
Perl version 5.20.1 documentation - perlunifaq

Page 1http://perldoc.perl.org

NAME
perlunifaq - Perl Unicode FAQ

Q and A
This is a list of questions and answers about Unicode in Perl, intended to be
 read after perlunitut.

perlunitut isn't really a Unicode tutorial, is it?
No, and this isn't really a Unicode FAQ.

Perl has an abstracted interface for all supported character encodings, so this
 is actually a generic
Encode tutorial and Encode FAQ. But many people
 think that Unicode is special and magical, and I
didn't want to disappoint
 them, so I decided to call the document a Unicode tutorial.

What character encodings does Perl support?
To find out which character encodings your Perl supports, run:

 perl -MEncode -le "print for Encode->encodings(':all')"

Which version of perl should I use?
Well, if you can, upgrade to the most recent, but certainly 5.8.1 or newer.
 The tutorial and FAQ
assume the latest release.

You should also check your modules, and upgrade them if necessary. For example,
 HTML::Entities
requires version >= 1.32 to function correctly, even though the
 changelog is silent about this.

What about binary data, like images?
Well, apart from a bare binmode $fh, you shouldn't treat them specially.
 (The binmode is needed
because otherwise Perl may convert line endings on Win32
 systems.)

Be careful, though, to never combine text strings with binary strings. If you
 need text in a binary
stream, encode your text strings first using the
 appropriate encoding, then join them with binary
strings. See also: "What if I
 don't encode?".

When should I decode or encode?
Whenever you're communicating text with anything that is external to your perl
 process, like a
database, a text file, a socket, or another program. Even if
 the thing you're communicating with is also
written in Perl.

What if I don't decode?
Whenever your encoded, binary string is used together with a text string, Perl
 will assume that your
binary string was encoded with ISO-8859-1, also known as
 latin-1. If it wasn't latin-1, then your data is
unpleasantly converted. For
 example, if it was UTF-8, the individual bytes of multibyte characters are
seen
 as separate characters, and then again converted to UTF-8. Such double encoding
 can be
compared to double HTML encoding (&gt;), or double URI encoding
 (%253E).

This silent implicit decoding is known as "upgrading". That may sound
 positive, but it's best to avoid it.

What if I don't encode?
Your text string will be sent using the bytes in Perl's internal format. In
 some cases, Perl will warn you
that you're doing something wrong, with a
 friendly warning:

 Wide character in print at example.pl line 2.

Because the internal format is often UTF-8, these bugs are hard to spot,
 because UTF-8 is usually the
encoding you wanted! But don't be lazy, and don't
 use the fact that Perl's internal format is UTF-8 to
your advantage. Encode
 explicitly to avoid weird bugs, and to show to maintenance programmers that
you
 thought this through.

Perl version 5.20.1 documentation - perlunifaq

Page 2http://perldoc.perl.org

Is there a way to automatically decode or encode?
If all data that comes from a certain handle is encoded in exactly the same
 way, you can tell the
PerlIO system to automatically decode everything, with
 the encoding layer. If you do this, you can't
accidentally forget to decode
 or encode anymore, on things that use the layered handle.

You can provide this layer when opening the file:

 open my $fh, '>:encoding(UTF-8)', $filename; # auto encoding on write
 open my $fh, '<:encoding(UTF-8)', $filename; # auto decoding on read

Or if you already have an open filehandle:

 binmode $fh, ':encoding(UTF-8)';

Some database drivers for DBI can also automatically encode and decode, but
 that is sometimes
limited to the UTF-8 encoding.

What if I don't know which encoding was used?
Do whatever you can to find out, and if you have to: guess. (Don't forget to
 document your guess with
a comment.)

You could open the document in a web browser, and change the character set or
 character encoding
until you can visually confirm that all characters look the
 way they should.

There is no way to reliably detect the encoding automatically, so if people
 keep sending you data
without charset indication, you may have to educate them.

Can I use Unicode in my Perl sources?
Yes, you can! If your sources are UTF-8 encoded, you can indicate that with the use utf8 pragma.

 use utf8;

This doesn't do anything to your input, or to your output. It only influences
 the way your sources are
read. You can use Unicode in string literals, in
 identifiers (but they still have to be "word characters"
according to \w),
 and even in custom delimiters.

