PeerPort => "daytime(13)",
                    )
                  || die "can't connect to daytime service on localhost";
    while (<$remote>) { print }

When you run this program, you should get something back that
 looks like this:

    Wed May 14 08:40:46 MDT 1997

Here are what those parameters to the new() constructor mean:

Proto

This is which protocol to use. In this case, the socket handle returned
 will be connected to a 
TCP socket, because we want a stream-oriented
 connection, that is, one that acts pretty much
like a plain old file.
 Not all sockets are this of this type. For example, the UDP protocol
 can be 
used to make a datagram socket, used for message-passing.

PeerAddr

This is the name or Internet address of the remote host the server is
 running on. We could 
have specified a longer name like "www.perl.com",
 or an address like "207.171.7.72". 
For demonstration purposes, we've
 used the special hostname "localhost", which should 
always mean the
 current machine you're running on. The corresponding Internet address
 for 
localhost is "127.0.0.1", if you'd rather use that.

PeerPort



Perl version 5.20.1 documentation - perlipc

Page 22http://perldoc.perl.org

This is the service name or port number we'd like to connect to.
 We could have gotten away 
with using just "daytime" on systems with a
 well-configured system services 
file,[FOOTNOTE: The system services file
 is found in /etc/services under Unixy systems.] but 
here we've specified the
 port number (13) in parentheses. Using just the number would have 
also
 worked, but numeric literals make careful programmers nervous.

Notice how the return value from the new constructor is used as
 a filehandle in the while loop? 
That's what's called an indirect
 filehandle, a scalar variable containing a filehandle. You can use
 it the 
same way you would a normal filehandle. For example, you
 can read one line from it this way:

    $line = <$handle>;

all remaining lines from is this way:

    @lines = <$handle>;

and send a line of data to it this way:

    print $handle "some data\n";

A Webget Client
Here's a simple client that takes a remote host to fetch a document
 from, and then a list of files to get 
from that host. This is a
 more interesting client than the previous one because it first sends
 something
to the server before fetching the server's response.

    #!/usr/bin/perl -w
    use IO::Socket;
    unless (@ARGV > 1) { die "usage: $0 host url ..." }
    $host = shift(@ARGV);
    $EOL = "\015\012";
    $BLANK = $EOL x 2;
    for my $document (@ARGV) {
        $remote = IO::Socket::INET->new( Proto     => "tcp",
                                         PeerAddr  => $host,
                                         PeerPort  => "http(80)",
                  )     || die "cannot connect to httpd on $host";
        $remote->autoflush(1);
        print $remote "GET $document HTTP/1.0" . $BLANK;
        while ( <$remote> ) { print }
        close $remote;
    }

The web server handling the HTTP service is assumed to be at
 its standard port, number 80. If the 
server you're trying to
 connect to is at a different port, like 1080 or 8080, you should specify it
 as the 
named-parameter pair, PeerPort => 8080. The autoflush
 method is used on the socket 
because otherwise the system would buffer
 up the output we sent it. (If you're on a prehistoric Mac, 
you'll also
 need to change every "\n" in your code that sends data over the network
 to be a 
"\015\012" instead.)

Connecting to the server is only the first part of the process: once you
 have the connection, you have 
to use the server's language. Each server
 on the network has its own little command language that it 
expects as
 input. The string that we send to the server starting with "GET" is in
 HTTP syntax. In this 
case, we simply request each specified document.
 Yes, we really are making a new connection for 
each document, even though
 it's the same host. That's the way you always used to have to speak 
HTTP.
 Recent versions of web browsers may request that the remote server leave
 the connection 
open a little while, but the server doesn't have to honor
 such a request.



Perl version 5.20.1 documentation - perlipc

Page 23http://perldoc.perl.org

Here's an example of running that program, which we'll call webget:

    % webget www.perl.com /guanaco.html
    HTTP/1.1 404 File Not Found
    Date: Thu, 08 May 1997 18:02:32 GMT
    Server: Apache/1.2b6
    Connection: close
    Content-type: text/html

    <HEAD><TITLE>404 File Not Found</TITLE></HEAD>
    <BODY><H1>File Not Found</H1>
    The requested URL /guanaco.html was not found on this server.<P>
    </BODY>

Ok, so that's not very interesting, because it didn't find that
 particular document. But a long response 
wouldn't have fit on this page.

