
Perl version 5.20.1 documentation - perlperf

Page 1http://perldoc.perl.org

NAME
perlperf - Perl Performance and Optimization Techniques

DESCRIPTION
This is an introduction to the use of performance and optimization techniques
 which can be used with
particular reference to perl programs. While many perl
 developers have come from other languages,
and can use their prior knowledge
 where appropriate, there are many other people who might benefit
from a few
 perl specific pointers. If you want the condensed version, perhaps the best
 advice comes
from the renowned Japanese Samurai, Miyamoto Musashi, who said:

 "Do Not Engage in Useless Activity"

in 1645.

OVERVIEW
Perhaps the most common mistake programmers make is to attempt to optimize
 their code before a
program actually does anything useful - this is a bad idea.
 There's no point in having an extremely
fast program that doesn't work. The
 first job is to get a program to correctly do something useful, (not
to
 mention ensuring the test suite is fully functional), and only then to consider
 optimizing it. Having
decided to optimize existing working code, there are
 several simple but essential steps to consider
which are intrinsic to any
 optimization process.

ONE STEP SIDEWAYS
Firstly, you need to establish a baseline time for the existing code, which
 timing needs to be reliable
and repeatable. You'll probably want to use the Benchmark or Devel::NYTProf modules, or
something similar, for this step,
 or perhaps the Unix system time utility, whichever is appropriate.
See the
 base of this document for a longer list of benchmarking and profiling modules,
 and
recommended further reading.

ONE STEP FORWARD
Next, having examined the program for hot spots, (places where the code
 seems to run slowly),
change the code with the intention of making it run
 faster. Using version control software, like
subversion, will ensure no
 changes are irreversible. It's too easy to fiddle here and fiddle there -

don't change too much at any one time or you might not discover which piece of
 code really was the
slow bit.

ANOTHER STEP SIDEWAYS
It's not enough to say: "that will make it run faster", you have to check it.
 Rerun the code under control
of the benchmarking or profiling modules, from the
 first step above, and check that the new code
executed the same task in less time. Save your work and repeat...

GENERAL GUIDELINES
The critical thing when considering performance is to remember there is no such
 thing as a Golden
Bullet, which is why there are no rules, only guidelines.

It is clear that inline code is going to be faster than subroutine or method
 calls, because there is less
overhead, but this approach has the disadvantage
 of being less maintainable and comes at the cost
of greater memory usage -
 there is no such thing as a free lunch. If you are searching for an element
in
 a list, it can be more efficient to store the data in a hash structure, and
 then simply look to see
whether the key is defined, rather than to loop through
 the entire array using grep() for instance.
substr() may be (a lot) faster
 than grep() but not as flexible, so you have another trade-off to access.
Your
 code may contain a line which takes 0.01 of a second to execute which if you
 call it 1,000 times,
quite likely in a program parsing even medium sized files
 for instance, you already have a 10 second
delay, in just one single code
 location, and if you call that line 100,000 times, your entire program will

slow down to an unbearable crawl.

Perl version 5.20.1 documentation - perlperf

Page 2http://perldoc.perl.org

Using a subroutine as part of your sort is a powerful way to get exactly what
 you want, but will usually
be slower than the built-in alphabetic cmp and numeric <=> sort operators. It is possible to make
multiple
 passes over your data, building indices to make the upcoming sort more
 efficient, and to use
what is known as the OM (Orcish Maneuver) to cache the
 sort keys in advance. The cache lookup,
while a good idea, can itself be a
 source of slowdown by enforcing a double pass over the data - once
to setup the
 cache, and once to sort the data. Using pack() to extract the required sort
 key into a
consistent string can be an efficient way to build a single string
 to compare, instead of using multiple
sort keys, which makes it possible to use
 the standard, written in c and fast, perl sort() function on
the output,
 and is the basis of the GRT (Guttman Rossler Transform). Some string
 combinations can
slow the GRT down, by just being too plain complex for it's
 own good.

For applications using database backends, the standard DBIx namespace has
 tries to help with
keeping things nippy, not least because it tries to not
 query the database until the latest possible
moment, but always read the docs
 which come with your choice of libraries. Among the many issues
facing
 developers dealing with databases should remain aware of is to always use SQL placeholders
and to consider pre-fetching data sets when this might
 prove advantageous. Splitting up a large file by
assigning multiple processes
 to parsing a single file, using say POE, threads or fork can also be a

useful way of optimizing your usage of the available CPU resources, though
 this technique is fraught
with concurrency issues and demands high attention to
 detail.

Every case has a specific application and one or more exceptions, and there is
 no replacement for
running a few tests and finding out which method works best
 for your particular environment, this is
why writing optimal code is not an
 exact science, and why we love using Perl so much - TMTOWTDI.

BENCHMARKS
Here are a few examples to demonstrate usage of Perl's benchmarking tools.

Assigning and Dereferencing Variables.
I'm sure most of us have seen code which looks like, (or worse than), this:

 if ($obj->{_ref}->{_myscore} >= $obj->{_ref}->{_yourscore}) {
 ...

This sort of code can be a real eyesore to read, as well as being very
 sensitive to typos, and it's much
clearer to dereference the variable
 explicitly. We're side-stepping the issue of working with
object-oriented
 programming techniques to encapsulate variable access via methods, only
 accessible
through an object. Here we're just discussing the technical
 implementation of choice, and whether this
has an effect on performance. We
 can see whether this dereferencing operation, has any overhead
by putting
 comparative code in a file and running a Benchmark test.

dereference

 #!/usr/bin/perl

 use strict;
 use warnings;

 use Benchmark;

 my $ref = {
 'ref' => {
 _myscore => '100 + 1',
 _yourscore => '102 - 1',
 },
 };

Perl version 5.20.1 documentation - perlperf

Page 3http://perldoc.perl.org

 timethese(1000000, {
 'direct' => sub {
 my $x = $ref->{ref}->{_myscore} . $ref->{ref}->{_yourscore}
 ;
 },
 'dereference' => sub {
 my $ref = $ref->{ref};
 my $myscore = $ref->{_myscore};
 my $yourscore = $ref->{_yourscore};
 my $x = $myscore . $yourscore;
 },
 });

It's essential to run any timing measurements a sufficient number of times so
 the numbers settle on a
numerical average, otherwise each run will naturally
 fluctuate due to variations in the environment, to
reduce the effect of
 contention for CPU resources and network bandwidth for instance. Running
 the
above code for one million iterations, we can take a look at the report
 output by the Benchmark
module, to see which approach is the most effective.