Data::Dumper doesn't restore the UTF8 flag; is it broken?
No, Data::Dumper's Unicode abilities are as they should be. There have been
 some complaints that it
should restore the UTF8 flag when the data is read
 again with eval. However, you should really not
look at the flag, and
 nothing indicates that Data::Dumper should break this rule.

Here's what happens: when Perl reads in a string literal, it sticks to 8 bit
 encoding as long as it can.
(But perhaps originally it was internally encoded
 as UTF-8, when you dumped it.) When it has to give
that up because other
 characters are added to the text string, it silently upgrades the string to
 UTF-8.

If you properly encode your strings for output, none of this is of your
 concern, and you can just eval
dumped data as always.

Why do regex character classes sometimes match only in the ASCII range?
Starting in Perl 5.14 (and partially in Perl 5.12), just put a use feature 'unicode_strings' near
the beginning of your program.
 Within its lexical scope you shouldn't have this problem. It also is

automatically enabled under use feature ':5.12' or use v5.12 or
 using -E on the command
line for Perl 5.12 or higher.

The rationale for requiring this is to not break older programs that
 rely on the way things worked
before Unicode came along. Those older
 programs knew only about the ASCII character set, and so
may not work
 properly for additional characters. When a string is encoded in UTF-8,
 Perl assumes
that the program is prepared to deal with Unicode, but when
 the string isn't, Perl assumes that only

Perl version 5.20.1 documentation - perlunifaq

Page 3http://perldoc.perl.org

ASCII
 is wanted, and so those characters that are not ASCII
 characters aren't recognized as to what
they would be in Unicode. use feature 'unicode_strings' tells Perl to treat all characters as

Unicode, whether the string is encoded in UTF-8 or not, thus avoiding
 the problem.

However, on earlier Perls, or if you pass strings to subroutines outside
 the feature's scope, you can
force Unicode rules by changing the
 encoding to UTF-8 by doing utf8::upgrade($string). This
can be used
 safely on any string, as it checks and does not change strings that have
 already been
upgraded.

For a more detailed discussion, see Unicode::Semantics on CPAN.

Why do some characters not uppercase or lowercase correctly?
See the answer to the previous question.

How can I determine if a string is a text string or a binary string?
You can't. Some use the UTF8 flag for this, but that's misuse, and makes well
 behaved modules like
Data::Dumper look bad. The flag is useless for this
 purpose, because it's off when an 8 bit encoding
(by default ISO-8859-1) is
 used to store the string.

This is something you, the programmer, has to keep track of; sorry. You could
 consider adopting a
kind of "Hungarian notation" to help with this.

How do I convert from encoding FOO to encoding BAR?
By first converting the FOO-encoded byte string to a text string, and then the
 text string to a
BAR-encoded byte string:

 my $text_string = decode('FOO', $foo_string);
 my $bar_string = encode('BAR', $text_string);

or by skipping the text string part, and going directly from one binary
 encoding to the other:

 use Encode qw(from_to);
 from_to($string, 'FOO', 'BAR'); # changes contents of $string

or by letting automatic decoding and encoding do all the work:

 open my $foofh, '<:encoding(FOO)', 'example.foo.txt';
 open my $barfh, '>:encoding(BAR)', 'example.bar.txt';
 print { $barfh } $_ while <$foofh>;

What are decode_utf8 and encode_utf8?
These are alternate syntaxes for decode('utf8', ...) and encode('utf8',
 ...).

What is a "wide character"?
This is a term used both for characters with an ordinal value greater than 127,
 characters with an
ordinal value greater than 255, or any character occupying
 more than one byte, depending on the
context.

The Perl warning "Wide character in ..." is caused by a character with an
 ordinal value greater than
255. With no specified encoding layer, Perl tries to
 fit things in ISO-8859-1 for backward compatibility
reasons. When it can't, it
 emits this warning (if warnings are enabled), and outputs UTF-8 encoded
data
 instead.

To avoid this warning and to avoid having different output encodings in a single
 stream, always
specify an encoding explicitly, for example with a PerlIO layer:

 binmode STDOUT, ":encoding(UTF-8)";

Perl version 5.20.1 documentation - perlunifaq

Page 4http://perldoc.perl.org

INTERNALS
What is "the UTF8 flag"?