For a more featureful version of this program, you should look to
 the lwp-request program included 
with the LWP modules from CPAN.

Interactive Client with IO::Socket
Well, that's all fine if you want to send one command and get one answer,
 but what about setting up 
something fully interactive, somewhat like
 the way telnet works? That way you can type a line, get the
answer,
 type a line, get the answer, etc.

This client is more complicated than the two we've done so far, but if
 you're on a system that supports
the powerful fork call, the solution
 isn't that rough. Once you've made the connection to whatever 
service
 you'd like to chat with, call fork to clone your process. Each of
 these two identical process 
has a very simple job to do: the parent
 copies everything from the socket to standard output, while the
child
 simultaneously copies everything from standard input to the socket.
 To accomplish the same 
thing using just one process would be much 
 harder, because it's easier to code two processes to do 
one thing than it
 is to code one process to do two things. (This keep-it-simple principle
 a cornerstones
of the Unix philosophy, and good software engineering as
 well, which is probably why it's spread to 
other systems.)

Here's the code:

    #!/usr/bin/perl -w
    use strict;
    use IO::Socket;
    my ($host, $port, $kidpid, $handle, $line);

    unless (@ARGV == 2) { die "usage: $0 host port" }
    ($host, $port) = @ARGV;

    # create a tcp connection to the specified host and port
    $handle = IO::Socket::INET->new(Proto     => "tcp",
                                    PeerAddr  => $host,
                                    PeerPort  => $port)
               || die "can't connect to port $port on $host: $!";

    $handle->autoflush(1);       # so output gets there right away
    print STDERR "[Connected to $host:$port]\n";

    # split the program into two processes, identical twins
    die "can't fork: $!" unless defined($kidpid = fork());



Perl version 5.20.1 documentation - perlipc

Page 24http://perldoc.perl.org

    # the if{} block runs only in the parent process
    if ($kidpid) {
        # copy the socket to standard output
        while (defined ($line = <$handle>)) {
            print STDOUT $line;
        }
        kill("TERM", $kidpid);   # send SIGTERM to child
    }
    # the else{} block runs only in the child process
    else {
        # copy standard input to the socket
        while (defined ($line = <STDIN>)) {
            print $handle $line;
        }
        exit(0);                # just in case
    }

The kill function in the parent's if block is there to send a
 signal to our child process, currently 
running in the else block,
 as soon as the remote server has closed its end of the connection.

If the remote server sends data a byte at time, and you need that
 data immediately without waiting for 
a newline (which might not happen),
 you may wish to replace the while loop in the parent with the

following:

    my $byte;
    while (sysread($handle, $byte, 1) == 1) {
        print STDOUT $byte;
    }

Making a system call for each byte you want to read is not very efficient
 (to put it mildly) but is the 
simplest to explain and works reasonably
 well.

TCP Servers with IO::Socket
As always, setting up a server is little bit more involved than running a client.
 The model is that the 
server creates a special kind of socket that
 does nothing but listen on a particular port for incoming 
connections.
 It does this by calling the IO::Socket::INET->new() method with
 slightly different 
arguments than the client did.

Proto

This is which protocol to use. Like our clients, we'll
 still specify "tcp" here.

LocalPort

We specify a local
 port in the LocalPort argument, which we didn't do for the client.
 This is 
service name or port number for which you want to be the
 server. (Under Unix, ports under 
1024 are restricted to the
 superuser.) In our sample, we'll use port 9000, but you can use
 any 
port that's not currently in use on your system. If you try
 to use one already in used, you'll get 
an "Address already in use"
 message. Under Unix, the netstat -a command will show

which services current have servers.