 $> perl dereference

 Benchmark: timing 1000000 iterations of dereference, direct...
 dereference: 2 wallclock secs (1.59 usr + 0.00 sys = 1.59 CPU) @
628930.82/s (n=1000000)
 direct: 1 wallclock secs (1.20 usr + 0.00 sys = 1.20 CPU) @
833333.33/s (n=1000000)

The difference is clear to see and the dereferencing approach is slower. While
 it managed to execute
an average of 628,930 times a second during our test, the
 direct approach managed to run an
additional 204,403 times, unfortunately.
 Unfortunately, because there are many examples of code
written using the
 multiple layer direct variable access, and it's usually horrible. It is,
 however,
minusculy faster. The question remains whether the minute gain is
 actually worth the eyestrain, or the
loss of maintainability.

Search and replace or tr
If we have a string which needs to be modified, while a regex will almost
 always be much more
flexible, tr, an oft underused tool, can still be a
 useful. One scenario might be replace all vowels with
another character. The
 regex solution might look like this:

 $str =~ s/[aeiou]/x/g

The tr alternative might look like this:

 $str =~ tr/aeiou/xxxxx/

We can put that into a test file which we can run to check which approach is
 the fastest, using a global
$STR variable to assign to the my $str
 variable so as to avoid perl trying to optimize any of the work
away by
 noticing it's assigned only the once.

regex-transliterate

 #!/usr/bin/perl

 use strict;
 use warnings;

Perl version 5.20.1 documentation - perlperf

Page 4http://perldoc.perl.org

 use Benchmark;

 my $STR = "$$-this and that";

 timethese(1000000, {
 'sr' => sub { my $str = $STR; $str =~ s/[aeiou]/x/g; return
$str; },
 'tr' => sub { my $str = $STR; $str =~ tr/aeiou/xxxxx/; return
$str; },
 });

Running the code gives us our results:

 $> perl regex-transliterate

 Benchmark: timing 1000000 iterations of sr, tr...
 sr: 2 wallclock secs (1.19 usr + 0.00 sys = 1.19 CPU) @
840336.13/s (n=1000000)
 tr: 0 wallclock secs (0.49 usr + 0.00 sys = 0.49 CPU) @
2040816.33/s (n=1000000)

The tr version is a clear winner. One solution is flexible, the other is
 fast - and it's appropriately the
programmer's choice which to use.

Check the Benchmark docs for further useful techniques.

PROFILING TOOLS
A slightly larger piece of code will provide something on which a profiler can
 produce more extensive
reporting statistics. This example uses the simplistic wordmatch program which parses a given input
file and spews out a short
 report on the contents.

wordmatch

 #!/usr/bin/perl

 use strict;
 use warnings;

 =head1 NAME

 filewords - word analysis of input file

 =head1 SYNOPSIS

 filewords -f inputfilename [-d]

 =head1 DESCRIPTION

 This program parses the given filename, specified with C<-f>, and
displays a
 simple analysis of the words found therein. Use the C<-d> switch to
enable
 debugging messages.

Perl version 5.20.1 documentation - perlperf

Page 5http://perldoc.perl.org

 =cut

 use FileHandle;
 use Getopt::Long;

 my $debug = 0;
 my $file = '';

 my $result = GetOptions (
 'debug' => \$debug,
 'file=s' => \$file,
);
 die("invalid args") unless $result;

 unless (-f $file) {
 die("Usage: $0 -f filename [-d]");
 }
 my $FH = FileHandle->new("< $file") or die("unable to open file($file):
 $!");

 my $i_LINES = 0;
 my $i_WORDS = 0;
 my %count = ();

 my @lines = <$FH>;
 foreach my $line (@lines) {
 $i_LINES++;
 $line =~ s/\n//;
 my @words = split(/ +/, $line);
 my $i_words = scalar(@words);
 $i_WORDS = $i_WORDS + $i_words;
 debug("line: $i_LINES supplying $i_words words: @words");
 my $i_word = 0;
 foreach my $word (@words) {
 $i_word++;
 $count{$i_LINES}{spec} += matches($i_word, $word,
'[^a-zA-Z0-9]');
 $count{$i_LINES}{only} += matches($i_word, $word,
'^[^a-zA-Z0-9]+$');
 $count{$i_LINES}{cons} += matches($i_word, $word,
'^[(?i:bcdfghjklmnpqrstvwxyz)]+$');
 $count{$i_LINES}{vows} += matches($i_word, $word,
'^[(?i:aeiou)]+$');
 $count{$i_LINES}{caps} += matches($i_word, $word,
'^[(A-Z)]+$');
 }
 }

 print report(%count);

 sub matches {
 my $i_wd = shift;
 my $word = shift;

Perl version 5.20.1 documentation - perlperf

Page 6http://perldoc.perl.org

 my $regex = shift;
 my $has = 0;

 if ($word =~ /($regex)/) {
 $has++ if $1;
 }

 debug("word: $i_wd ".($has ? 'matches' : 'does not match')." chars:
 /$regex/");

 return $has;
 }

 sub report {
 my %report = @_;
 my %rep;

 foreach my $line (keys %report) {
 foreach my $key (keys %{ $report{$line} }) {
 $rep{$key} += $report{$line}{$key};
 }
 }

 my $report = qq|
 $0 report for $file:
 lines in file: $i_LINES
 words in file: $i_WORDS
 words with special (non-word) characters: $i_spec
 words with only special (non-word) characters: $i_only
 words with only consonants: $i_cons
 words with only capital letters: $i_caps
 words with only vowels: $i_vows
 |;

 return $report;
 }

 sub debug {
 my $message = shift;

 if ($debug) {
 print STDERR "DBG: $message\n";
 }
 }

 exit 0;

Devel::DProf
This venerable module has been the de-facto standard for Perl code profiling
 for more than a decade,
but has been replaced by a number of other modules
 which have brought us back to the 21st century.
Although you're recommended to
 evaluate your tool from the several mentioned here and from the
CPAN list at
 the base of this document, (and currently Devel::NYTProf seems to be the
 weapon of

Perl version 5.20.1 documentation - perlperf

Page 7http://perldoc.perl.org

choice - see below), we'll take a quick look at the output from Devel::DProf first, to set a baseline for
Perl profiling tools. Run the
 above program under the control of Devel::DProf by using the -d
switch on
 the command-line.

