
Perl version 5.20.1 documentation - perlport

Page 1http://perldoc.perl.org

NAME
perlport - Writing portable Perl

DESCRIPTION
Perl runs on numerous operating systems. While most of them share
 much in common, they also
have their own unique features.

This document is meant to help you to find out what constitutes portable
 Perl code. That way once
you make a decision to write portably,
 you know where the lines are drawn, and you can stay within
them.

There is a tradeoff between taking full advantage of one particular
 type of computer and taking
advantage of a full range of them.
 Naturally, as you broaden your range and become more diverse,
the
 common factors drop, and you are left with an increasingly smaller
 area of common ground in
which you can operate to accomplish a
 particular task. Thus, when you begin attacking a problem, it
is
 important to consider under which part of the tradeoff curve you
 want to operate. Specifically, you
must decide whether it is
 important that the task that you are coding have the full generality
 of being
portable, or whether to just get the job done right now.
 This is the hardest choice to be made. The rest
is easy, because
 Perl provides many choices, whichever way you want to approach your
 problem.

Looking at it another way, writing portable code is usually about
 willfully limiting your available
choices. Naturally, it takes
 discipline and sacrifice to do that. The product of portability
 and
convenience may be a constant. You have been warned.

Be aware of two important points:

Not all Perl programs have to be portable

There is no reason you should not use Perl as a language to glue Unix
 tools together, or to
prototype a Macintosh application, or to manage the
 Windows registry. If it makes no sense to
aim for portability for one
 reason or another in a given program, then don't bother.

Nearly all of Perl already is portable

Don't be fooled into thinking that it is hard to create portable Perl
 code. It isn't. Perl tries its
level-best to bridge the gaps between
 what's available on different platforms, and all the
means available to
 use those features. Thus almost all Perl code runs on any machine
 without
modification. But there are some significant issues in
 writing portable code, and this document
is entirely about those issues.

Here's the general rule: When you approach a task commonly done
 using a whole range of platforms,
think about writing portable
 code. That way, you don't sacrifice much by way of the implementation

choices you can avail yourself of, and at the same time you can give
 your users lots of platform
choices. On the other hand, when you have to
 take advantage of some unique feature of a particular
platform, as is
 often the case with systems programming (whether for Unix, Windows,
 VMS, etc.),
consider writing platform-specific code.

When the code will run on only two or three operating systems, you
 may need to consider only the
differences of those particular systems.
 The important thing is to decide where the code will run and
to be
 deliberate in your decision.

The material below is separated into three main sections: main issues of
 portability (ISSUES),
platform-specific issues (PLATFORMS), and
 built-in perl functions that behave differently on various
ports
 (FUNCTION IMPLEMENTATIONS).

This information should not be considered complete; it includes possibly
 transient information about
idiosyncrasies of some of the ports, almost
 all of which are in a state of constant evolution. Thus, this
material
 should be considered a perpetual work in progress
 (<IMG SRC="yellow_sign.gif"
ALT="Under Construction">).

Perl version 5.20.1 documentation - perlport

Page 2http://perldoc.perl.org

ISSUES
Newlines

In most operating systems, lines in files are terminated by newlines.
 Just what is used as a newline
may vary from OS to OS. Unix
 traditionally uses \012, one type of DOSish I/O uses \015\012,
 and
Mac OS uses \015.

Perl uses \n to represent the "logical" newline, where what is
 logical may depend on the platform in
use. In MacPerl, \n always
 means \015. In DOSish perls, \n usually means \012, but when

accessing a file in "text" mode, perl uses the :crlf layer that
 translates it to (or from) \015\012,
depending on whether you're
 reading or writing. Unix does the same thing on ttys in canonical
 mode.
\015\012 is commonly referred to as CRLF.

To trim trailing newlines from text lines use chomp(). With default settings that function looks for a
trailing \n character and thus trims in a portable way.

When dealing with binary files (or text files in binary mode) be sure
 to explicitly set $/ to the
appropriate value for your file format
 before using chomp().

Because of the "text" mode translation, DOSish perls have limitations
 in using seek and tell on a
file accessed in "text" mode.
 Stick to seek-ing to locations you got from tell (and no
 others), and
you are usually free to use seek and tell even
 in "text" mode. Using seek or tell or other file
operations
 may be non-portable. If you use binmode on a file, however, you
 can usually seek and
tell with arbitrary values in safety.

A common misconception in socket programming is that \n eq \012
 everywhere. When using
protocols such as common Internet protocols, \012 and \015 are called for specifically, and the
values of
 the logical \n and \r (carriage return) are not reliable.

 print SOCKET "Hi there, client!\r\n"; # WRONG
 print SOCKET "Hi there, client!\015\012"; # RIGHT

However, using \015\012 (or \cM\cJ, or \x0D\x0A) can be tedious
 and unsightly, as well as
confusing to those maintaining the code. As
 such, the Socket module supplies the Right Thing for
those who want it.

 use Socket qw(:DEFAULT :crlf);
 print SOCKET "Hi there, client!$CRLF" # RIGHT

When reading from a socket, remember that the default input record
 separator $/ is \n, but robust
socket code will recognize as
 either \012 or \015\012 as end of line:

 while (<SOCKET>) {
 # ...
 }

Because both CRLF and LF end in LF, the input record separator can
 be set to LF and any CR
stripped later. Better to write:

 use Socket qw(:DEFAULT :crlf);
 local($/) = LF; # not needed if $/ is already \012

 while (<SOCKET>) {
 s/$CR?$LF/\n/; # not sure if socket uses LF or CRLF, OK
 # s/\015?\012/\n/; # same thing
 }

This example is preferred over the previous one--even for Unix
 platforms--because now any \015's (

Perl version 5.20.1 documentation - perlport

Page 3http://perldoc.perl.org

\cM's) are stripped out
 (and there was much rejoicing).

Similarly, functions that return text data--such as a function that
 fetches a web page--should
sometimes translate newlines before
 returning the data, if they've not yet been translated to the local

newline representation. A single line of code will often suffice:

 $data =~ s/\015?\012/\n/g;
 return $data;

Some of this may be confusing. Here's a handy reference to the ASCII CR
 and LF characters. You
can print it out and stick it in your wallet.

 LF eq \012 eq \x0A eq \cJ eq chr(10) eq ASCII 10
 CR eq \015 eq \x0D eq \cM eq chr(13) eq ASCII 13

 | Unix | DOS | Mac |

 \n | LF | LF | CR |
 \r | CR | CR | LF |
 \n * | LF | CRLF | CR |
 \r * | CR | CR | LF |

 * text-mode STDIO

The Unix column assumes that you are not accessing a serial line
 (like a tty) in canonical mode. If you
are, then CR on input becomes
 "\n", and "\n" on output becomes CRLF.

These are just the most common definitions of \n and \r in Perl.
 There may well be others. For
example, on an EBCDIC implementation
 such as z/OS (OS/390) or OS/400 (using the ILE, the PASE
is ASCII-based)
 the above material is similar to "Unix" but the code numbers change:

 LF eq \025 eq \x15 eq \cU eq chr(21) eq CP-1047 21
 LF eq \045 eq \x25 eq chr(37) eq CP-0037 37
 CR eq \015 eq \x0D eq \cM eq chr(13) eq CP-1047 13
 CR eq \015 eq \x0D eq \cM eq chr(13) eq CP-0037 13

 | z/OS | OS/400 |

 \n | LF | LF |
 \r | CR | CR |
 \n * | LF | LF |
 \r * | CR | CR |

 * text-mode STDIO

Numbers endianness and Width
Different CPUs store integers and floating point numbers in different
 orders (called endianness) and
widths (32-bit and 64-bit being the
 most common today). This affects your programs when they
attempt to transfer
 numbers in binary format from one CPU architecture to another,
 usually either
"live" via network connection, or by storing the
 numbers to secondary storage such as a disk file or
tape.

Conflicting storage orders make utter mess out of the numbers. If a
 little-endian host (Intel, VAX)
stores 0x12345678 (305419896 in
 decimal), a big-endian host (Motorola, Sparc, PA) reads it as

0x78563412 (2018915346 in decimal). Alpha and MIPS can be either:
 Digital/Compaq used/uses
them in little-endian mode; SGI/Cray uses
 them in big-endian mode. To avoid this problem in network

Perl version 5.20.1 documentation - perlport

Page 4http://perldoc.perl.org

(socket)
 connections use the pack and unpack formats n and N, the
 "network" orders. These are
guaranteed to be portable.

As of perl 5.10.0, you can also use the > and < modifiers
 to force big- or little-endian byte-order. This
is useful if you want
 to store signed integers or 64-bit integers, for example.

You can explore the endianness of your platform by unpacking a
 data structure packed in native
format such as:

 print unpack("h*", pack("s2", 1, 2)), "\n";
 # '10002000' on e.g. Intel x86 or Alpha 21064 in little-endian mode
 # '00100020' on e.g. Motorola 68040

If you need to distinguish between endian architectures you could use
 either of the variables set like
so:

 $is_big_endian = unpack("h*", pack("s", 1)) =~ /01/;
 $is_little_endian = unpack("h*", pack("s", 1)) =~ /^1/;

Differing widths can cause truncation even between platforms of equal
 endianness. The platform of
shorter width loses the upper parts of the
 number. There is no good solution for this problem except to
avoid
 transferring or storing raw binary numbers.

One can circumnavigate both these problems in two ways. Either
 transfer and store numbers always
in text format, instead of raw
 binary, or else consider using modules like Data::Dumper and Storable

(included as of perl 5.8). Keeping all data as text significantly
 simplifies matters.

The v-strings are portable only up to v2147483647 (0x7FFFFFFF), that's
 how far EBCDIC, or more
precisely UTF-EBCDIC will go.

Files and Filesystems
Most platforms these days structure files in a hierarchical fashion.
 So, it is reasonably safe to assume
that all platforms support the
 notion of a "path" to uniquely identify a file on the system. How
 that path
is really written, though, differs considerably.

Although similar, file path specifications differ between Unix,
 Windows, Mac OS, OS/2, VMS, VOS,
RISC OS, and probably others.
 Unix, for example, is one of the few OSes that has the elegant idea
 of
a single root directory.