Listen

The Listen parameter is set to the maximum number of
 pending connections we can accept 
until we turn away incoming clients.
 Think of it as a call-waiting queue for your telephone.
 The 
low-level Socket module has a special symbol for the system maximum, which
 is 
SOMAXCONN.

Reuse



Perl version 5.20.1 documentation - perlipc

Page 25http://perldoc.perl.org

The Reuse parameter is needed so that we restart our server
 manually without waiting a few 
minutes to allow system buffers to
 clear out.

Once the generic server socket has been created using the parameters
 listed above, the server then 
waits for a new client to connect
 to it. The server blocks in the accept method, which eventually 
accepts a
 bidirectional connection from the remote client. (Make sure to autoflush
 this handle to 
circumvent buffering.)

To add to user-friendliness, our server prompts the user for commands.
 Most servers don't do this. 
Because of the prompt without a newline,
 you'll have to use the sysread variant of the interactive 
client above.

This server accepts one of five different commands, sending output back to
 the client. Unlike most 
network servers, this one handles only one
 incoming client at a time. Multitasking servers are covered
in
 Chapter 16 of the Camel.

Here's the code. We'll

 #!/usr/bin/perl -w
 use IO::Socket;
 use Net::hostent;      # for OOish version of gethostbyaddr

 $PORT = 9000;          # pick something not in use

 $server = IO::Socket::INET->new( Proto     => "tcp",
                                  LocalPort => $PORT,
                                  Listen    => SOMAXCONN,
                                  Reuse     => 1);

 die "can't setup server" unless $server;
 print "[Server $0 accepting clients]\n";

 while ($client = $server->accept()) {
   $client->autoflush(1);
   print $client "Welcome to $0; type help for command list.\n";
   $hostinfo = gethostbyaddr($client->peeraddr);
   printf "[Connect from %s]\n", $hostinfo ? $hostinfo->name : 
$client->peerhost;
   print $client "Command? ";
   while ( <$client>) {
     next unless /\S/;       # blank line
     if    (/quit|exit/i)    { last                                      }
     elsif (/date|time/i)    { printf $client "%s\n", scalar localtime() }
     elsif (/who/i )         { print  $client `who 2>&1`                 }
     elsif (/cookie/i )      { print  $client `/usr/games/fortune 2>&1`  }
     elsif (/motd/i )        { print  $client `cat /etc/motd 2>&1`       }
     else {
       print $client "Commands: quit date who cookie motd\n";
     }
   } continue {
      print $client "Command? ";
   }
   close $client;
 }



Perl version 5.20.1 documentation - perlipc

Page 26http://perldoc.perl.org

UDP: Message Passing
Another kind of client-server setup is one that uses not connections, but
 messages. UDP 
communications involve much lower overhead but also provide
 less reliability, as there are no 
promises that messages will arrive at
 all, let alone in order and unmangled. Still, UDP offers some 
advantages
 over TCP, including being able to "broadcast" or "multicast" to a whole
 bunch of 
destination hosts at once (usually on your local subnet). If you
 find yourself overly concerned about 
reliability and start building checks
 into your message system, then you probably should use just TCP 
to start
 with.

UDP datagrams are not a bytestream and should not be treated as such.
 This makes using I/O 
mechanisms with internal buffering like stdio (i.e.
 print() and friends) especially cumbersome. Use 
syswrite(), or better
 send(), like in the example below.

Here's a UDP program similar to the sample Internet TCP client given
 earlier. However, instead of 
checking one host at a time, the UDP version
 will check many of them asynchronously by simulating a
multicast and then
 using select() to do a timed-out wait for I/O. To do something similar
 with TCP, 
you'd have to use a different socket handle for each host.

