
Perl version 5.20.1 documentation - perlmacosx

Page 1http://perldoc.perl.org

NAME
perlmacosx - Perl under Mac OS X

SYNOPSIS
This document briefly describes Perl under Mac OS X.

 curl -O http://www.cpan.org/src/perl-5.20.1.tar.gz
 tar -xzf perl-5.20.1.tar.gz
 cd perl-5.20.1
 ./Configure -des -Dprefix=/usr/local/
 make
 make test
 sudo make install

DESCRIPTION
The latest Perl release (5.20.1 as of this writing) builds without changes
 under all versions of Mac OS
X from 10.3 "Panther" onwards.

In order to build your own version of Perl you will need 'make',
 which is part of Apple's developer tools
- also known as Xcode. From
 Mac OS X 10.7 "Lion" onwards, it can be downloaded separately as the
'Command Line Tools' bundle directly from https://developer.apple.com/downloads/
 (you will need a
free account to log in), or as a part of the Xcode suite,
 freely available at the App Store. Xcode is a
pretty big app, so
 unless you already have it or really want it, you are advised to get the
 'Command
Line Tools' bundle separately from the link above. If you want
 to do it from within Xcode, go to Xcode
-> Preferences -> Downloads and
 select the 'Command Line Tools' option.

Between Mac OS X 10.3 "Panther" and 10.6 "Snow Leopard", the 'Command
 Line Tools' bundle was
called 'unix tools', and was usually supplied
 with Mac OS install DVDs.

Earlier Mac OS X releases (10.2 "Jaguar" and older) did not include a
 completely thread-safe libc, so
threading is not fully supported. Also,
 earlier releases included a buggy libdb, so some of the DB_File
tests
 are known to fail on those releases.

Installation Prefix
The default installation location for this release uses the traditional
 UNIX directory layout under
/usr/local. This is the recommended location
 for most users, and will leave the Apple-supplied Perl
and its modules
 undisturbed.

Using an installation prefix of '/usr' will result in a directory layout
 that mirrors that of Apple's default
Perl, with core modules stored in
 '/System/Library/Perl/${version}', CPAN modules stored in

'/Library/Perl/${version}', and the addition of
 '/Network/Library/Perl/${version}' to @INC for modules
that are stored
 on a file server and used by many Macs.

SDK support
First, export the path to the SDK into the build environment:

 export
SDK=/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/De
veloper/SDKs/MacOSX10.8.sdk

Please make sure the SDK version (i.e. the numbers right before '.sdk')
 matches your system's (in this
case, Mac OS X 10.8 "Mountain Lion"), as it is
 possible to have more than one SDK installed. Also
make sure the path exists
 in your system, and if it doesn't please make sure the SDK is properly

installed, as it should come with the 'Command Line Tools' bundle mentioned
 above. Finally, if you
have an older Mac OS X (10.6 "Snow Leopard" and below)
 running Xcode 4.2 or lower, the SDK path
might be something like '/Developer/SDKs/MacOSX10.3.9.sdk'.

Perl version 5.20.1 documentation - perlmacosx

Page 2http://perldoc.perl.org

You can use the SDK by exporting some additions to Perl's 'ccflags' and '..flags'
 config variables:

 ./Configure -Accflags="-nostdinc -B$SDK/usr/include/gcc \
 -B$SDK/usr/lib/gcc -isystem$SDK/usr/include \
 -F$SDK/System/Library/Frameworks" \
 -Aldflags="-Wl,-syslibroot,$SDK" \
 -de

Universal Binary support
Note: From Mac OS X 10.6 "Snow Leopard" onwards, Apple only supports
 Intel-based hardware. This
means you can safely skip this section unless
 you have an older Apple computer running on ppc or
wish to create a perl
 binary with backwards compatibility.