DOS, OS/2, VMS, VOS, and Windows can work similarly to Unix with /
 as path separator, or in their
own idiosyncratic ways (such as having
 several root directories and various "unrooted" device files
such NIL:
 and LPT:).

Mac OS 9 and earlier used : as a path separator instead of /.

The filesystem may support neither hard links (link) nor
 symbolic links (symlink, readlink,
lstat).

The filesystem may support neither access timestamp nor change
 timestamp (meaning that about the
only portable timestamp is the
 modification timestamp), or one second granularity of any timestamps

(e.g. the FAT filesystem limits the time granularity to two seconds).

The "inode change timestamp" (the -C filetest) may really be the
 "creation timestamp" (which it is not
in Unix).

VOS perl can emulate Unix filenames with / as path separator. The
 native pathname characters
greater-than, less-than, number-sign, and
 percent-sign are always accepted.

RISC OS perl can emulate Unix filenames with / as path
 separator, or go native and use . for path
separator and : to
 signal filesystems and disk names.

Perl version 5.20.1 documentation - perlport

Page 5http://perldoc.perl.org

Don't assume Unix filesystem access semantics: that read, write,
 and execute are all the permissions
there are, and even if they exist,
 that their semantics (for example what do r, w, and x mean on
 a
directory) are the Unix ones. The various Unix/POSIX compatibility
 layers usually try to make
interfaces like chmod() work, but sometimes
 there simply is no good mapping.

If all this is intimidating, have no (well, maybe only a little)
 fear. There are modules that can help. The
File::Spec modules
 provide methods to do the Right Thing on whatever platform happens
 to be
running the program.

 use File::Spec::Functions;
 chdir(updir()); # go up one directory
 my $file = catfile(curdir(), 'temp', 'file.txt');
 # on Unix and Win32, './temp/file.txt'
 # on Mac OS Classic, ':temp:file.txt'
 # on VMS, '[.temp]file.txt'

File::Spec is available in the standard distribution as of version
 5.004_05. File::Spec::Functions is only
in File::Spec 0.7 and later,
 and some versions of perl come with version 0.6. If File::Spec
 is not
updated to 0.7 or later, you must use the object-oriented
 interface from File::Spec (or upgrade
File::Spec).

In general, production code should not have file paths hardcoded.
 Making them user-supplied or read
from a configuration file is
 better, keeping in mind that file path syntax varies on different
 machines.

This is especially noticeable in scripts like Makefiles and test suites,
 which often assume / as a path
separator for subdirectories.

Also of use is File::Basename from the standard distribution, which
 splits a pathname into pieces
(base filename, full path to directory,
 and file suffix).

Even when on a single platform (if you can call Unix a single platform),
 remember not to count on the
existence or the contents of particular
 system-specific files or directories, like /etc/passwd,
/etc/sendmail.conf, /etc/resolv.conf, or even /tmp/. For
 example, /etc/passwd may exist but not contain
the encrypted
 passwords, because the system is using some form of enhanced security.
 Or it may not
contain all the accounts, because the system is using NIS. If code does need to rely on such a file,
include a description of the
 file and its format in the code's documentation, then make it easy for
 the
user to override the default location of the file.

Don't assume a text file will end with a newline. They should,
 but people forget.

Do not have two files or directories of the same name with different
 case, like test.pl and Test.pl, as
many platforms have
 case-insensitive (or at least case-forgiving) filenames. Also, try
 not to have
non-word characters (except for .) in the names, and
 keep them to the 8.3 convention, for maximum
portability, onerous a
 burden though this may appear.

Likewise, when using the AutoSplit module, try to keep your functions to
 8.3 naming and
case-insensitive conventions; or, at the least,
 make it so the resulting files have a unique
(case-insensitively)
 first 8 characters.

Whitespace in filenames is tolerated on most systems, but not all,
 and even on systems where it
might be tolerated, some utilities
 might become confused by such whitespace.

Many systems (DOS, VMS ODS-2) cannot have more than one . in their
 filenames.

Don't assume > won't be the first character of a filename.
 Always use < explicitly to open a file for
reading, or even
 better, use the three-arg version of open, unless you want the user to
 be able to
specify a pipe open.

 open my $fh, '<', $existing_file) or die $!;

Perl version 5.20.1 documentation - perlport

Page 6http://perldoc.perl.org

If filenames might use strange characters, it is safest to open it
 with sysopen instead of open. open
is magic and can
 translate characters like >, <, and |, which may
 be the wrong thing to do.
(Sometimes, though, it's the right thing.)
 Three-arg open can also help protect against this translation
in cases
 where it is undesirable.

Don't use : as a part of a filename since many systems use that for
 their own semantics (Mac OS
Classic for separating pathname components,
 many networking schemes and utilities for separating
the nodename and
 the pathname, and so on). For the same reasons, avoid @, ; and |.

Don't assume that in pathnames you can collapse two leading slashes // into one: some networking
and clustering filesystems have special
 semantics for that. Let the operating system to sort it out.

The portable filename characters as defined by ANSI C are

 a b c d e f g h i j k l m n o p q r t u v w x y z
 A B C D E F G H I J K L M N O P Q R T U V W X Y Z
 0 1 2 3 4 5 6 7 8 9
 . _ -

and the "-" shouldn't be the first character. If you want to be
 hypercorrect, stay case-insensitive and
within the 8.3 naming
 convention (all the files and directories have to be unique within one
 directory if
their names are lowercased and truncated to eight
 characters before the ., if any, and to three
characters after the ., if any). (And do not use .s in directory names.)

System Interaction
Not all platforms provide a command line. These are usually platforms
 that rely primarily on a
Graphical User Interface (GUI) for user
 interaction. A program requiring a command line interface
might
 not work everywhere. This is probably for the user of the program
 to deal with, so don't stay up
late worrying about it.

Some platforms can't delete or rename files held open by the system,
 this limitation may also apply to
changing filesystem metainformation
 like file permissions or owners. Remember to close files when
you
 are done with them. Don't unlink or rename an open file. Don't tie or open a file already tied
or opened; untie or close
 it first.

Don't open the same file more than once at a time for writing, as some
 operating systems put
mandatory locks on such files.

Don't assume that write/modify permission on a directory gives the
 right to add or delete
files/directories in that directory. That is
 filesystem specific: in some filesystems you need write/modify
permission also (or even just) in the file/directory itself. In some
 filesystems (AFS, DFS) the
permission to add/delete directory entries
 is a completely separate permission.

Don't assume that a single unlink completely gets rid of the file:
 some filesystems (most notably the
ones in VMS) have versioned
 filesystems, and unlink() removes only the most recent one (it doesn't

remove all the versions because by default the native tools on those
 platforms remove just the most
recent version, too). The portable
 idiom to remove all the versions of a file is

 1 while unlink "file";

This will terminate if the file is undeleteable for some reason
 (protected, not there, and so on).

Don't count on a specific environment variable existing in %ENV.
 Don't count on %ENV entries being
case-sensitive, or even
 case-preserving. Don't try to clear %ENV by saying %ENV = ();, or,
 if you
really have to, make it conditional on $^O ne 'VMS' since in
 VMS the %ENV table is much more than
a per-process key-value string
 table.

On VMS, some entries in the %ENV hash are dynamically created when
 their key is used on a read if
they did not previously exist. The
 values for $ENV{HOME}, $ENV{TERM}, $ENV{HOME}, and

Perl version 5.20.1 documentation - perlport

Page 7http://perldoc.perl.org

$ENV{USER},
 are known to be dynamically generated. The specific names that are
 dynamically
generated may vary with the version of the C library on VMS,
 and more may exist than is
documented.

On VMS by default, changes to the %ENV hash are persistent after the process
 exits. This can cause
unintended issues.

Don't count on signals or %SIG for anything.

Don't count on filename globbing. Use opendir, readdir, and closedir instead.

Don't count on per-program environment variables, or per-program current
 directories.

Don't count on specific values of $!, neither numeric nor
 especially the strings values. Users may
switch their locales causing
 error messages to be translated into their languages. If you can
 trust a
POSIXish environment, you can portably use the symbols defined
 by the Errno module, like
ENOENT. And don't trust on the values of $!
 at all except immediately after a failed system call.

Command names versus file pathnames
Don't assume that the name used to invoke a command or program with system or exec can also be
used to test for the existence of the
 file that holds the executable code for that command or program.

First, many systems have "internal" commands that are built-in to the
 shell or OS and while these
commands can be invoked, there is no
 corresponding file. Second, some operating systems (e.g.,
Cygwin,
 DJGPP, OS/2, and VOS) have required suffixes for executable files;
 these suffixes are
generally permitted on the command name but are not
 required. Thus, a command like "perl" might
exist in a file named
 "perl", "perl.exe", or "perl.pm", depending on the operating system.
 The variable
"_exe" in the Config module holds the executable suffix,
 if any. Third, the VMS port carefully sets up
$^X and
 $Config{perlpath} so that no further processing is required. This is
 just as well, because the
matching regular expression used below would
 then have to deal with a possible trailing version
number in the VMS
 file name.

To convert $^X to a file pathname, taking account of the requirements
 of the various operating system
possibilities, say:

 use Config;
 my $thisperl = $^X;
 if ($^O ne 'VMS')
 {$thisperl .= $Config{_exe} unless $thisperl =~ m/$Config{_exe}$/i;}

To convert $Config{perlpath} to a file pathname, say:

 use Config;
 my $thisperl = $Config{perlpath};
 if ($^O ne 'VMS')
 {$thisperl .= $Config{_exe} unless $thisperl =~ m/$Config{_exe}$/i;}

Networking
Don't assume that you can reach the public Internet.

Don't assume that there is only one way to get through firewalls
 to the public Internet.

Don't assume that you can reach outside world through any other port
 than 80, or some web proxy.
ftp is blocked by many firewalls.

Don't assume that you can send email by connecting to the local SMTP port.

Don't assume that you can reach yourself or any node by the name
 'localhost'. The same goes for
'127.0.0.1'. You will have to try both.