    #!/usr/bin/perl -w
    use strict;
    use Socket;
    use Sys::Hostname;

    my ( $count, $hisiaddr, $hispaddr, $histime,
         $host, $iaddr, $paddr, $port, $proto,
         $rin, $rout, $rtime, $SECS_OF_70_YEARS);

    $SECS_OF_70_YEARS = 2_208_988_800;

    $iaddr = gethostbyname(hostname());
    $proto = getprotobyname("udp");
    $port = getservbyname("time", "udp");
    $paddr = sockaddr_in(0, $iaddr); # 0 means let kernel pick

    socket(SOCKET, PF_INET, SOCK_DGRAM, $proto)   || die "socket: $!";
    bind(SOCKET, $paddr)                          || die "bind: $!";

    $| = 1;
    printf "%-12s %8s %s\n",  "localhost", 0, scalar localtime();
    $count = 0;
    for $host (@ARGV) {
        $count++;
        $hisiaddr = inet_aton($host)              || die "unknown host";
        $hispaddr = sockaddr_in($port, $hisiaddr);
        defined(send(SOCKET, 0, 0, $hispaddr))    || die "send $host: $!";
    }

    $rin = "";
    vec($rin, fileno(SOCKET), 1) = 1;

    # timeout after 10.0 seconds
    while ($count && select($rout = $rin, undef, undef, 10.0)) {
        $rtime = "";
        $hispaddr = recv(SOCKET, $rtime, 4, 0)    || die "recv: $!";



Perl version 5.20.1 documentation - perlipc

Page 27http://perldoc.perl.org

        ($port, $hisiaddr) = sockaddr_in($hispaddr);
        $host = gethostbyaddr($hisiaddr, AF_INET);
        $histime = unpack("N", $rtime) - $SECS_OF_70_YEARS;
        printf "%-12s ", $host;
        printf "%8d %s\n", $histime - time(), scalar localtime($histime);
        $count--;
    }

This example does not include any retries and may consequently fail to
 contact a reachable host. The
most prominent reason for this is congestion
 of the queues on the sending host if the number of hosts
to contact is
 sufficiently large.

SysV IPC
While System V IPC isn't so widely used as sockets, it still has some
 interesting uses. However, you 
cannot use SysV IPC or Berkeley mmap() to
 have a variable shared amongst several processes. 
That's because Perl
 would reallocate your string when you weren't wanting it to. You might
 look into 
the IPC::Shareable or threads::shared modules for that.

Here's a small example showing shared memory usage.

    use IPC::SysV qw(IPC_PRIVATE IPC_RMID S_IRUSR S_IWUSR);

    $size = 2000;
    $id = shmget(IPC_PRIVATE, $size, S_IRUSR | S_IWUSR);
    defined($id)                    || die "shmget: $!";
    print "shm key $id\n";

    $message = "Message #1";
    shmwrite($id, $message, 0, 60)  || die "shmwrite: $!";
    print "wrote: '$message'\n";
    shmread($id, $buff, 0, 60)      || die "shmread: $!";
    print "read : '$buff'\n";

    # the buffer of shmread is zero-character end-padded.
    substr($buff, index($buff, "\0")) = "";
    print "un" unless $buff eq $message;
    print "swell\n";

    print "deleting shm $id\n";
    shmctl($id, IPC_RMID, 0)        || die "shmctl: $!";

Here's an example of a semaphore:

    use IPC::SysV qw(IPC_CREAT);

    $IPC_KEY = 1234;
    $id = semget($IPC_KEY, 10, 0666 | IPC_CREAT);
    defined($id)                    || die "semget: $!";
    print "sem id $id\n";

Put this code in a separate file to be run in more than one process.
 Call the file take:

    # create a semaphore



Perl version 5.20.1 documentation - perlipc

Page 28http://perldoc.perl.org

    $IPC_KEY = 1234;
    $id = semget($IPC_KEY, 0, 0);
    defined($id)                    || die "semget: $!";

    $semnum  = 0;
    $semflag = 0;

    # "take" semaphore
    # wait for semaphore to be zero
    $semop = 0;
    $opstring1 = pack("s!s!s!", $semnum, $semop, $semflag);

    # Increment the semaphore count
    $semop = 1;
    $opstring2 = pack("s!s!s!", $semnum, $semop,  $semflag);
    $opstring  = $opstring1 . $opstring2;

    semop($id, $opstring)   || die "semop: $!";