 $> perl -d:DProf wordmatch -f perl5db.pl

 <...multiple lines snipped...>

 wordmatch report for perl5db.pl:
 lines in file: 9428
 words in file: 50243
 words with special (non-word) characters: 20480
 words with only special (non-word) characters: 7790
 words with only consonants: 4801
 words with only capital letters: 1316
 words with only vowels: 1701

Devel::DProf produces a special file, called tmon.out by default, and
 this file is read by the
dprofpp program, which is already installed as part
 of the Devel::DProf distribution. If you call
dprofpp with no options,
 it will read the tmon.out file in the current directory and produce a human

readable statistics report of the run of your program. Note that this may take
 a little time.

 $> dprofpp

 Total Elapsed Time = 2.951677 Seconds
 User+System Time = 2.871677 Seconds
 Exclusive Times
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 102. 2.945 3.003 251215 0.0000 0.0000 main::matches
 2.40 0.069 0.069 260643 0.0000 0.0000 main::debug
 1.74 0.050 0.050 1 0.0500 0.0500 main::report
 1.04 0.030 0.049 4 0.0075 0.0123 main::BEGIN
 0.35 0.010 0.010 3 0.0033 0.0033 Exporter::as_heavy
 0.35 0.010 0.010 7 0.0014 0.0014 IO::File::BEGIN
 0.00 - -0.000 1 - - Getopt::Long::FindOption
 0.00 - -0.000 1 - - Symbol::BEGIN
 0.00 - -0.000 1 - - Fcntl::BEGIN
 0.00 - -0.000 1 - - Fcntl::bootstrap
 0.00 - -0.000 1 - - warnings::BEGIN
 0.00 - -0.000 1 - - IO::bootstrap
 0.00 - -0.000 1 - -
Getopt::Long::ConfigDefaults
 0.00 - -0.000 1 - - Getopt::Long::Configure
 0.00 - -0.000 1 - - Symbol::gensym

dprofpp will produce some quite detailed reporting on the activity of the wordmatch program. The
wallclock, user and system, times are at the top of
 the analysis, and after this are the main columns
defining which define the
 report. Check the dprofpp docs for details of the many options it supports.

See also Apache::DProf which hooks Devel::DProf into mod_perl.

Devel::Profiler
Let's take a look at the same program using a different profiler: Devel::Profiler, a drop-in
Perl-only replacement for Devel::DProf. The
 usage is very slightly different in that instead of using
the special -d:
 flag, you pull Devel::Profiler in directly as a module using -M.

Perl version 5.20.1 documentation - perlperf

Page 8http://perldoc.perl.org

 $> perl -MDevel::Profiler wordmatch -f perl5db.pl

 <...multiple lines snipped...>

 wordmatch report for perl5db.pl:
 lines in file: 9428
 words in file: 50243
 words with special (non-word) characters: 20480
 words with only special (non-word) characters: 7790
 words with only consonants: 4801
 words with only capital letters: 1316
 words with only vowels: 1701

Devel::Profiler generates a tmon.out file which is compatible with the dprofpp program, thus
saving the construction of a dedicated statistics
 reader program. dprofpp usage is therefore identical
to the above example.

 $> dprofpp

 Total Elapsed Time = 20.984 Seconds
 User+System Time = 19.981 Seconds
 Exclusive Times
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 49.0 9.792 14.509 251215 0.0000 0.0001 main::matches
 24.4 4.887 4.887 260643 0.0000 0.0000 main::debug
 0.25 0.049 0.049 1 0.0490 0.0490 main::report
 0.00 0.000 0.000 1 0.0000 0.0000 Getopt::Long::GetOptions
 0.00 0.000 0.000 2 0.0000 0.0000
Getopt::Long::ParseOptionSpec
 0.00 0.000 0.000 1 0.0000 0.0000 Getopt::Long::FindOption
 0.00 0.000 0.000 1 0.0000 0.0000 IO::File::new
 0.00 0.000 0.000 1 0.0000 0.0000 IO::Handle::new
 0.00 0.000 0.000 1 0.0000 0.0000 Symbol::gensym
 0.00 0.000 0.000 1 0.0000 0.0000 IO::File::open

Interestingly we get slightly different results, which is mostly because the
 algorithm which generates
the report is different, even though the output file
 format was allegedly identical. The elapsed, user
and system times are clearly
 showing the time it took for Devel::Profiler to execute its own run,
but
 the column listings feel more accurate somehow than the ones we had earlier
 from
Devel::DProf. The 102% figure has disappeared, for example. This is
 where we have to use the
tools at our disposal, and recognise their pros and
 cons, before using them. Interestingly, the
numbers of calls for each
 subroutine are identical in the two reports, it's the percentages which differ.

As the author of Devel::Proviler writes:

 ...running HTML::Template's test suite under Devel::DProf shows
output()
 taking NO time but Devel::Profiler shows around 10% of the time is in
output().
 I don't know which to trust but my gut tells me something is wrong with
 Devel::DProf. HTML::Template::output() is a big routine that's called
for
 every test. Either way, something needs fixing.

YMMV.

Perl version 5.20.1 documentation - perlperf

Page 9http://perldoc.perl.org

See also Devel::Apache::Profiler which hooks Devel::Profiler into mod_perl.

Devel::SmallProf
The Devel::SmallProf profiler examines the runtime of your Perl program and
 produces a
line-by-line listing to show how many times each line was called,
 and how long each line took to
execute. It is called by supplying the familiar -d flag to Perl at runtime.