Perl version 5.20.1 documentation - perlport

Page 8http://perldoc.perl.org

Don't assume that the host has only one network card, or that it
 can't bind to many virtual IP
addresses.

Don't assume a particular network device name.

Don't assume a particular set of ioctl()s will work.

Don't assume that you can ping hosts and get replies.

Don't assume that any particular port (service) will respond.

Don't assume that Sys::Hostname (or any other API or command) returns
 either a fully qualified
hostname or a non-qualified hostname: it all
 depends on how the system had been configured. Also
remember that for
 things such as DHCP and NAT, the hostname you get back might not be
 very
useful.

All the above "don't":s may look daunting, and they are, but the key
 is to degrade gracefully if one
cannot reach the particular network
 service one wants. Croaking or hanging do not look very
professional.

Interprocess Communication (IPC)
In general, don't directly access the system in code meant to be
 portable. That means, no system,
exec, fork, pipe, ``, qx//, open with a |, nor any of the other things
 that makes being a perl
hacker worth being.

Commands that launch external processes are generally supported on
 most platforms (though many
of them do not support any type of
 forking). The problem with using them arises from what you invoke
them on. External tools are often named differently on different
 platforms, may not be available in the
same location, might accept
 different arguments, can behave differently, and often present their

results in a platform-dependent way. Thus, you should seldom depend
 on them to produce consistent
results. (Then again, if you're calling netstat -a, you probably don't expect it to run on both Unix and
CP/M.)

One especially common bit of Perl code is opening a pipe to sendmail:

 open(MAIL, '|/usr/lib/sendmail -t')
	 or die "cannot fork sendmail: $!";

This is fine for systems programming when sendmail is known to be
 available. But it is not fine for
many non-Unix systems, and even
 some Unix systems that may not have sendmail installed. If a
portable
 solution is needed, see the various distributions on CPAN that deal
 with it. Mail::Mailer and
Mail::Send in the MailTools distribution are
 commonly used, and provide several mailing methods,
including mail,
 sendmail, and direct SMTP (via Net::SMTP) if a mail transfer agent is
 not available.
Mail::Sendmail is a standalone module that provides
 simple, platform-independent mailing.

The Unix System V IPC (msg*(), sem*(), shm*()) is not available
 even on all Unix platforms.

Do not use either the bare result of pack("N", 10, 20, 30, 40) or
 bare v-strings (such as
v10.20.30.40) to represent IPv4 addresses:
 both forms just pack the four bytes into network order.
That this
 would be equal to the C language in_addr struct (which is what the
 socket code internally
uses) is not guaranteed. To be portable use
 the routines of the Socket extension, such as
inet_aton(), inet_ntoa(), and sockaddr_in().

The rule of thumb for portable code is: Do it all in portable Perl, or
 use a module (that may internally
implement it with platform-specific
 code, but expose a common interface).

External Subroutines (XS)
XS code can usually be made to work with any platform, but dependent
 libraries, header files, etc.,
might not be readily available or
 portable, or the XS code itself might be platform-specific, just as Perl

code might be. If the libraries and headers are portable, then it is
 normally reasonable to make sure

Perl version 5.20.1 documentation - perlport

Page 9http://perldoc.perl.org

the XS code is portable, too.

A different type of portability issue arises when writing XS code:
 availability of a C compiler on the
end-user's system. C brings
 with it its own portability issues, and writing XS code will expose
 you to
some of those. Writing purely in Perl is an easier way to
 achieve portability.

Standard Modules
In general, the standard modules work across platforms. Notable
 exceptions are the CPAN module
(which currently makes connections to external
 programs that may not be available), platform-specific
modules (like
 ExtUtils::MM_VMS), and DBM modules.

There is no one DBM module available on all platforms.
 SDBM_File and the others are generally
available on all Unix and DOSish
 ports, but not in MacPerl, where only NBDM_File and DB_File are

available.

The good news is that at least some DBM module should be available, and
 AnyDBM_File will use
whichever module it can find. Of course, then
 the code needs to be fairly strict, dropping to the
greatest common
 factor (e.g., not exceeding 1K for each record), so that it will
 work with any DBM
module. See AnyDBM_File for more details.

Time and Date
The system's notion of time of day and calendar date is controlled in
 widely different ways. Don't
assume the timezone is stored in $ENV{TZ},
 and even if it is, don't assume that you can control the
timezone through
 that variable. Don't assume anything about the three-letter timezone
 abbreviations
(for example that MST would be the Mountain Standard Time,
 it's been known to stand for Moscow
Standard Time). If you need to
 use timezones, express them in some unambiguous format like the

exact number of minutes offset from UTC, or the POSIX timezone
 format.

Don't assume that the epoch starts at 00:00:00, January 1, 1970,
 because that is OS- and
implementation-specific. It is better to
 store a date in an unambiguous representation. The ISO 8601
standard
 defines YYYY-MM-DD as the date format, or YYYY-MM-DDTHH:MM:SS
 (that's a literal "T"
separating the date from the time).
 Please do use the ISO 8601 instead of making us guess what
 date
02/03/04 might be. ISO 8601 even sorts nicely as-is.
 A text representation (like "1987-12-18") can be
easily converted
 into an OS-specific value using a module like Date::Parse.
 An array of values, such
as those returned by localtime, can be
 converted to an OS-specific representation using
Time::Local.

When calculating specific times, such as for tests in time or date modules,
 it may be appropriate to
calculate an offset for the epoch.

 require Time::Local;
 my $offset = Time::Local::timegm(0, 0, 0, 1, 0, 70);

The value for $offset in Unix will be 0, but in Mac OS Classic
 will be some large number. $offset
can then be added to a Unix time
 value to get what should be the proper value on any system.

Character sets and character encoding
Assume very little about character sets.

Assume nothing about numerical values (ord, chr) of characters.
 Do not use explicit code point
ranges (like \xHH-\xHH); use for
 example symbolic character classes like [:print:].

Do not assume that the alphabetic characters are encoded contiguously
 (in the numeric sense).
There may be gaps.

Do not assume anything about the ordering of the characters.
 The lowercase letters may come before
or after the uppercase letters;
 the lowercase and uppercase may be interlaced so that both "a" and
"A"
 come before "b"; the accented and other international characters may
 be interlaced so that ä
comes before "b".

Perl version 5.20.1 documentation - perlport

Page 10http://perldoc.perl.org

Internationalisation
If you may assume POSIX (a rather large assumption), you may read
 more about the POSIX locale
system from perllocale. The locale
 system at least attempts to make things a little bit more portable,

or at least more convenient and native-friendly for non-English
 users. The system affects character
sets and encoding, and date
 and time formatting--amongst other things.

If you really want to be international, you should consider Unicode.
 See perluniintro and perlunicode
for more information.

If you want to use non-ASCII bytes (outside the bytes 0x00..0x7f) in
 the "source code" of your code,
to be portable you have to be explicit
 about what bytes they are. Someone might for example be
using your
 code under a UTF-8 locale, in which case random native bytes might be
 illegal
("Malformed UTF-8 ...") This means that for example embedding
 ISO 8859-1 bytes beyond 0x7f into
your strings might cause trouble
 later. If the bytes are native 8-bit bytes, you can use the bytes

pragma. If the bytes are in a string (regular expression being a
 curious string), you can often also use
the \xHH notation instead
 of embedding the bytes as-is. If you want to write your code in UTF-8,
 you
can use the utf8.

System Resources
If your code is destined for systems with severely constrained (or
 missing!) virtual memory systems
then you want to be especially mindful
 of avoiding wasteful constructs such as:

 my @lines = <$very_large_file>; # bad

 while (<$fh>) {$file .= $_} # sometimes bad
 my $file = join('', <$fh>); # better

The last two constructs may appear unintuitive to most people. The
 first repeatedly grows a string,
whereas the second allocates a
 large chunk of memory in one go. On some systems, the second is

more efficient that the first.

Security
Most multi-user platforms provide basic levels of security, usually
 implemented at the filesystem level.
Some, however, unfortunately do
 not. Thus the notion of user id, or "home" directory,
 or even the
state of being logged-in, may be unrecognizable on many
 platforms. If you write programs that are
security-conscious, it
 is usually best to know what type of system you will be running
 under so that
you can write code explicitly for that platform (or
 class of platforms).

Don't assume the Unix filesystem access semantics: the operating
 system or the filesystem may be
using some ACL systems, which are
 richer languages than the usual rwx. Even if the rwx exist,
 their
semantics might be different.

(From security viewpoint testing for permissions before attempting to
 do something is silly anyway: if
one tries this, there is potential
 for race conditions. Someone or something might change the

permissions between the permissions check and the actual operation.
 Just try the operation.)

Don't assume the Unix user and group semantics: especially, don't
 expect the $< and $> (or the $(
and $)) to work
 for switching identities (or memberships).

Don't assume set-uid and set-gid semantics. (And even if you do,
 think twice: set-uid and set-gid are a
known can of security worms.)

Style
For those times when it is necessary to have platform-specific code,
 consider keeping the
platform-specific code in one place, making porting
 to other platforms easier. Use the Config module
and the special
 variable $^O to differentiate platforms, as described in PLATFORMS.

Be careful in the tests you supply with your module or programs.
 Module code may be fully portable,

Perl version 5.20.1 documentation - perlport

Page 11http://perldoc.perl.org

but its tests might not be. This
 often happens when tests spawn off other processes or call external

programs to aid in the testing, or when (as noted above) the tests
 assume certain things about the
filesystem and paths. Be careful not
 to depend on a specific output style for errors, such as when
checking $! after a failed system call. Using $! for anything else than
 displaying it as output is
doubtful (though see the Errno module for
 testing reasonably portably for error value). Some
platforms expect
 a certain output format, and Perl on those platforms may have been
 adjusted
accordingly. Most specifically, don't anchor a regex when
 testing an error value.

CPAN Testers
Modules uploaded to CPAN are tested by a variety of volunteers on
 different platforms. These CPAN
testers are notified by mail of each
 new upload, and reply to the list with PASS, FAIL, NA (not
applicable to
 this platform), or UNKNOWN (unknown), along with any relevant notations.