Please, unless you're hacking the internals, or debugging weirdness, don't
 think about the UTF8 flag
at all. That means that you very probably shouldn't
 use is_utf8, _utf8_on or _utf8_off at all.

The UTF8 flag, also called SvUTF8, is an internal flag that indicates that the
 current internal
representation is UTF-8. Without the flag, it is assumed to be
 ISO-8859-1. Perl converts between
these automatically. (Actually Perl usually
 assumes the representation is ASCII; see Why do regex
character classes sometimes match only in the ASCII range? above.)

One of Perl's internal formats happens to be UTF-8. Unfortunately, Perl can't
 keep a secret, so
everyone knows about this. That is the source of much
 confusion. It's better to pretend that the
internal format is some unknown
 encoding, and that you always have to encode and decode explicitly.

What about the use bytes pragma?
Don't use it. It makes no sense to deal with bytes in a text string, and it
 makes no sense to deal with
characters in a byte string. Do the proper
 conversions (by decoding/encoding), and things will work
out well: you get
 character counts for decoded data, and byte counts for encoded data.

use bytes is usually a failed attempt to do something useful. Just forget
 about it.

What about the use encoding pragma?
Don't use it. Unfortunately, it assumes that the programmer's environment and
 that of the user will use
the same encoding. It will use the same encoding for
 the source code and for STDIN and STDOUT.
When a program is copied to another
 machine, the source code does not change, but the STDIO
environment might.

If you need non-ASCII characters in your source code, make it a UTF-8 encoded
 file and use utf8.

If you need to set the encoding for STDIN, STDOUT, and STDERR, for example
 based on the user's
locale, use open.

What is the difference between :encoding and :utf8?
Because UTF-8 is one of Perl's internal formats, you can often just skip the
 encoding or decoding
step, and manipulate the UTF8 flag directly.

Instead of :encoding(UTF-8), you can simply use :utf8, which skips the
 encoding step if the
data was already represented as UTF8 internally. This is
 widely accepted as good behavior when
you're writing, but it can be dangerous
 when reading, because it causes internal inconsistency when
you have invalid
 byte sequences. Using :utf8 for input can sometimes result in security
 breaches,
so please use :encoding(UTF-8) instead.

Instead of decode and encode, you could use _utf8_on and _utf8_off,
 but this is considered
bad style. Especially _utf8_on can be dangerous, for
 the same reason that :utf8 can.

There are some shortcuts for oneliners;
 see -C in perlrun.

What's the difference between UTF-8 and utf8?
UTF-8 is the official standard. utf8 is Perl's way of being liberal in
 what it accepts. If you have to
communicate with things that aren't so liberal,
 you may want to consider using UTF-8. If you have to
communicate with things
 that are too liberal, you may have to use utf8. The full explanation is in
Encode.

UTF-8 is internally known as utf-8-strict. The tutorial uses UTF-8
 consistently, even where utf8
is actually used internally, because the
 distinction can be hard to make, and is mostly irrelevant.

For example, utf8 can be used for code points that don't exist in Unicode, like
 9999999, but if you
encode that to UTF-8, you get a substitution character (by
 default; see "Handling Malformed Data" in
Encode for more ways of dealing with
 this.)

Perl version 5.20.1 documentation - perlunifaq

Page 5http://perldoc.perl.org

Okay, if you insist: the "internal format" is utf8, not UTF-8. (When it's not
 some other encoding.)

I lost track; what encoding is the internal format really?
It's good that you lost track, because you shouldn't depend on the internal
 format being any specific
encoding. But since you asked: by default, the
 internal format is either ISO-8859-1 (latin-1), or utf8,
depending on the
 history of the string. On EBCDIC platforms, this may be different even.

Perl knows how it stored the string internally, and will use that knowledge
 when you encode. In other
words: don't try to find out what the internal
 encoding for a certain string is, but instead just encode it
into the encoding
 that you want.

AUTHOR
Juerd Waalboer <#####@juerd.nl>

SEE ALSO
perlunicode, perluniintro, Encode