 $> perl -d:SmallProf wordmatch -f perl5db.pl

 <...multiple lines snipped...>

 wordmatch report for perl5db.pl:
 lines in file: 9428
 words in file: 50243
 words with special (non-word) characters: 20480
 words with only special (non-word) characters: 7790
 words with only consonants: 4801
 words with only capital letters: 1316
 words with only vowels: 1701

Devel::SmallProf writes it's output into a file called smallprof.out, by
 default. The format of the file
looks like this:

 <num> <time> <ctime> <line>:<text>

When the program has terminated, the output may be examined and sorted using
 any standard text
filtering utilities. Something like the following may be
 sufficient:

 $> cat smallprof.out | grep \d*: | sort -k3 | tac | head -n20

 251215 1.65674 7.68000 75: if ($word =~ /($regex)/) {
 251215 0.03264 4.40000 79: debug("word: $i_wd ".($has ?
'matches' :
 251215 0.02693 4.10000 81: return $has;
 260643 0.02841 4.07000 128: if ($debug) {
 260643 0.02601 4.04000 126: my $message = shift;
 251215 0.02641 3.91000 73: my $has = 0;
 251215 0.03311 3.71000 70: my $i_wd = shift;
 251215 0.02699 3.69000 72: my $regex = shift;
 251215 0.02766 3.68000 71: my $word = shift;
 50243 0.59726 1.00000 59: $count{$i_LINES}{cons} =
 50243 0.48175 0.92000 61: $count{$i_LINES}{spec} =
 50243 0.00644 0.89000 56: my $i_cons = matches($i_word, $word,
 50243 0.48837 0.88000 63: $count{$i_LINES}{caps} =
 50243 0.00516 0.88000 58: my $i_caps = matches($i_word, $word,
 '^[(A-
 50243 0.00631 0.81000 54: my $i_spec = matches($i_word, $word,
 '[^a-
 50243 0.00496 0.80000 57: my $i_vows = matches($i_word, $word,
 50243 0.00688 0.80000 53: $i_word++;
 50243 0.48469 0.79000 62: $count{$i_LINES}{only} =
 50243 0.48928 0.77000 60: $count{$i_LINES}{vows} =
 50243 0.00683 0.75000 55: my $i_only = matches($i_word, $word,
 '^[^a-

Perl version 5.20.1 documentation - perlperf

Page 10http://perldoc.perl.org

You can immediately see a slightly different focus to the subroutine profiling
 modules, and we start to
see exactly which line of code is taking the most
 time. That regex line is looking a bit suspicious, for
example. Remember that
 these tools are supposed to be used together, there is no single best way to
profile your code, you need to use the best tools for the job.

See also Apache::SmallProf which hooks Devel::SmallProf into mod_perl.

Devel::FastProf
Devel::FastProf is another Perl line profiler. This was written with a view
 to getting a faster line
profiler, than is possible with for example Devel::SmallProf, because it's written in C. To use
Devel::FastProf,
 supply the -d argument to Perl:

 $> perl -d:FastProf wordmatch -f perl5db.pl

 <...multiple lines snipped...>

 wordmatch report for perl5db.pl:
 lines in file: 9428
 words in file: 50243
 words with special (non-word) characters: 20480
 words with only special (non-word) characters: 7790
 words with only consonants: 4801
 words with only capital letters: 1316
 words with only vowels: 1701

Devel::FastProf writes statistics to the file fastprof.out in the current
 directory. The output file,
which can be specified, can be interpreted by using
 the fprofpp command-line program.

 $> fprofpp | head -n20

 # fprofpp output format is:
 # filename:line time count: source
 wordmatch:75 3.93338 251215: if ($word =~ /($regex)/) {
 wordmatch:79 1.77774 251215: debug("word: $i_wd ".($has ? 'matches' :
'does not match')." chars: /$regex/");
 wordmatch:81 1.47604 251215: return $has;
 wordmatch:126 1.43441 260643: my $message = shift;
 wordmatch:128 1.42156 260643: if ($debug) {
 wordmatch:70 1.36824 251215: my $i_wd = shift;
 wordmatch:71 1.36739 251215: my $word = shift;
 wordmatch:72 1.35939 251215: my $regex = shift;

Straightaway we can see that the number of times each line has been called is
 identical to the
Devel::SmallProf output, and the sequence is only very
 slightly different based on the ordering of
the amount of time each line took
 to execute, if ($debug) { and my $message = shift;,
for example. The
 differences in the actual times recorded might be in the algorithm used
 internally, or
it could be due to system resource limitations or contention.

See also the DBIx::Profile which will profile database queries running
 under the DBIx::*
namespace.

Devel::NYTProf
Devel::NYTProf is the next generation of Perl code profiler, fixing many
 shortcomings in other
tools and implementing many cool features. First of all it
 can be used as either a line profiler, a block
or a subroutine
 profiler, all at once. It can also use sub-microsecond (100ns) resolution on
 systems
which provide clock_gettime(). It can be started and stopped even
 by the program being profiled.

Perl version 5.20.1 documentation - perlperf

Page 11http://perldoc.perl.org

It's a one-line entry to profile mod_perl
 applications. It's written in c and is probably the fastest
profiler
 available for Perl. The list of coolness just goes on. Enough of that, let's
 see how to it works -
just use the familiar -d switch to plug it in and run
 the code.

 $> perl -d:NYTProf wordmatch -f perl5db.pl

 wordmatch report for perl5db.pl:
 lines in file: 9427
 words in file: 50243
 words with special (non-word) characters: 20480
 words with only special (non-word) characters: 7790
 words with only consonants: 4801
 words with only capital letters: 1316
 words with only vowels: 1701

NYTProf will generate a report database into the file nytprof.out by
 default. Human readable reports
can be generated from here by using the
 supplied nytprofhtml (HTML output) and nytprofcsv
(CSV output) programs.
 We've used the Unix system html2text utility to convert the
nytprof/index.html file for convenience here.

 $> html2text nytprof/index.html

 Performance Profile Index
 For wordmatch
 Run on Fri Sep 26 13:46:39 2008
 Reported on Fri Sep 26 13:47:23 2008

 Top 15 Subroutines -- ordered by exclusive time
 |Calls |P |F |Inclusive|Exclusive|Subroutine | |
 | | | |Time |Time | |
 |251215|5 |1 |13.09263 |10.47692 |main:: |matches |
 |260642|2 |1 |2.71199 |2.71199 |main:: |debug |
 |1 |1 |1 |0.21404 |0.21404 |main:: |report |
 |2 |2 |2 |0.00511 |0.00511 |XSLoader:: |load (xsub) |
 |14 |14|7 |0.00304 |0.00298 |Exporter:: |import |
 |3 |1 |1 |0.00265 |0.00254 |Exporter:: |as_heavy |
 |10 |10|4 |0.00140 |0.00140 |vars:: |import |
 |13 |13|1 |0.00129 |0.00109 |constant:: |import |
 |1 |1 |1 |0.00360 |0.00096 |FileHandle:: |import |
 |3 |3 |3 |0.00086 |0.00074 |warnings::register::|import |
 |9 |3 |1 |0.00036 |0.00036 |strict:: |bits |
 |13 |13|13|0.00032 |0.00029 |strict:: |import |
 |2 |2 |2 |0.00020 |0.00020 |warnings:: |import |
 |2 |1 |1 |0.00020 |0.00020 |Getopt::Long:: |ParseOptionSpec|
 |7 |7 |6 |0.00043 |0.00020 |strict:: |unimport |

 For more information see the full list of 189 subroutines.