The purpose of the testing is twofold: one, to help developers fix any
 problems in their code that crop
up because of lack of testing on other
 platforms; two, to provide users with information about whether

a given module works on a given platform.

Also see:

Mailing list: cpan-testers-discuss@perl.org

Testing results: http://www.cpantesters.org/

PLATFORMS
Perl is built with a $^O variable that indicates the operating
 system it was built on. This was
implemented
 to help speed up code that would otherwise have to use Config
 and use the value of
$Config{osname}. Of course, to get more
 detailed information about the system, looking into
%Config is
 certainly recommended.

%Config cannot always be trusted, however, because it was built
 at compile time. If perl was built in
one place, then transferred
 elsewhere, some values may be wrong. The values may even have been

edited after the fact.

Unix
Perl works on a bewildering variety of Unix and Unix-like platforms (see
 e.g. most of the files in the
hints/ directory in the source code kit).
 On most of these systems, the value of $^O (hence
$Config{'osname'},
 too) is determined either by lowercasing and stripping punctuation from the

first field of the string returned by typing uname -a (or a similar command)
 at the shell prompt or by
testing the file system for the presence of
 uniquely named files such as a kernel or header file. Here,
for example,
 are a few of the more popular Unix flavors:

 uname $^O $Config{'archname'}
 --
 AIX aix aix
 BSD/OS bsdos i386-bsdos
 Darwin darwin darwin
 DYNIX/ptx dynixptx i386-dynixptx
 FreeBSD freebsd freebsd-i386
 Haiku haiku BePC-haiku
 Linux linux arm-linux
 Linux linux armv5tel-linux
 Linux linux i386-linux
 Linux linux i586-linux
 Linux linux ppc-linux
 HP-UX hpux PA-RISC1.1
 IRIX irix irix
 Mac OS X darwin darwin
 NeXT 3 next next-fat

Perl version 5.20.1 documentation - perlport

Page 12http://perldoc.perl.org

 NeXT 4 next OPENSTEP-Mach
 openbsd openbsd i386-openbsd
 OSF1 dec_osf alpha-dec_osf
 reliantunix-n svr4 RM400-svr4
 SCO_SV sco_sv i386-sco_sv
 SINIX-N svr4 RM400-svr4
 sn4609 unicos CRAY_C90-unicos
 sn6521 unicosmk t3e-unicosmk
 sn9617 unicos CRAY_J90-unicos
 SunOS solaris sun4-solaris
 SunOS solaris i86pc-solaris
 SunOS4 sunos sun4-sunos

Because the value of $Config{archname} may depend on the
 hardware architecture, it can vary
more than the value of $^O.

DOS and Derivatives
Perl has long been ported to Intel-style microcomputers running under
 systems like PC-DOS,
MS-DOS, OS/2, and most Windows platforms you can
 bring yourself to mention (except for Windows
CE, if you count that).
 Users familiar with COMMAND.COM or CMD.EXE style shells should
 be aware
that each of these file specifications may have subtle
 differences:

 my $filespec0 = "c:/foo/bar/file.txt";
 my $filespec1 = "c:\\foo\\bar\\file.txt";
 my $filespec2 = 'c:\foo\bar\file.txt';
 my $filespec3 = 'c:\\foo\\bar\\file.txt';

System calls accept either / or \ as the path separator.
 However, many command-line utilities of
DOS vintage treat / as
 the option prefix, so may get confused by filenames containing /.
 Aside from
calling any external programs, / will work just fine,
 and probably better, as it is more consistent with
popular usage,
 and avoids the problem of remembering what to backwhack and what
 not to.

The DOS FAT filesystem can accommodate only "8.3" style filenames. Under
 the "case-insensitive,
but case-preserving" HPFS (OS/2) and NTFS (NT)
 filesystems you may have to be careful about case
returned with functions
 like readdir or used with functions like open or opendir.

DOS also treats several filenames as special, such as AUX, PRN,
 NUL, CON, COM1, LPT1, LPT2,
etc. Unfortunately, sometimes these
 filenames won't even work if you include an explicit directory

prefix. It is best to avoid such filenames, if you want your code
 to be portable to DOS and its
derivatives. It's hard to know what
 these all are, unfortunately.

Users of these operating systems may also wish to make use of
 scripts such as pl2bat.bat or pl2cmd
to
 put wrappers around your scripts.

Newline (\n) is translated as \015\012 by STDIO when reading from
 and writing to files (see
Newlines). binmode(FILEHANDLE)
 will keep \n translated as \012 for that filehandle. Since it is a

no-op on other systems, binmode should be used for cross-platform code
 that deals with binary data.
That's assuming you realize in advance
 that your data is in binary. General-purpose programs should

often assume nothing about their data.

The $^O variable and the $Config{archname} values for various
 DOSish perls are as follows:

 OS $^O $Config{archname} ID Version
 --
 MS-DOS dos ?
 PC-DOS dos ?
 OS/2 os2 ?
 Windows 3.1 ? ? 0 3 01

Perl version 5.20.1 documentation - perlport

Page 13http://perldoc.perl.org

 Windows 95 MSWin32 MSWin32-x86 1 4 00
 Windows 98 MSWin32 MSWin32-x86 1 4 10
 Windows ME MSWin32 MSWin32-x86 1 ?
 Windows NT MSWin32 MSWin32-x86 2 4 xx
 Windows NT MSWin32 MSWin32-ALPHA 2 4 xx
 Windows NT MSWin32 MSWin32-ppc 2 4 xx
 Windows 2000 MSWin32 MSWin32-x86 2 5 00
 Windows XP MSWin32 MSWin32-x86 2 5 01
 Windows 2003 MSWin32 MSWin32-x86 2 5 02
 Windows Vista MSWin32 MSWin32-x86 2 6 00
 Windows 7 MSWin32 MSWin32-x86 2 6 01
 Windows 7 MSWin32 MSWin32-x64 2 6 01
 Windows 2008 MSWin32 MSWin32-x86 2 6 01
 Windows 2008 MSWin32 MSWin32-x64 2 6 01
 Windows CE MSWin32 ? 3
 Cygwin cygwin cygwin

The various MSWin32 Perl's can distinguish the OS they are running on
 via the value of the fifth
element of the list returned from Win32::GetOSVersion(). For example:

 if ($^O eq 'MSWin32') {
 my @os_version_info = Win32::GetOSVersion();
 print +('3.1','95','NT')[$os_version_info[4]],"\n";
 }

There are also Win32::IsWinNT() and Win32::IsWin95(), try perldoc Win32,
 and as of libwin32 0.19
(not part of the core Perl distribution)
 Win32::GetOSName(). The very portable POSIX::uname() will
work too:

 c:\> perl -MPOSIX -we "print join '|', uname"
 Windows NT|moonru|5.0|Build 2195 (Service Pack 2)|x86

Also see:

The djgpp environment for DOS, http://www.delorie.com/djgpp/
 and perldos.

The EMX environment for DOS, OS/2, etc. emx@iaehv.nl,
ftp://hobbes.nmsu.edu/pub/os2/dev/emx/ Also perlos2.

Build instructions for Win32 in perlwin32, or under the Cygnus environment
 in perlcygwin.

The Win32::* modules in Win32.

The ActiveState Pages, http://www.activestate.com/

The Cygwin environment for Win32; README.cygwin (installed as perlcygwin),
http://www.cygwin.com/

The U/WIN environment for Win32, http://www.research.att.com/sw/tools/uwin/

Build instructions for OS/2, perlos2

VMS
Perl on VMS is discussed in perlvms in the perl distribution.

The official name of VMS as of this writing is OpenVMS.

Perl on VMS can accept either VMS- or Unix-style file
 specifications as in either of the following:

Perl version 5.20.1 documentation - perlport

Page 14http://perldoc.perl.org

 $ perl -ne "print if /perl_setup/i" SYS$LOGIN:LOGIN.COM
 $ perl -ne "print if /perl_setup/i" /sys$login/login.com

but not a mixture of both as in:

 $ perl -ne "print if /perl_setup/i" sys$login:/login.com
 Can't open sys$login:/login.com: file specification syntax error

Interacting with Perl from the Digital Command Language (DCL) shell
 often requires a different set of
quotation marks than Unix shells do.
 For example:

 $ perl -e "print ""Hello, world.\n"""
 Hello, world.

There are several ways to wrap your perl scripts in DCL .COM files, if
 you are so inclined. For
example:

 $ write sys$output "Hello from DCL!"
 $ if p1 .eqs. ""
 $ then perl -x 'f$environment("PROCEDURE")
 $ else perl -x - 'p1 'p2 'p3 'p4 'p5 'p6 'p7 'p8
 $ deck/dollars="__END__"
 #!/usr/bin/perl

 print "Hello from Perl!\n";

 __END__
 $ endif

Do take care with $ ASSIGN/nolog/user SYS$COMMAND: SYS$INPUT if your
 perl-in-DCL script
expects to do things like $read = <STDIN>;.

The VMS operating system has two filesystems, known as ODS-2 and ODS-5.

For ODS-2, filenames are in the format "name.extension;version". The
 maximum length for filenames
is 39 characters, and the maximum length for
 extensions is also 39 characters. Version is a number
from 1 to
 32767. Valid characters are /[A-Z0-9$_-]/.

The ODS-2 filesystem is case-insensitive and does not preserve case.
 Perl simulates this by
converting all filenames to lowercase internally.

For ODS-5, filenames may have almost any character in them and can include
 Unicode characters.
Characters that could be misinterpreted by the DCL
 shell or file parsing utilities need to be prefixed
with the ^
 character, or replaced with hexadecimal characters prefixed with the ^ character. Such
prefixing is only needed with the pathnames are
 in VMS format in applications. Programs that can
accept the Unix format
 of pathnames do not need the escape characters. The maximum length for

filenames is 255 characters. The ODS-5 file system can handle both
 a case preserved and a case
sensitive mode.

ODS-5 is only available on the OpenVMS for 64 bit platforms.

Support for the extended file specifications is being done as optional
 settings to preserve backward
compatibility with Perl scripts that
 assume the previous VMS limitations.