Put this code in a separate file to be run in more than one process.
 Call this file give:

    # "give" the semaphore
    # run this in the original process and you will see
    # that the second process continues

    $IPC_KEY = 1234;
    $id = semget($IPC_KEY, 0, 0);
    die unless defined($id);

    $semnum  = 0;
    $semflag = 0;

    # Decrement the semaphore count
    $semop = -1;
    $opstring = pack("s!s!s!", $semnum, $semop, $semflag);

    semop($id, $opstring)   || die "semop: $!";

The SysV IPC code above was written long ago, and it's definitely
 clunky looking. For a more modern 
look, see the IPC::SysV module.

A small example demonstrating SysV message queues:

    use IPC::SysV qw(IPC_PRIVATE IPC_RMID IPC_CREAT S_IRUSR S_IWUSR);

    my $id = msgget(IPC_PRIVATE, IPC_CREAT | S_IRUSR | S_IWUSR);
    defined($id)                || die "msgget failed: $!";

    my $sent      = "message";
    my $type_sent = 1234;

    msgsnd($id, pack("l! a*", $type_sent, $sent), 0)
                                || die "msgsnd failed: $!";



Perl version 5.20.1 documentation - perlipc

Page 29http://perldoc.perl.org

    msgrcv($id, my $rcvd_buf, 60, 0, 0)
                                || die "msgrcv failed: $!";

    my($type_rcvd, $rcvd) = unpack("l! a*", $rcvd_buf);

    if ($rcvd eq $sent) {
        print "okay\n";
    } else {
        print "not okay\n";
    }

    msgctl($id, IPC_RMID, 0)    || die "msgctl failed: $!\n";

NOTES
Most of these routines quietly but politely return undef when they
 fail instead of causing your 
program to die right then and there due to
 an uncaught exception. (Actually, some of the new Socket 
conversion
 functions do croak() on bad arguments.) It is therefore essential to
 check return values 
from these functions. Always begin your socket
 programs this way for optimal success, and don't 
forget to add the -T
 taint-checking flag to the #! line for servers:

    #!/usr/bin/perl -Tw
    use strict;
    use sigtrap;
    use Socket;

BUGS
These routines all create system-specific portability problems. As noted
 elsewhere, Perl is at the 
mercy of your C libraries for much of its system
 behavior. It's probably safest to assume broken SysV 
semantics for
 signals and to stick with simple TCP and UDP socket operations; e.g., don't
 try to pass 
open file descriptors over a local UDP datagram socket if you
 want your code to stand a chance of 
being portable.

AUTHOR
Tom Christiansen, with occasional vestiges of Larry Wall's original
 version and suggestions from the 
Perl Porters.

SEE ALSO
There's a lot more to networking than this, but this should get you
 started.

For intrepid programmers, the indispensable textbook is Unix Network
 Programming, 2nd Edition, 
Volume 1 by W. Richard Stevens (published by
 Prentice-Hall). Most books on networking address the
subject from the
 perspective of a C programmer; translation to Perl is left as an exercise
 for the 
reader.

The IO::Socket(3) manpage describes the object library, and the Socket(3)
 manpage describes the 
low-level interface to sockets. Besides the obvious
 functions in perlfunc, you should also check out 
the modules file at
 your nearest CPAN site, especially 
http://www.cpan.org/modules/00modlist.long.html#ID5_Networking_. See perlmodlib or best yet, the 
Perl FAQ for a description
 of what CPAN is and where to get it if the previous link doesn't work for 
you.

Section 5 of CPAN's modules file is devoted to "Networking, Device
 Control (modems), and 
Interprocess Communication", and contains numerous
 unbundled modules numerous networking 
modules, Chat and Expect operations,
 CGI programming, DCE, FTP, IPC, NNTP, Proxy, Ptty, RPC, 
SNMP, SMTP, Telnet,
 Threads, and ToolTalk--to name just a few.



Perl version 5.20.1 documentation - perlipc

Page 30http://perldoc.perl.org