The first part of the report already shows the critical information regarding
 which subroutines are
using the most time. The next gives some statistics
 about the source files profiled.

 Source Code Files -- ordered by exclusive time then name
 |Stmts |Exclusive|Avg. |Reports |Source File
 |
 | |Time | | |

Perl version 5.20.1 documentation - perlperf

Page 12http://perldoc.perl.org

 |
 |2699761|15.66654 |6e-06 |line . block . sub|wordmatch
 |
 |35 |0.02187 |0.00062|line . block . sub|IO/Handle.pm
 |
 |274 |0.01525 |0.00006|line . block . sub|Getopt/Long.pm
 |
 |20 |0.00585 |0.00029|line . block . sub|Fcntl.pm
 |
 |128 |0.00340 |0.00003|line . block .
sub|Exporter/Heavy.pm |
 |42 |0.00332 |0.00008|line . block . sub|IO/File.pm
 |
 |261 |0.00308 |0.00001|line . block . sub|Exporter.pm
 |
 |323 |0.00248 |8e-06 |line . block . sub|constant.pm
 |
 |12 |0.00246 |0.00021|line . block .
sub|File/Spec/Unix.pm |
 |191 |0.00240 |0.00001|line . block . sub|vars.pm
 |
 |77 |0.00201 |0.00003|line . block . sub|FileHandle.pm
 |
 |12 |0.00198 |0.00016|line . block . sub|Carp.pm
 |
 |14 |0.00175 |0.00013|line . block . sub|Symbol.pm
 |
 |15 |0.00130 |0.00009|line . block . sub|IO.pm
 |
 |22 |0.00120 |0.00005|line . block . sub|IO/Seekable.pm
 |
 |198 |0.00085 |4e-06 |line . block .
sub|warnings/register.pm|
 |114 |0.00080 |7e-06 |line . block . sub|strict.pm
 |
 |47 |0.00068 |0.00001|line . block . sub|warnings.pm
 |
 |27 |0.00054 |0.00002|line . block . sub|overload.pm
 |
 |9 |0.00047 |0.00005|line . block . sub|SelectSaver.pm
 |
 |13 |0.00045 |0.00003|line . block . sub|File/Spec.pm
 |
 |2701595|15.73869 | |Total |
 |128647 |0.74946 | |Average |
 | |0.00201 |0.00003|Median |
 | |0.00121 |0.00003|Deviation |

 Report produced by the NYTProf 2.03 Perl profiler, developed by Tim
Bunce and
 Adam Kaplan.

At this point, if you're using the html report, you can click through the
 various links to bore down into
each subroutine and each line of code. Because
 we're using the text reporting here, and there's a
whole directory full of
 reports built for each source file, we'll just display a part of the
 corresponding

Perl version 5.20.1 documentation - perlperf

Page 13http://perldoc.perl.org

wordmatch-line.html file, sufficient to give an idea of the
 sort of output you can expect from this cool
tool.

 $> html2text nytprof/wordmatch-line.html

 Performance Profile -- -block view-.-line view-.-sub view-
 For wordmatch
 Run on Fri Sep 26 13:46:39 2008
 Reported on Fri Sep 26 13:47:22 2008

 File wordmatch

 Subroutines -- ordered by exclusive time
 |Calls |P|F|Inclusive|Exclusive|Subroutine | |
 | | | |Time |Time | |
 |251215|5|1|13.09263 |10.47692 |main::|matches|
 |260642|2|1|2.71199 |2.71199 |main::|debug |
 |1 |1|1|0.21404 |0.21404 |main::|report |
 |0 |0|0|0 |0 |main::|BEGIN |

 |Line|Stmts.|Exclusive|Avg. |Code
 |
 | | |Time | |
 |
 |1 | | | |#!/usr/bin/perl
 |
 |2 | | | |
 |
 | | | | |use strict;
 |
 |3 |3 |0.00086 |0.00029|# spent 0.00003s making 1 calls to
strict:: |
 | | | | |import
 |
 | | | | |use warnings;
 |
 |4 |3 |0.01563 |0.00521|# spent 0.00012s making 1 calls to
warnings:: |
 | | | | |import
 |
 |5 | | | |
 |
 |6 | | | |=head1 NAME
 |
 |7 | | | |
 |
 |8 | | | |filewords - word analysis of input file
 |
 <...snip...>
 |62 |1 |0.00445 |0.00445|print report(%count);
 |
 | | | | |# spent 0.21404s making 1 calls to
main::report|
 |63 | | | |
 |

Perl version 5.20.1 documentation - perlperf

Page 14http://perldoc.perl.org

 | | | | |# spent 23.56955s (10.47692+2.61571)
within |
 | | | | |main::matches which was called 251215
times, |
 | | | | |avg 0.00005s/call: # 50243 times
 |
 | | | | |(2.12134+0.51939s) at line 57 of
wordmatch, avg|
 | | | | |0.00005s/call # 50243 times
(2.17735+0.54550s) |
 |64 | | | |at line 56 of wordmatch, avg
0.00005s/call # |
 | | | | |50243 times (2.10992+0.51797s) at line
58 of |
 | | | | |wordmatch, avg 0.00005s/call # 50243
times |
 | | | | |(2.12696+0.51598s) at line 55 of
wordmatch, avg|
 | | | | |0.00005s/call # 50243 times
(1.94134+0.51687s) |
 | | | | |at line 54 of wordmatch, avg
0.00005s/call |
 | | | | |sub matches {
 |
 <...snip...>
 |102 | | | |
 |
 | | | | |# spent 2.71199s within main::debug
which was |
 | | | | |called 260642 times, avg 0.00001s/call:
|
 | | | | |251215 times (2.61571+0s) by
main::matches at |
 |103 | | | |line 74 of wordmatch, avg 0.00001s/call
9427 |
 | | | | |times (0.09628+0s) at line 50 of
wordmatch, avg|
 | | | | |0.00001s/call
 |
 | | | | |sub debug {
 |
 |104 |260642|0.58496 |2e-06 |my $message = shift;
 |
 |105 | | | |
 |
 |106 |260642|1.09917 |4e-06 |if ($debug) {
 |
 |107 | | | |print STDERR "DBG: $message\n";
 |
 |108 | | | |}
 |
 |109 | | | |}
 |
 |110 | | | |
 |
 |111 |1 |0.01501 |0.01501|exit 0;

Perl version 5.20.1 documentation - perlperf

Page 15http://perldoc.perl.org

 |
 |112 | | | |
 |

Oodles of very useful information in there - this seems to be the way forward.