In general routines on VMS that get a Unix format file specification
 should return it in a Unix format,
and when they get a VMS format
 specification they should return a VMS format unless they are
documented
 to do a conversion.

Perl version 5.20.1 documentation - perlport

Page 15http://perldoc.perl.org

For routines that generate return a file specification, VMS allows setting
 if the C library which Perl is
built on if it will be returned in VMS
 format or in Unix format.

With the ODS-2 file system, there is not much difference in syntax of
 filenames without paths for VMS
or Unix. With the extended character
 set available with ODS-5 there can be a significant difference.

Because of this, existing Perl scripts written for VMS were sometimes
 treating VMS and Unix
filenames interchangeably. Without the extended
 character set enabled, this behavior will mostly be
maintained for
 backwards compatibility.

When extended characters are enabled with ODS-5, the handling of
 Unix formatted file specifications
is to that of a Unix system.

VMS file specifications without extensions have a trailing dot. An
 equivalent Unix file specification
should not show the trailing dot.

The result of all of this, is that for VMS, for portable scripts, you
 can not depend on Perl to present the
filenames in lowercase, to be
 case sensitive, and that the filenames could be returned in either
 Unix
or VMS format.

And if a routine returns a file specification, unless it is intended to
 convert it, it should return it in the
same format as it found it.

readdir by default has traditionally returned lowercased filenames.
 When the ODS-5 support is
enabled, it will return the exact case of the
 filename on the disk.

Files without extensions have a trailing period on them, so doing a readdir in the default mode with
a file named A.;5 will
 return a. when VMS is (though that file could be opened with open(FH, 'A')).

With support for extended file specifications and if opendir was
 given a Unix format directory, a file
named A.;5 will return a
 and optionally in the exact case on the disk. When opendir is given
 a VMS
format directory, then readdir should return a., and
 again with the optionally the exact case.

RMS had an eight level limit on directory depths from any rooted logical
 (allowing 16 levels overall)
prior to VMS 7.2, and even with versions of
 VMS on VAX up through 7.3. Hence
PERL_ROOT:[LIB.2.3.4.5.6.7.8] is a
 valid directory specification but
PERL_ROOT:[LIB.2.3.4.5.6.7.8.9] is
 not. Makefile.PL authors might have to take this into
account, but at
 least they can refer to the former as /PERL_ROOT/lib/2/3/4/5/6/7/8/.

Pumpkings and module integrators can easily see whether files with too many
 directory levels have
snuck into the core by running the following in the
 top-level source directory:

 $ perl -ne "$_=~s/\s+.*//; print if scalar(split /\//) > 8;" < MANIFEST

The VMS::Filespec module, which gets installed as part of the build
 process on VMS, is a pure Perl
module that can easily be installed on
 non-VMS platforms and can be helpful for conversions to and
from RMS
 native formats. It is also now the only way that you should check to
 see if VMS is in a case
sensitive mode.

What \n represents depends on the type of file opened. It usually
 represents \012 but it could also
be \015, \012, \015\012, \000, \040, or nothing depending on the file organization and record
format. The VMS::Stdio module provides access to the special fopen() requirements of files with
unusual attributes on VMS.

TCP/IP stacks are optional on VMS, so socket routines might not be
 implemented. UDP sockets may
not be supported.

The TCP/IP library support for all current versions of VMS is dynamically
 loaded if present, so even if
the routines are configured, they may
 return a status indicating that they are not implemented.

The value of $^O on OpenVMS is "VMS". To determine the architecture
 that you are running on

Perl version 5.20.1 documentation - perlport

Page 16http://perldoc.perl.org

without resorting to loading all of %Config
 you can examine the content of the @INC array like so:

 if (grep(/VMS_AXP/, @INC)) {
 print "I'm on Alpha!\n";

 } elsif (grep(/VMS_VAX/, @INC)) {
 print "I'm on VAX!\n";

 } elsif (grep(/VMS_IA64/, @INC)) {
 print "I'm on IA64!\n";

 } else {
 print "I'm not so sure about where $^O is...\n";
 }

In general, the significant differences should only be if Perl is running
 on VMS_VAX or one of the 64
bit OpenVMS platforms.

On VMS, perl determines the UTC offset from the SYS$TIMEZONE_DIFFERENTIAL
 logical name.
Although the VMS epoch began at 17-NOV-1858 00:00:00.00,
 calls to localtime are adjusted to
count offsets from
 01-JAN-1970 00:00:00.00, just like Unix.

Also see:

README.vms (installed as README_vms), perlvms

vmsperl list, vmsperl-subscribe@perl.org

vmsperl on the web, http://www.sidhe.org/vmsperl/index.html

VOS
Perl on VOS (also known as OpenVOS) is discussed in README.vos
 in the perl distribution (installed
as perlvos). Perl on VOS
 can accept either VOS- or Unix-style file specifications as in
 either of the
following:

 $ perl -ne "print if /perl_setup/i" >system>notices
 $ perl -ne "print if /perl_setup/i" /system/notices

or even a mixture of both as in:

 $ perl -ne "print if /perl_setup/i" >system/notices

Even though VOS allows the slash character to appear in object
 names, because the VOS port of
Perl interprets it as a pathname
 delimiting character, VOS files, directories, or links whose
 names
contain a slash character cannot be processed. Such files
 must be renamed before they can be
processed by Perl.

Older releases of VOS (prior to OpenVOS Release 17.0) limit file
 names to 32 or fewer characters,
prohibit file names from
 starting with a - character, and prohibit file names from
 containing any
character matching tr/ !#%&'()*;<=>?//.

Newer releases of VOS (OpenVOS Release 17.0 or later) support a
 feature known as extended
names. On these releases, file names
 can contain up to 255 characters, are prohibited from starting

with a - character, and the set of prohibited characters is
 reduced to any character matching
tr/#%*<>?//. There are
 restrictions involving spaces and apostrophes: these characters
 must not
begin or end a name, nor can they immediately precede or
 follow a period. Additionally, a space must
not immediately
 precede another space or hyphen. Specifically, the following
 character combinations

Perl version 5.20.1 documentation - perlport

Page 17http://perldoc.perl.org

are prohibited: space-space,
 space-hyphen, period-space, space-period, period-apostrophe,

apostrophe-period, leading or trailing space, and leading or
 trailing apostrophe. Although an extended
file name is limited
 to 255 characters, a path name is still limited to 256
 characters.

The value of $^O on VOS is "vos". To determine the
 architecture that you are running on without
resorting to loading
 all of %Config you can examine the content of the @INC array
 like so:

 if ($^O =~ /vos/) {
 print "I'm on a Stratus box!\n";
 } else {
 print "I'm not on a Stratus box!\n";
 die;
 }

Also see:

README.vos (installed as perlvos)

The VOS mailing list.

There is no specific mailing list for Perl on VOS. You can contact
 the Stratus Technologies
Customer Assistance Center (CAC) for your
 region, or you can use the contact information
located in the
 distribution files on the Stratus Anonymous FTP site.

Stratus Technologies on the web at http://www.stratus.com

VOS Open-Source Software on the web at http://ftp.stratus.com/pub/vos/vos.html

EBCDIC Platforms
Recent versions of Perl have been ported to platforms such as OS/400 on
 AS/400 minicomputers as
well as OS/390, VM/ESA, and BS2000 for S/390
 Mainframes. Such computers use EBCDIC
character sets internally (usually
 Character Code Set ID 0037 for OS/400 and either 1047 or
POSIX-BC for S/390
 systems). On the mainframe perl currently works under the "Unix system

services for OS/390" (formerly known as OpenEdition), VM/ESA OpenEdition, or
 the BS200
POSIX-BC system (BS2000 is supported in perl 5.6 and greater).
 See perlos390 for details. Note that
for OS/400 there is also a port of
 Perl 5.8.1/5.10.0 or later to the PASE which is ASCII-based (as
opposed to
 ILE which is EBCDIC-based), see perlos400.

As of R2.5 of USS for OS/390 and Version 2.3 of VM/ESA these Unix
 sub-systems do not support the
#! shebang trick for script invocation.
 Hence, on OS/390 and VM/ESA perl scripts can be executed
with a header
 similar to the following simple script:

 : # use perl
 eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}'
 if 0;
 #!/usr/local/bin/perl # just a comment really

 print "Hello from perl!\n";

OS/390 will support the #! shebang trick in release 2.8 and beyond.
 Calls to system and backticks
can use POSIX shell syntax on all
 S/390 systems.

On the AS/400, if PERL5 is in your library list, you may need
 to wrap your perl scripts in a CL
procedure to invoke them like so:

 BEGIN
 CALL PGM(PERL5/PERL) PARM('/QOpenSys/hello.pl')
 ENDPGM

Perl version 5.20.1 documentation - perlport

Page 18http://perldoc.perl.org

This will invoke the perl script hello.pl in the root of the
 QOpenSys file system. On the AS/400 calls to
system or backticks
 must use CL syntax.

On these platforms, bear in mind that the EBCDIC character set may have
 an effect on what happens
with some perl functions (such as chr, pack, print, printf, ord, sort, sprintf, unpack), as

well as bit-fiddling with ASCII constants using operators like ^, &
 and |, not to mention dealing with
socket interfaces to ASCII computers
 (see Newlines).

Fortunately, most web servers for the mainframe will correctly
 translate the \n in the following
statement to its ASCII equivalent
 (\r is the same under both Unix and OS/390):

 print "Content-type: text/html\r\n\r\n";

The values of $^O on some of these platforms includes:

 uname $^O $Config{'archname'}
 --
 OS/390 os390 os390
 OS400 os400 os400
 POSIX-BC posix-bc BS2000-posix-bc

Some simple tricks for determining if you are running on an EBCDIC
 platform could include any of the
following (perhaps all):

 if ("\t" eq "\005") { print "EBCDIC may be spoken here!\n"; }

 if (ord('A') == 193) { print "EBCDIC may be spoken here!\n"; }

 if (chr(169) eq 'z') { print "EBCDIC may be spoken here!\n"; }

One thing you may not want to rely on is the EBCDIC encoding
 of punctuation characters since these
may differ from code page to code
 page (and once your module or script is rumoured to work with
EBCDIC,
 folks will want it to work with all EBCDIC character sets).