You can compile perl as a universal binary (built for both ppc and intel).
 In Mac OS X 10.4 "Tiger", you
must export the 'u' variant of the SDK:

 export SDK=/Developer/SDKs/MacOSX10.4u.sdk

Mac OS X 10.5 "Leopard" and above do not require the 'u' variant.

In addition to the compiler flags used to select the SDK, also add the flags
 for creating a universal
binary:

 ./Configure -Accflags="-arch i686 -arch ppc -nostdinc
-B$SDK/usr/include/gcc \
 -B$SDK/usr/lib/gcc -isystem$SDK/usr/include \
 -F$SDK/System/Library/Frameworks" \
 -Aldflags="-arch i686 -arch ppc -Wl,-syslibroot,$SDK" \
 -de

Keep in mind that these compiler and linker settings will also be used when
 building CPAN modules.
For XS modules to be compiled as a universal binary, any
 libraries it links to must also be universal
binaries. The system libraries that
 Apple includes with the 10.4u SDK are all universal, but
user-installed libraries
 may need to be re-installed as universal binaries.

64-bit PPC support
Follow the instructions in INSTALL to build perl with support for 64-bit integers (use64bitint) or
both 64-bit integers and 64-bit addressing
 (use64bitall). In the latter case, the resulting binary will
run only
 on G5-based hosts.

Support for 64-bit addressing is experimental: some aspects of Perl may be
 omitted or buggy. Note
the messages output by Configure for further information. Please use perlbug to submit a problem
report in the
 event that you encounter difficulties.

When building 64-bit modules, it is your responsibility to ensure that linked
 external libraries and
frameworks provide 64-bit support: if they do not,
 module building may appear to succeed, but
attempts to use the module will
 result in run-time dynamic linking errors, and subsequent test failures.

You can use file to discover the architectures supported by a library:

 $ file libgdbm.3.0.0.dylib
 libgdbm.3.0.0.dylib: Mach-O fat file with 2 architectures
 libgdbm.3.0.0.dylib (for architecture ppc): Mach-O dynamically
linked shared library ppc
 libgdbm.3.0.0.dylib (for architecture ppc64): Mach-O 64-bit
dynamically linked shared library ppc64

Note that this issue precludes the building of many Macintosh-specific CPAN
 modules (Mac::*), as

Perl version 5.20.1 documentation - perlmacosx

Page 3http://perldoc.perl.org

the required Apple frameworks do not provide PPC64
 support. Similarly, downloads from Fink or
Darwinports are unlikely to provide
 64-bit support; the libraries must be rebuilt from source with the
appropriate
 compiler and linker flags. For further information, see Apple's 64-Bit Transition Guide at
http://developer.apple.com/documentation/Darwin/Conceptual/64bitPorting/index.html.

libperl and Prebinding
Mac OS X ships with a dynamically-loaded libperl, but the default for
 this release is to compile a static
libperl. The reason for this is
 pre-binding. Dynamic libraries can be pre-bound to a specific address in

memory in order to decrease load time. To do this, one needs to be aware
 of the location and size of
all previously-loaded libraries. Apple
 collects this information as part of their overall OS build process,
and
 thus has easy access to it when building Perl, but ordinary users would
 need to go to a great deal
of effort to obtain the information needed
 for pre-binding.

You can override the default and build a shared libperl if you wish
 (Configure ... -Duseshrplib).

With Mac OS X 10.4 "Tiger" and newer, there is almost no performance
 penalty for non-prebound
libraries. Earlier releases will suffer a greater
 load time than either the static library, or Apple's
pre-bound dynamic library.

Updating Apple's Perl
In a word - don't, at least not without a *very* good reason. Your scripts
 can just as easily begin with
"#!/usr/local/bin/perl" as with
 "#!/usr/bin/perl". Scripts supplied by Apple and other third parties as
 part
of installation packages and such have generally only been tested
 with the /usr/bin/perl that's installed
by Apple.