See also Devel::NYTProf::Apache which hooks Devel::NYTProf into mod_perl.

SORTING
Perl modules are not the only tools a performance analyst has at their
 disposal, system tools like
time should not be overlooked as the next
 example shows, where we take a quick look at sorting.
Many books, theses and
 articles, have been written about efficient sorting algorithms, and this is not

the place to repeat such work, there's several good sorting modules which
 deserve taking a look at
too: Sort::Maker, Sort::Key spring to mind.
 However, it's still possible to make some
observations on certain Perl specific
 interpretations on issues relating to sorting data sets and give an
example or
 two with regard to how sorting large data volumes can effect performance.
 Firstly, an
often overlooked point when sorting large amounts of data, one can
 attempt to reduce the data set to
be dealt with and in many cases grep() can
 be quite useful as a simple filter:

 @data = sort grep { /$filter/ } @incoming

A command such as this can vastly reduce the volume of material to actually
 sort through in the first
place, and should not be too lightly disregarded
 purely on the basis of its simplicity. The KISS
principle is too often
 overlooked - the next example uses the simple system time utility to

demonstrate. Let's take a look at an actual example of sorting the contents of
 a large file, an apache
logfile would do. This one has over a quarter of a
 million lines, is 50M in size, and a snippet of it looks
like this:

logfile

 188.209-65-87.adsl-dyn.isp.belgacom.be - - [08/Feb/2007:12:57:16 +0000]
 "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.1; SV1)"
 188.209-65-87.adsl-dyn.isp.belgacom.be - - [08/Feb/2007:12:57:16 +0000]
 "GET /favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.1; SV1)"
 151.56.71.198 - - [08/Feb/2007:12:57:41 +0000] "GET /suse-on-vaio.html
HTTP/1.1" 200 2858 "http://www.linux-on-laptops.com/sony.html" "Mozilla/5.0
 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.1) Gecko/20061204
Firefox/2.0.0.1"
 151.56.71.198 - - [08/Feb/2007:12:57:42 +0000] "GET /data/css HTTP/1.1"
 404 206 "http://www.rfi.net/suse-on-vaio.html" "Mozilla/5.0 (Windows; U;
Windows NT 5.2; en-US; rv:1.8.1.1) Gecko/20061204 Firefox/2.0.0.1"
 151.56.71.198 - - [08/Feb/2007:12:57:43 +0000] "GET /favicon.ico
HTTP/1.1" 404 209 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US;
rv:1.8.1.1) Gecko/20061204 Firefox/2.0.0.1"
 217.113.68.60 - - [08/Feb/2007:13:02:15 +0000] "GET / HTTP/1.1" 304 -
"-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
 217.113.68.60 - - [08/Feb/2007:13:02:16 +0000] "GET /data/css HTTP/1.1"
 404 206 "http://www.rfi.net/" "Mozilla/4.0 (compatible; MSIE 6.0; Windows
NT 5.1; SV1)"
 debora.to.isac.cnr.it - - [08/Feb/2007:13:03:58 +0000] "GET
/suse-on-vaio.html HTTP/1.1" 200 2858
"http://www.linux-on-laptops.com/sony.html" "Mozilla/5.0 (compatible;
Konqueror/3.4; Linux) KHTML/3.4.0 (like Gecko)"
 debora.to.isac.cnr.it - - [08/Feb/2007:13:03:58 +0000] "GET /data/css
HTTP/1.1" 404 206 "http://www.rfi.net/suse-on-vaio.html" "Mozilla/5.0

Perl version 5.20.1 documentation - perlperf

Page 16http://perldoc.perl.org

(compatible; Konqueror/3.4; Linux) KHTML/3.4.0 (like Gecko)"
 debora.to.isac.cnr.it - - [08/Feb/2007:13:03:58 +0000] "GET
/favicon.ico HTTP/1.1" 404 209 "-" "Mozilla/5.0 (compatible; Konqueror/3.4;
 Linux) KHTML/3.4.0 (like Gecko)"
 195.24.196.99 - - [08/Feb/2007:13:26:48 +0000] "GET / HTTP/1.0" 200
3309 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.8.0.9)
Gecko/20061206 Firefox/1.5.0.9"
 195.24.196.99 - - [08/Feb/2007:13:26:58 +0000] "GET /data/css HTTP/1.0"
 404 206 "http://www.rfi.net/" "Mozilla/5.0 (Windows; U; Windows NT 5.1;
fr; rv:1.8.0.9) Gecko/20061206 Firefox/1.5.0.9"
 195.24.196.99 - - [08/Feb/2007:13:26:59 +0000] "GET /favicon.ico
HTTP/1.0" 404 209 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; fr;
rv:1.8.0.9) Gecko/20061206 Firefox/1.5.0.9"
 crawl1.cosmixcorp.com - - [08/Feb/2007:13:27:57 +0000] "GET /robots.txt
 HTTP/1.0" 200 179 "-" "voyager/1.0"
 crawl1.cosmixcorp.com - - [08/Feb/2007:13:28:25 +0000] "GET /links.html
 HTTP/1.0" 200 3413 "-" "voyager/1.0"
 fhm226.internetdsl.tpnet.pl - - [08/Feb/2007:13:37:32 +0000] "GET
/suse-on-vaio.html HTTP/1.1" 200 2858
"http://www.linux-on-laptops.com/sony.html" "Mozilla/4.0 (compatible; MSIE
6.0; Windows NT 5.1; SV1)"
 fhm226.internetdsl.tpnet.pl - - [08/Feb/2007:13:37:34 +0000] "GET
/data/css HTTP/1.1" 404 206 "http://www.rfi.net/suse-on-vaio.html"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
 80.247.140.134 - - [08/Feb/2007:13:57:35 +0000] "GET / HTTP/1.1" 200
3309 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR
1.1.4322)"
 80.247.140.134 - - [08/Feb/2007:13:57:37 +0000] "GET /data/css
HTTP/1.1" 404 206 "http://www.rfi.net" "Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; .NET CLR 1.1.4322)"
 pop.compuscan.co.za - - [08/Feb/2007:14:10:43 +0000] "GET / HTTP/1.1"
200 3309 "-" "www.clamav.net"
 livebot-207-46-98-57.search.live.com - - [08/Feb/2007:14:12:04 +0000]
"GET /robots.txt HTTP/1.0" 200 179 "-" "msnbot/1.0
(+http://search.msn.com/msnbot.htm)"
 livebot-207-46-98-57.search.live.com - - [08/Feb/2007:14:12:04 +0000]
"GET /html/oracle.html HTTP/1.0" 404 214 "-" "msnbot/1.0
(+http://search.msn.com/msnbot.htm)"
 dslb-088-064-005-154.pools.arcor-ip.net - - [08/Feb/2007:14:12:15
+0000] "GET / HTTP/1.1" 200 3309 "-" "www.clamav.net"
 196.201.92.41 - - [08/Feb/2007:14:15:01 +0000] "GET / HTTP/1.1" 200
3309 "-" "MOT-L7/08.B7.DCR MIB/2.2.1 Profile/MIDP-2.0
Configuration/CLDC-1.1"