Also see:

perlos390, README.os390, perlbs2000, perlebcdic.

The perl-mvs@perl.org list is for discussion of porting issues as well as
 general usage issues
for all EBCDIC Perls. Send a message body of
 "subscribe perl-mvs" to majordomo@perl.org.

AS/400 Perl information at http://as400.rochester.ibm.com/
 as well as on CPAN in the ports/
directory.

Acorn RISC OS
Because Acorns use ASCII with newlines (\n) in text files as \012 like
 Unix, and because Unix
filename emulation is turned on by default, most simple scripts will probably work "out of the box". The
native
 filesystem is modular, and individual filesystems are free to be
 case-sensitive or insensitive,
and are usually case-preserving. Some
 native filesystems have name length limits, which file and
directory
 names are silently truncated to fit. Scripts should be aware that the
 standard filesystem
currently has a name length limit of 10
 characters, with up to 77 items in a directory, but other
filesystems
 may not impose such limitations.

Native filenames are of the form

 Filesystem#Special_Field::DiskName.$.Directory.Directory.File

where

Perl version 5.20.1 documentation - perlport

Page 19http://perldoc.perl.org

 Special_Field is not usually present, but may contain . and $.
 Filesystem =~ m|[A-Za-z0-9_]|
 DsicName =~ m|[A-Za-z0-9_/]|
 $ represents the root directory
 . is the path separator
 @ is the current directory (per filesystem but machine global)
 ^ is the parent directory
 Directory and File =~ m|[^\0- "\.\$\%\&:\@\\^\|\177]+|

The default filename translation is roughly tr|/.|./|;

Note that "ADFS::HardDisk.$.File" ne 'ADFS::HardDisk.$.File' and that
 the second
stage of $ interpolation in regular expressions will fall
 foul of the $. if scripts are not careful.

Logical paths specified by system variables containing comma-separated
 search lists are also
allowed; hence System:Modules is a valid
 filename, and the filesystem will prefix Modules with
each section of System$Path until a name is made that points to an object on disk.
 Writing to a new
file System:Modules would be allowed only if System$Path contains a single item list. The
filesystem will also
 expand system variables in filenames if enclosed in angle brackets, so
<System$Dir>.Modules would look for the file $ENV{'System$Dir'} . 'Modules'. The
obvious implication of this is
 that fully qualified filenames can start with <> and should
 be
protected when open is used for input.

Because . was in use as a directory separator and filenames could not
 be assumed to be unique
after 10 characters, Acorn implemented the C
 compiler to strip the trailing .c .h .s and .o suffix
from
 filenames specified in source code and store the respective files in
 subdirectories named after
the suffix. Hence files are translated:

 foo.h h.foo
 C:foo.h C:h.foo (logical path variable)
 sys/os.h sys.h.os (C compiler groks Unix-speak)
 10charname.c c.10charname
 10charname.o o.10charname
 11charname_.c c.11charname (assuming filesystem truncates at 10)

The Unix emulation library's translation of filenames to native assumes
 that this sort of translation is
required, and it allows a user-defined list
 of known suffixes that it will transpose in this fashion. This
may
 seem transparent, but consider that with these rules foo/bar/baz.h
 and foo/bar/h/baz both map to
foo.bar.h.baz, and that readdir and glob cannot and do not attempt to emulate the reverse
mapping. Other .'s in filenames are translated to /.

As implied above, the environment accessed through %ENV is global, and
 the convention is that
program specific environment variables are of the
 form Program$Name. Each filesystem maintains a
current directory,
 and the current filesystem's current directory is the global current
 directory.
Consequently, sociable programs don't change the current
 directory but rely on full pathnames, and
programs (and Makefiles) cannot
 assume that they can spawn a child process which can change the
current
 directory without affecting its parent (and everyone else for that
 matter).

Because native operating system filehandles are global and are currently allocated down from 255,
with 0 being a reserved value, the Unix emulation
 library emulates Unix filehandles. Consequently,
you can't rely on
 passing STDIN, STDOUT, or STDERR to your children.

The desire of users to express filenames of the form <Foo$Dir>.Bar on the command line
unquoted causes problems,
 too: `` command output capture has to perform a guessing game. It

assumes that a string <[^<>]+\$[^<>]> is a
 reference to an environment variable, whereas
anything else involving < or > is redirection, and generally manages to be 99%
 right. Of course, the
problem remains that scripts cannot rely on any
 Unix tools being available, or that any tools found
have Unix-like command
 line arguments.

Perl version 5.20.1 documentation - perlport

Page 20http://perldoc.perl.org

Extensions and XS are, in theory, buildable by anyone using free
 tools. In practice, many don't, as
users of the Acorn platform are
 used to binary distributions. MakeMaker does run, but no available

make currently copes with MakeMaker's makefiles; even if and when
 this should be fixed, the lack of
a Unix-like shell will cause
 problems with makefile rules, especially lines of the form cd
 sdbm &&
make all, and anything using quoting.

"RISC OS" is the proper name for the operating system, but the value
 in $^O is "riscos" (because we
don't like shouting).

Other perls
Perl has been ported to many platforms that do not fit into any of
 the categories listed above. Some,
such as AmigaOS,
 QNX, Plan 9, and VOS, have been well-integrated into the standard
 Perl source
code kit. You may need to see the ports/ directory
 on CPAN for information, and possibly binaries, for
the likes of:
 aos, Atari ST, lynxos, riscos, Novell Netware, Tandem Guardian, etc. (Yes, we know that
some of these OSes may fall under the
 Unix category, but we are not a standards body.)

Some approximate operating system names and their $^O values
 in the "OTHER" category include:

 OS $^O $Config{'archname'}
 --
 Amiga DOS amigaos m68k-amigos

See also:

Amiga, README.amiga (installed as perlamiga).

A free perl5-based PERL.NLM for Novell Netware is available in
 precompiled binary and
source code form from http://www.novell.com/
 as well as from CPAN.

Plan 9, README.plan9

FUNCTION IMPLEMENTATIONS
Listed below are functions that are either completely unimplemented
 or else have been implemented
differently on various platforms.
 Following each description will be, in parentheses, a list of
 platforms
that the description applies to.

The list may well be incomplete, or even wrong in some places. When
 in doubt, consult the
platform-specific README files in the Perl
 source distribution, and any other documentation
resources accompanying
 a given port.

Be aware, moreover, that even among Unix-ish systems there are variations.

For many functions, you can also query %Config, exported by
 default from the Config module. For
example, to check whether the
 platform has the lstat call, check $Config{d_lstat}. See Config
for a full description of available variables.

Alphabetical Listing of Perl Functions
-X

-w only inspects the read-only file attribute (FILE_ATTRIBUTE_READONLY),
 which
determines whether the directory can be deleted, not whether it can
 be written to.
Directories always have read and write access unless denied
 by discretionary access
control lists (DACLs). (Win32)

-r, -w, -x, and -o tell whether the file is accessible,
 which may not reflect UIC-based
file protections. (VMS)

-s by name on an open file will return the space reserved on disk,
 rather than the
current extent. -s on an open filehandle returns the
 current size. (RISC OS)

-R, -W, -X, -O are indistinguishable from -r, -w, -x, -o. (Win32, VMS, RISC OS)

Perl version 5.20.1 documentation - perlport

Page 21http://perldoc.perl.org

-g, -k, -l, -u, -A are not particularly meaningful.
 (Win32, VMS, RISC OS)

-p is not particularly meaningful. (VMS, RISC OS)

-d is true if passed a device spec without an explicit directory.
 (VMS)

-x (or -X) determine if a file ends in one of the executable
 suffixes. -S is meaningless.
(Win32)

-x (or -X) determine if a file has an executable file type.
 (RISC OS)

alarm

Emulated using timers that must be explicitly polled whenever Perl
 wants to dispatch
"safe signals" and therefore cannot interrupt
 blocking system calls. (Win32)

atan2

Due to issues with various CPUs, math libraries, compilers, and standards,
 results for
atan2() may vary depending on any combination of the above.
 Perl attempts to
conform to the Open Group/IEEE standards for the results
 returned from atan2(),
but cannot force the issue if the system Perl is
 run on does not allow it. (Tru64, HP-UX
10.20)

The current version of the standards for atan2() is available at
http://www.opengroup.org/onlinepubs/009695399/functions/atan2.html.

binmode

Meaningless. (RISC OS)

Reopens file and restores pointer; if function fails, underlying
 filehandle may be closed,
or pointer may be in a different position.
 (VMS)

The value returned by tell may be affected after the call, and
 the filehandle may be
flushed. (Win32)

chmod

Only good for changing "owner" read-write access, "group", and "other"
 bits are
meaningless. (Win32)

Only good for changing "owner" and "other" read-write access. (RISC OS)

Access permissions are mapped onto VOS access-control list changes. (VOS)

The actual permissions set depend on the value of the CYGWIN
 in the SYSTEM
environment settings. (Cygwin)

Setting the exec bit on some locations (generally /sdcard) will return true
 but not
actually set the bit. (Android)

chown

Not implemented. (Win32, Plan 9, RISC OS)

Does nothing, but won't fail. (Win32)

A little funky, because VOS's notion of ownership is a little funky (VOS).

chroot

Not implemented. (Win32, VMS, Plan 9, RISC OS, VOS)

crypt

May not be available if library or source was not provided when building
 perl. (Win32)

Not implemented. (Android)

dbmclose

Not implemented. (VMS, Plan 9, VOS)

Perl version 5.20.1 documentation - perlport

Page 22http://perldoc.perl.org

dbmopen

Not implemented. (VMS, Plan 9, VOS)

dump

Not useful. (RISC OS)

Not supported. (Cygwin, Win32)

Invokes VMS debugger. (VMS)

exec

exec LIST without the use of indirect object syntax (exec PROGRAM LIST)
 may fall
back to trying the shell if the first spawn() fails. (Win32)

Does not automatically flush output handles on some platforms.
 (SunOS, Solaris,
HP-UX)