If you find that you do need to update the system Perl, one issue worth
 keeping in mind is the
question of static vs. dynamic libraries. If you
 upgrade using the default static libperl, you will find that
the dynamic
 libperl supplied by Apple will not be deleted. If both libraries are
 present when an
application that links against libperl is built, ld will
 link against the dynamic library by default. So, if you
need to replace
 Apple's dynamic libperl with a static libperl, you need to be sure to
 delete the older
dynamic library after you've installed the update.

Known problems
If you have installed extra libraries such as GDBM through Fink
 (in other words, you have libraries
under /sw/lib), or libdlcompat
 to /usr/local/lib, you may need to be extra careful when running

Configure to not to confuse Configure and Perl about which libraries
 to use. Being confused will show
up for example as "dyld" errors about
 symbol problems, for example during "make test". The safest
bet is to run
 Configure as

 Configure ... -Uloclibpth -Dlibpth=/usr/lib

to make Configure look only into the system libraries. If you have some
 extra library directories that
you really want to use (such as newer
 Berkeley DB libraries in pre-Panther systems), add those to the
libpth:

 Configure ... -Uloclibpth -Dlibpth='/usr/lib /opt/lib'

The default of building Perl statically may cause problems with complex
 applications like Tk: in that
case consider building shared Perl

 Configure ... -Duseshrplib

but remember that there's a startup cost to pay in that case (see above
 "libperl and Prebinding").

Starting with Tiger (Mac OS X 10.4), Apple shipped broken locale files for
 the eu_ES locale
(Basque-Spain). In previous releases of Perl, this resulted in
 failures in the lib/locale test. These
failures have been suppressed
 in the current release of Perl by making the test ignore the broken

Perl version 5.20.1 documentation - perlmacosx

Page 4http://perldoc.perl.org

locale.
 If you need to use the eu_ES locale, you should contact Apple support.

Cocoa
There are two ways to use Cocoa from Perl. Apple's PerlObjCBridge
 module, included with Mac OS
X, can be used by standalone scripts to
 access Foundation (i.e. non-GUI) classes and objects.

An alternative is CamelBones, a framework that allows access to both
 Foundation and AppKit classes
and objects, so that full GUI applications
 can be built in Perl. CamelBones can be found on
SourceForge, at http://www.sourceforge.net/projects/camelbones/.

Starting From Scratch
Unfortunately it is not that difficult somehow manage to break one's
 Mac OS X Perl rather severely. If
all else fails and you want to
 really, REALLY, start from scratch and remove even your Apple Perl

installation (which has become corrupted somehow), the following
 instructions should do it. Please
think twice before following
 these instructions: they are much like conducting brain surgery to
yourself. Without anesthesia. We will not come to fix your system
 if you do this.

First, get rid of the libperl.dylib:

 # cd /System/Library/Perl/darwin/CORE
 # rm libperl.dylib

Then delete every .bundle file found anywhere in the folders:

 /System/Library/Perl
 /Library/Perl

You can find them for example by

 # find /System/Library/Perl /Library/Perl -name '*.bundle' -print

After this you can either copy Perl from your operating system media
 (you will need at least the
/System/Library/Perl and /usr/bin/perl),
 or rebuild Perl from the source code with Configure
-Dprefix=/usr
 -Duseshrplib NOTE: the -Dprefix=/usr to replace the system Perl
 works
much better with Perl 5.8.1 and later, in Perl 5.8.0 the
 settings were not quite right.

"Pacifist" from CharlesSoft (http://www.charlessoft.com/) is a nice
 way to extract the Perl binaries from
the OS media, without having to
 reinstall the entire OS.

AUTHOR
This README was written by Sherm Pendley <sherm@dot-app.org>,
 and subsequently updated by
Dominic Dunlop <domo@computer.org>
 and Breno G. de Oliveira <garu@cpan.org>. The "Starting
From Scratch"
 recipe was contributed by John Montbriand <montbriand@apple.com>.

DATE
Last modified 2013-04-29.