The specific task here is to sort the 286,525 lines of this file by Response
 Code, Query, Browser,
Referring Url, and lastly Date. One solution might be to
 use the following code, which iterates over the
files given on the
 command-line.

sort-apache-log

 #!/usr/bin/perl -n

 use strict;
 use warnings;

 my @data;

Perl version 5.20.1 documentation - perlperf

Page 17http://perldoc.perl.org

 LINE:
 while (<>) {
 my $line = $_;
 if (
 $line =~ m/^(
 ([\w\.\-]+) # client
 \s*-\s*-\s*\[
 ([^]]+) # date
 \]\s*"\w+\s*
 (\S+) # query
 [^"]+"\s*
 (\d+) # status
 \s+\S+\s+"[^"]*"\s+"
 ([^"]*) # browser
 "
 .*
)$/x
) {
 my @chunks = split(/ +/, $line);
 my $ip = $1;
 my $date = $2;
 my $query = $3;
 my $status = $4;
 my $browser = $5;

 push(@data, [$ip, $date, $query, $status, $browser, $line]);
 }
 }

 my @sorted = sort {
 $a->[3] cmp $b->[3]
 ||
 $a->[2] cmp $b->[2]
 ||
 $a->[0] cmp $b->[0]
 ||
 $a->[1] cmp $b->[1]
 ||
 $a->[4] cmp $b->[4]
 } @data;

 foreach my $data (@sorted) {
 print $data->[5];
 }

 exit 0;

When running this program, redirect STDOUT so it is possible to check the
 output is correct from
following test runs and use the system time utility
 to check the overall runtime.

 $> time ./sort-apache-log logfile > out-sort

 real 0m17.371s
 user 0m15.757s

Perl version 5.20.1 documentation - perlperf

Page 18http://perldoc.perl.org

 sys 0m0.592s

The program took just over 17 wallclock seconds to run. Note the different
 values time outputs, it's
important to always use the same one, and to not
 confuse what each one means.

Elapsed Real Time

The overall, or wallclock, time between when time was called, and when it
 terminates. The
elapsed time includes both user and system times, and time
 spent waiting for other users and
processes on the system. Inevitably, this is
 the most approximate of the measurements given.

User CPU Time

The user time is the amount of time the entire process spent on behalf of the
 user on this
system executing this program.

System CPU Time

The system time is the amount of time the kernel itself spent executing
 routines, or system
calls, on behalf of this process user.

Running this same process as a Schwarzian Transform it is possible to
 eliminate the input and
output arrays for storing all the data, and work on the
 input directly as it arrives too. Otherwise, the
code looks fairly similar:

sort-apache-log-schwarzian

 #!/usr/bin/perl -n

 use strict;
 use warnings;

 print

 map $_->[0] =>

 sort {
 $a->[4] cmp $b->[4]
 ||
 $a->[3] cmp $b->[3]
 ||
 $a->[1] cmp $b->[1]
 ||
 $a->[2] cmp $b->[2]
 ||
 $a->[5] cmp $b->[5]
 }
 map [$_, m/^(
 ([\w\.\-]+) # client
 \s*-\s*-\s*\[
 ([^]]+) # date
 \]\s*"\w+\s*
 (\S+) # query
 [^"]+"\s*
 (\d+) # status
 \s+\S+\s+"[^"]*"\s+"
 ([^"]*) # browser
 "

Perl version 5.20.1 documentation - perlperf

Page 19http://perldoc.perl.org

 .*
)$/xo]

 => <>;

 exit 0;

Run the new code against the same logfile, as above, to check the new time.

 $> time ./sort-apache-log-schwarzian logfile > out-schwarz

 real 0m9.664s
 user 0m8.873s
 sys 0m0.704s

The time has been cut in half, which is a respectable speed improvement by any
 standard. Naturally,
it is important to check the output is consistent with
 the first program run, this is where the Unix
system cksum utility comes in.

 $> cksum out-sort out-schwarz
 3044173777 52029194 out-sort
 3044173777 52029194 out-schwarz

BTW. Beware too of pressure from managers who see you speed a program up by 50%
 of the
runtime once, only to get a request one month later to do the same again
 (true story) - you'll just have
to point out your only human, even if you are a
 Perl programmer, and you'll see what you can do...

LOGGING
An essential part of any good development process is appropriate error handling
 with appropriately
informative messages, however there exists a school of
 thought which suggests that log files should
be chatty, as if the chain of
 unbroken output somehow ensures the survival of the program. If speed is
in
 any way an issue, this approach is wrong.