Not supported. (Symbian OS)

exit

Emulates Unix exit() (which considers exit 1 to indicate an error) by
 mapping the 1
to SS$_ABORT (44). This behavior may be overridden
 with the pragma use vmsish
 'exit'. As with the CRTL's exit()
 function, exit 0 is also mapped to an exit status
of SS$_NORMAL
 (1); this mapping cannot be overridden. Any other argument to exit()
is used directly as Perl's exit status. On VMS, unless the future
 POSIX_EXIT mode is
enabled, the exit code should always be a valid
 VMS exit code and not a generic
number. When the POSIX_EXIT mode is
 enabled, a generic number will be encoded
in a method compatible with
 the C library _POSIX_EXIT macro so that it can be
decoded by other
 programs, particularly ones written in C, like the GNV package.
(VMS)

exit() resets file pointers, which is a problem when called from a child process
(created by fork()) in BEGIN. A workaround is to use POSIX::_exit. (Solaris)

 exit unless $Config{archname} =~ /\bsolaris\b/;
 require POSIX and POSIX::_exit(0);

fcntl

Not implemented. (Win32)

Some functions available based on the version of VMS. (VMS)

flock

Not implemented (VMS, RISC OS, VOS).

fork

Not implemented. (AmigaOS, RISC OS, VMS)

Emulated using multiple interpreters. See perlfork. (Win32)

Does not automatically flush output handles on some platforms.
 (SunOS, Solaris,
HP-UX)

getlogin

Not implemented. (RISC OS)

getpgrp

Not implemented. (Win32, VMS, RISC OS)

getppid

Not implemented. (Win32, RISC OS)

Perl version 5.20.1 documentation - perlport

Page 23http://perldoc.perl.org

getpriority

Not implemented. (Win32, VMS, RISC OS, VOS)

getpwnam

Not implemented. (Win32)

Not useful. (RISC OS)

getgrnam

Not implemented. (Win32, VMS, RISC OS)

getnetbyname

Not implemented. (Android, Win32, Plan 9)

getpwuid

Not implemented. (Win32)

Not useful. (RISC OS)

getgrgid

Not implemented. (Win32, VMS, RISC OS)

getnetbyaddr

Not implemented. (Android, Win32, Plan 9)

getprotobynumber

Not implemented. (Android)

getservbyport

getpwent

Not implemented. (Android, Win32)

getgrent

Not implemented. (Android, Win32, VMS)

gethostbyname

gethostbyname('localhost') does not work everywhere: you may have
 to use
gethostbyname('127.0.0.1'). (Irix 5)

gethostent

Not implemented. (Win32)

getnetent

Not implemented. (Android, Win32, Plan 9)

getprotoent

Not implemented. (Android, Win32, Plan 9)

getservent

Not implemented. (Win32, Plan 9)

seekdir

Not implemented. (Android)

sethostent

Not implemented. (Android, Win32, Plan 9, RISC OS)

Perl version 5.20.1 documentation - perlport

Page 24http://perldoc.perl.org

setnetent

Not implemented. (Win32, Plan 9, RISC OS)

setprotoent

Not implemented. (Android, Win32, Plan 9, RISC OS)

setservent

Not implemented. (Plan 9, Win32, RISC OS)

endpwent

Not implemented. (Win32)

Either not implemented or a no-op. (Android)

endgrent

Not implemented. (Android, RISC OS, VMS, Win32)

endhostent

Not implemented. (Android, Win32)

endnetent

Not implemented. (Android, Win32, Plan 9)

endprotoent

Not implemented. (Android, Win32, Plan 9)

endservent

Not implemented. (Plan 9, Win32)

getsockopt SOCKET,LEVEL,OPTNAME

Not implemented. (Plan 9)

glob

This operator is implemented via the File::Glob extension on most
 platforms. See
File::Glob for portability information.

gmtime

In theory, gmtime() is reliable from -2**63 to 2**63-1. However,
 because work arounds
in the implementation use floating point numbers,
 it will become inaccurate as the time
gets larger. This is a bug and
 will be fixed in the future.

On VOS, time values are 32-bit quantities.

ioctl FILEHANDLE,FUNCTION,SCALAR

Not implemented. (VMS)

Available only for socket handles, and it does what the ioctlsocket() call
 in the Winsock
API does. (Win32)

Available only for socket handles. (RISC OS)

kill

Not implemented, hence not useful for taint checking. (RISC OS)

kill() doesn't have the semantics of raise(), i.e. it doesn't send
 a signal to the
identified process like it does on Unix platforms.
 Instead kill($sig, $pid)
terminates the process identified by $pid,
 and makes it exit immediately with exit status
$sig. As in Unix, if
 $sig is 0 and the specified process exists, it returns true without

actually terminating it. (Win32)

Perl version 5.20.1 documentation - perlport

Page 25http://perldoc.perl.org

kill(-9, $pid) will terminate the process specified by $pid and
 recursively all child
processes owned by it. This is different from
 the Unix semantics, where the signal will
be delivered to all
 processes in the same process group as the process specified by

$pid. (Win32)

Is not supported for process identification number of 0 or negative
 numbers. (VMS)

link

Not implemented. (RISC OS, VOS)

Link count not updated because hard links are not quite that hard
 (They are sort of
half-way between hard and soft links). (AmigaOS)

Hard links are implemented on Win32 under NTFS only. They are
 natively supported
on Windows 2000 and later. On Windows NT they
 are implemented using the
Windows POSIX subsystem support and the
 Perl process will need Administrator or
Backup Operator privileges
 to create hard links.

Available on 64 bit OpenVMS 8.2 and later. (VMS)

localtime

localtime() has the same range as gmtime, but because time zone
 rules change its
accuracy for historical and future times may degrade
 but usually by no more than an
hour.

lstat

Not implemented. (RISC OS)

Return values (especially for device and inode) may be bogus. (Win32)

msgctl

msgget

msgsnd

msgrcv

Not implemented. (Android, Win32, VMS, Plan 9, RISC OS, VOS)

open

open to |- and -| are unsupported. (Win32, RISC OS)

Opening a process does not automatically flush output handles on some
 platforms.
(SunOS, Solaris, HP-UX)

readlink

Not implemented. (Win32, VMS, RISC OS)

rename

Can't move directories between directories on different logical volumes. (Win32)

rewinddir

Will not cause readdir() to re-read the directory stream. The entries
 already read
before the rewinddir() call will just be returned again
 from a cache buffer. (Win32)

select

Only implemented on sockets. (Win32, VMS)

Only reliable on sockets. (RISC OS)

Note that the select FILEHANDLE form is generally portable.

semctl

Perl version 5.20.1 documentation - perlport

Page 26http://perldoc.perl.org

semget

semop

Not implemented. (Android, Win32, VMS, RISC OS)

setgrent

Not implemented. (Android, VMS, Win32, RISC OS)

setpgrp

Not implemented. (Win32, VMS, RISC OS, VOS)

setpriority

Not implemented. (Win32, VMS, RISC OS, VOS)

setpwent

Not implemented. (Android, Win32, RISC OS)

setsockopt

Not implemented. (Plan 9)

shmctl

shmget

shmread

shmwrite

Not implemented. (Android, Win32, VMS, RISC OS)

sleep

Emulated using synchronization functions such that it can be
 interrupted by alarm(),
and limited to a maximum of 4294967 seconds,
 approximately 49 days. (Win32)

sockatmark

A relatively recent addition to socket functions, may not
 be implemented even in Unix
platforms.

socketpair

Not implemented. (RISC OS)

Available on 64 bit OpenVMS 8.2 and later. (VMS)

stat

Platforms that do not have rdev, blksize, or blocks will return these
 as '', so numeric
comparison or manipulation of these fields may cause
 'not numeric' warnings.

ctime not supported on UFS (Mac OS X).

ctime is creation time instead of inode change time (Win32).

device and inode are not meaningful. (Win32)

device and inode are not necessarily reliable. (VMS)

mtime, atime and ctime all return the last modification time. Device and
 inode are not
necessarily reliable. (RISC OS)

dev, rdev, blksize, and blocks are not available. inode is not
 meaningful and will differ
between stat calls on the same file. (os2)

some versions of cygwin when doing a stat("foo") and if not finding it
 may then attempt
to stat("foo.exe") (Cygwin)

On Win32 stat() needs to open the file to determine the link count
 and update

Perl version 5.20.1 documentation - perlport

Page 27http://perldoc.perl.org

attributes that may have been changed through hard links.
 Setting
${^WIN32_SLOPPY_STAT} to a true value speeds up stat() by
 not performing this
operation. (Win32)

symlink

Not implemented. (Win32, RISC OS)

Implemented on 64 bit VMS 8.3. VMS requires the symbolic link to be in Unix
 syntax if
it is intended to resolve to a valid path.

syscall

Not implemented. (Win32, VMS, RISC OS, VOS)

sysopen

The traditional "0", "1", and "2" MODEs are implemented with different
 numeric values
on some systems. The flags exported by Fcntl
 (O_RDONLY, O_WRONLY,
O_RDWR) should work everywhere though. (Mac
 OS, OS/390)

system

As an optimization, may not call the command shell specified in $ENV{PERL5SHELL}.
system(1, @args) spawns an external
 process and immediately returns its process
designator, without
 waiting for it to terminate. Return value may be used subsequently

in wait or waitpid. Failure to spawn() a subprocess is indicated
 by setting $? to
"255 << 8". $? is set in a way compatible with
 Unix (i.e. the exitstatus of the
subprocess is obtained by "$? >> 8",
 as described in the documentation). (Win32)

There is no shell to process metacharacters, and the native standard is
 to pass a
command line terminated by "\n" "\r" or "\0" to the spawned
 program. Redirection such
as > foo is performed (if at all) by
 the run time library of the spawned program.
system list will call
 the Unix emulation library's exec emulation, which attempts to
provide
 emulation of the stdin, stdout, stderr in force in the parent, providing
 the child
program uses a compatible version of the emulation library. scalar will call the native
command line direct and no such emulation
 of a child Unix program will exists. Mileage
will vary. (RISC OS)

system LIST without the use of indirect object syntax (system PROGRAM LIST)

may fall back to trying the shell if the first spawn() fails. (Win32)