A common sight is code which looks something like this:

 logger->debug("A logging message via process-id: $$ INC: " .
Dumper(\%INC))

The problem is that this code will always be parsed and executed, even when the
 debug level set in
the logging configuration file is zero. Once the debug()
 subroutine has been entered, and the internal
$debug variable confirmed to
 be zero, for example, the message which has been sent in will be
discarded and
 the program will continue. In the example given though, the \%INC hash will
 already
have been dumped, and the message string constructed, all of which work
 could be bypassed by a
debug variable at the statement level, like this:

 logger->debug("A logging message via process-id: $$ INC: " .
Dumper(\%INC)) if $DEBUG;

This effect can be demonstrated by setting up a test script with both forms,
 including a debug()
subroutine to emulate typical logger() functionality.

ifdebug

 #!/usr/bin/perl

Perl version 5.20.1 documentation - perlperf

Page 20http://perldoc.perl.org

 use strict;
 use warnings;

 use Benchmark;
 use Data::Dumper;
 my $DEBUG = 0;

 sub debug {
 my $msg = shift;

 if ($DEBUG) {
 print "DEBUG: $msg\n";
 }
 };

 timethese(100000, {
 'debug' => sub {
 debug("A $0 logging message via process-id: $$" .
Dumper(\%INC))
 },
 'ifdebug' => sub {
 debug("A $0 logging message via process-id: $$" .
Dumper(\%INC)) if $DEBUG
 },
 });

Let's see what Benchmark makes of this:

 $> perl ifdebug
 Benchmark: timing 100000 iterations of constant, sub...
 ifdebug: 0 wallclock secs (0.01 usr + 0.00 sys = 0.01 CPU) @
10000000.00/s (n=100000)
 (warning: too few iterations for a reliable count)
 debug: 14 wallclock secs (13.18 usr + 0.04 sys = 13.22 CPU) @
7564.30/s (n=100000)

In the one case the code, which does exactly the same thing as far as
 outputting any debugging
information is concerned, in other words nothing,
 takes 14 seconds, and in the other case the code
takes one hundredth of a
 second. Looks fairly definitive. Use a $DEBUG variable BEFORE you call the
subroutine, rather than relying on the smart functionality inside it.

Logging if DEBUG (constant)
It's possible to take the previous idea a little further, by using a compile
 time DEBUG constant.

ifdebug-constant

 #!/usr/bin/perl

 use strict;
 use warnings;

 use Benchmark;
 use Data::Dumper;
 use constant

Perl version 5.20.1 documentation - perlperf

Page 21http://perldoc.perl.org

 DEBUG => 0
 ;

 sub debug {
 if (DEBUG) {
 my $msg = shift;
 print "DEBUG: $msg\n";
 }
 };

 timethese(100000, {
 'debug' => sub {
 debug("A $0 logging message via process-id: $$" .
Dumper(\%INC))
 },
 'constant' => sub {
 debug("A $0 logging message via process-id: $$" .
Dumper(\%INC)) if DEBUG
 },
 });

Running this program produces the following output:

 $> perl ifdebug-constant
 Benchmark: timing 100000 iterations of constant, sub...
 constant: 0 wallclock secs (-0.00 usr + 0.00 sys = -0.00 CPU) @
-7205759403792793600000.00/s (n=100000)
 (warning: too few iterations for a reliable count)
 sub: 14 wallclock secs (13.09 usr + 0.00 sys = 13.09 CPU) @
7639.42/s (n=100000)

The DEBUG constant wipes the floor with even the $debug variable,
 clocking in at minus zero
seconds, and generates a "warning: too few iterations
 for a reliable count" message into the bargain.
To see what is really going
 on, and why we had too few iterations when we thought we asked for
100000, we
 can use the very useful B::Deparse to inspect the new code:

 $> perl -MO=Deparse ifdebug-constant

 use Benchmark;
 use Data::Dumper;
 use constant ('DEBUG', 0);
 sub debug {
 use warnings;
 use strict 'refs';
 0;
 }
 use warnings;
 use strict 'refs';
 timethese(100000, {'sub', sub {
 debug "A $0 logging message via process-id: $$" . Dumper(\%INC);
 }
 , 'constant', sub {
 0;
 }
 });

Perl version 5.20.1 documentation - perlperf

Page 22http://perldoc.perl.org

 ifdebug-constant syntax OK

The output shows the constant() subroutine we're testing being replaced with
 the value of the DEBUG
constant: zero. The line to be tested has been
 completely optimized away, and you can't get much
more efficient than that.

POSTSCRIPT
This document has provided several way to go about identifying hot-spots, and
 checking whether any
modifications have improved the runtime of the code.

As a final thought, remember that it's not (at the time of writing) possible to
 produce a useful program
which will run in zero or negative time and this basic
 principle can be written as: useful programs are
slow by their very
 definition. It is of course possible to write a nearly instantaneous program,
 but it's
not going to do very much, here's a very efficient one:

 $> perl -e 0

Optimizing that any further is a job for p5p.

SEE ALSO
Further reading can be found using the modules and links below.

PERLDOCS
For example: perldoc -f sort.

perlfaq4.

perlfork, perlfunc, perlretut, perlthrtut.

threads.

MAN PAGES
time.

MODULES
It's not possible to individually showcase all the performance related code for
 Perl here, naturally, but
here's a short list of modules from the CPAN which
 deserve further attention.

 Apache::DProf
 Apache::SmallProf
 Benchmark
 DBIx::Profile
 Devel::AutoProfiler
 Devel::DProf
 Devel::DProfLB
 Devel::FastProf
 Devel::GraphVizProf
 Devel::NYTProf
 Devel::NYTProf::Apache
 Devel::Profiler
 Devel::Profile
 Devel::Profit
 Devel::SmallProf
 Devel::WxProf
 POE::Devel::Profiler
 Sort::Key
 Sort::Maker

Perl version 5.20.1 documentation - perlperf

Page 23http://perldoc.perl.org

URLS
Very useful online reference material:

 http://www.ccl4.org/~nick/P/Fast_Enough/

 http://www-128.ibm.com/developerworks/library/l-optperl.html

http://perlbuzz.com/2007/11/bind-output-variables-in-dbi-for-speed-and-safe
ty.html

 http://en.wikipedia.org/wiki/Performance_analysis

 http://apache.perl.org/docs/1.0/guide/performance.html

 http://perlgolf.sourceforge.net/

 http://www.sysarch.com/Perl/sort_paper.html

AUTHOR
Richard Foley <richard.foley@rfi.net> Copyright (c) 2008