Does not automatically flush output handles on some platforms.
 (SunOS, Solaris,
HP-UX)

The return value is POSIX-like (shifted up by 8 bits), which only allows
 room for a
made-up value derived from the severity bits of the native
 32-bit condition code (unless
overridden by use vmsish 'status'). If the native condition code is one that has a
POSIX value encoded, the
 POSIX value will be decoded to extract the expected exit
value.
 For more details see "$?" in perlvms. (VMS)

telldir

Not implemented. (Android)

times

"cumulative" times will be bogus. On anything other than Windows NT
 or Windows
2000, "system" time will be bogus, and "user" time is
 actually the time returned by the
clock() function in the C runtime
 library. (Win32)

Not useful. (RISC OS)

truncate

Not implemented. (Older versions of VMS)

Truncation to same-or-shorter lengths only. (VOS)

Perl version 5.20.1 documentation - perlport

Page 28http://perldoc.perl.org

If a FILEHANDLE is supplied, it must be writable and opened in append
 mode (i.e.,
use open(FH, '>>filename')
 or sysopen(FH,...,O_APPEND|O_RDWR). If a
filename is supplied, it
 should not be held open elsewhere. (Win32)

umask

Returns undef where unavailable.

umask works but the correct permissions are set only when the file
 is finally closed.
(AmigaOS)

utime

Only the modification time is updated. (VMS, RISC OS)

May not behave as expected. Behavior depends on the C runtime
 library's
implementation of utime(), and the filesystem being
 used. The FAT filesystem typically
does not support an "access
 time" field, and it may limit timestamps to a granularity of

two seconds. (Win32)

wait

waitpid

Can only be applied to process handles returned for processes spawned
 using
system(1, ...) or pseudo processes created with fork(). (Win32)

Not useful. (RISC OS)

Supported Platforms
The following platforms are known to build Perl 5.12 (as of April 2010,
 its release date) from the
standard source code distribution available
 at http://www.cpan.org/src

Linux (x86, ARM, IA64)

HP-UX

AIX

Win32

Windows 2000

Windows XP

Windows Server 2003

Windows Vista

Windows Server 2008

Windows 7

Cygwin

Some tests are known to fail:

ext/XS-APItes/t/call_checker.t - see https://rt.perl.org/Ticket/Display.html?id=78502

dist/I18N-Collate/t/I18N-Collate.t

ext/Win32CORE/t/win32core.t - may fail on recent cygwin installs.

Solaris (x86, SPARC)

OpenVMS

Alpha (7.2 and later)

I64 (8.2 and later)

Symbian

Perl version 5.20.1 documentation - perlport

Page 29http://perldoc.perl.org

NetBSD

FreeBSD

Debian GNU/kFreeBSD

Haiku

Irix (6.5. What else?)

OpenBSD

Dragonfly BSD

Midnight BSD

QNX Neutrino RTOS (6.5.0)

MirOS BSD

Stratus OpenVOS (17.0 or later)

Caveats:

time_t issues that may or may not be fixed

Symbian (Series 60 v3, 3.2 and 5 - what else?)

Stratus VOS / OpenVOS

AIX

Android

FreeMINT

Perl now builds with FreeMiNT/Atari. It fails a few tests, that needs
 some investigation.

The FreeMiNT port uses GNU dld for loadable module capabilities. So
 ensure you have that
library installed when building perl.

EOL Platforms
(Perl 5.20)

The following platforms were supported by a previous version of
 Perl but have been officially removed
from Perl's source code
 as of 5.20:

AT&T 3b1

(Perl 5.14)
The following platforms were supported up to 5.10. They may still
 have worked in 5.12, but supporting
code has been removed for 5.14:

Windows 95

Windows 98

Windows ME

Windows NT4

(Perl 5.12)
The following platforms were supported by a previous version of
 Perl but have been officially removed
from Perl's source code
 as of 5.12:

Atari MiNT

Apollo Domain/OS

Apple Mac OS 8/9

Tenon Machten

Perl version 5.20.1 documentation - perlport

Page 30http://perldoc.perl.org

Supported Platforms (Perl 5.8)
As of July 2002 (the Perl release 5.8.0), the following platforms were
 able to build Perl from the
standard source code distribution
 available at http://www.cpan.org/src/

 AIX
 BeOS
 BSD/OS (BSDi)
 Cygwin
 DG/UX
 DOS DJGPP 1)
 DYNIX/ptx
 EPOC R5
 FreeBSD
 HI-UXMPP (Hitachi) (5.8.0 worked but we didn't know it)
 HP-UX
 IRIX
 Linux
 Mac OS Classic
 Mac OS X (Darwin)
 MPE/iX
 NetBSD
 NetWare
 NonStop-UX
 ReliantUNIX (formerly SINIX)
 OpenBSD
 OpenVMS (formerly VMS)
 Open UNIX (Unixware) (since Perl 5.8.1/5.9.0)
 OS/2
 OS/400 (using the PASE) (since Perl 5.8.1/5.9.0)
 PowerUX
 POSIX-BC (formerly BS2000)
 QNX
 Solaris
 SunOS 4
 SUPER-UX (NEC)
 Tru64 UNIX (formerly DEC OSF/1, Digital UNIX)
 UNICOS
 UNICOS/mk
 UTS
 VOS / OpenVOS
 Win95/98/ME/2K/XP 2)
 WinCE
 z/OS (formerly OS/390)
 VM/ESA

 1) in DOS mode either the DOS or OS/2 ports can be used
 2) compilers: Borland, MinGW (GCC), VC6

The following platforms worked with the previous releases (5.6 and
 5.7), but we did not manage either
to fix or to test these in time
 for the 5.8.0 release. There is a very good chance that many of these
 will
work fine with the 5.8.0.

 BSD/OS
 DomainOS
 Hurd
 LynxOS

Perl version 5.20.1 documentation - perlport

Page 31http://perldoc.perl.org

 MachTen
 PowerMAX
 SCO SV
 SVR4
 Unixware
 Windows 3.1

Known to be broken for 5.8.0 (but 5.6.1 and 5.7.2 can be used):

	 AmigaOS

The following platforms have been known to build Perl from source in
 the past (5.005_03 and earlier),
but we haven't been able to verify
 their status for the current release, either because the

hardware/software platforms are rare or because we don't have an
 active champion on these
platforms--or both. They used to work,
 though, so go ahead and try compiling them, and let
perlbug@perl.org
 of any trouble.

 3b1
 A/UX
 ConvexOS
 CX/UX
 DC/OSx
 DDE SMES
 DOS EMX
 Dynix
 EP/IX
 ESIX
 FPS
 GENIX
 Greenhills
 ISC
 MachTen 68k
 MPC
 NEWS-OS
 NextSTEP
 OpenSTEP
 Opus
 Plan 9
 RISC/os
 SCO ODT/OSR
 Stellar
 SVR2
 TI1500
 TitanOS
 Ultrix
 Unisys Dynix

The following platforms have their own source code distributions and
 binaries available via
http://www.cpan.org/ports/

 Perl release

 OS/400 (ILE) 5.005_02
 Tandem Guardian 5.004

Perl version 5.20.1 documentation - perlport

Page 32http://perldoc.perl.org

The following platforms have only binaries available via http://www.cpan.org/ports/index.html :

 Perl release

 Acorn RISCOS 5.005_02
 AOS 5.002
 LynxOS 5.004_02

Although we do suggest that you always build your own Perl from
 the source code, both for maximal
configurability and for security,
 in case you are in a hurry you can check
http://www.cpan.org/ports/index.html for binary distributions.

SEE ALSO
perlaix, perlamiga, perlbs2000, perlce, perlcygwin, perldos, perlebcdic, perlfreebsd, perlhurd, perlhpux
, perlirix, perlmacos, perlmacosx, perlnetware, perlos2, perlos390, perlos400, perlplan9, perlqnx,
perlsolaris, perltru64, perlunicode, perlvms, perlvos, perlwin32, and Win32.

AUTHORS / CONTRIBUTORS
Abigail <abigail@foad.org>,
 Charles Bailey <bailey@newman.upenn.edu>,
 Graham Barr
<gbarr@pobox.com>,
 Tom Christiansen <tchrist@perl.com>,
 Nicholas Clark <nick@ccl4.org>,

Thomas Dorner <Thomas.Dorner@start.de>,
 Andy Dougherty <doughera@lafayette.edu>,
 Dominic
Dunlop <domo@computer.org>,
 Neale Ferguson <neale@vma.tabnsw.com.au>,
 David J. Fiander
<davidf@mks.com>,
 Paul Green <Paul.Green@stratus.com>,
 M.J.T. Guy <mjtg@cam.ac.uk>,
 Jarkko
Hietaniemi <jhi@iki.fi>,
 Luther Huffman <lutherh@stratcom.com>,
 Nick Ing-Simmons
<nick@ing-simmons.net>,
 Andreas J. König <a.koenig@mind.de>,
 Markus Laker
<mlaker@contax.co.uk>,
 Andrew M. Langmead <aml@world.std.com>,
 Larry Moore
<ljmoore@freespace.net>,
 Paul Moore <Paul.Moore@uk.origin-it.com>,
 Chris Nandor
<pudge@pobox.com>,
 Matthias Neeracher <neeracher@mac.com>,
 Philip Newton
<pne@cpan.org>,
 Gary Ng <71564.1743@CompuServe.COM>,
 Tom Phoenix
<rootbeer@teleport.com>,
 André Pirard <A.Pirard@ulg.ac.be>,
 Peter Prymmer <pvhp@forte.com>,

Hugo van der Sanden <hv@crypt0.demon.co.uk>,
 Gurusamy Sarathy <gsar@activestate.com>,
 Paul
J. Schinder <schinder@pobox.com>,
 Michael G Schwern <schwern@pobox.com>,
 Dan Sugalski
<dan@sidhe.org>,
 Nathan Torkington <gnat@frii.com>,
 John Malmberg <wb8tyw@qsl.net>

