
Perl version 5.20.1 documentation - re

Page 1http://perldoc.perl.org

NAME
re - Perl pragma to alter regular expression behaviour

SYNOPSIS
 use re 'taint';
 ($x) = ($^X =~ /^(.*)$/s); # $x is tainted here

 $pat = '(?{ $foo = 1 })';
 use re 'eval';
 /foo${pat}bar/;		 # won't fail (when not under -T
 # switch)

 {
	 no re 'taint';		 # the default
	 ($x) = ($^X =~ /^(.*)$/s); # $x is not tainted here

	 no re 'eval';		 # the default
	 /foo${pat}bar/;		 # disallowed (with or without -T
 # switch)
 }

 use re '/ix';
 "FOO" =~ / foo /; # /ix implied
 no re '/x';
 "FOO" =~ /foo/; # just /i implied

 use re 'debug';		 # output debugging info during
 /^(.*)$/s;			 # compile and run time

 use re 'debugcolor';	 # same as 'debug', but with colored
 # output
 ...

 use re qw(Debug All); # Same as "use re 'debug'", but you
 # can use "Debug" with things other
 # than 'All'
 use re qw(Debug More); # 'All' plus output more details
 no re qw(Debug ALL); # Turn on (almost) all re debugging
 # in this scope

 use re qw(is_regexp regexp_pattern); # import utility functions
 my ($pat,$mods)=regexp_pattern(qr/foo/i);
 if (is_regexp($obj)) {
 print "Got regexp: ",
 scalar regexp_pattern($obj); # just as perl would stringify
 } # it but no hassle with blessed
 # re's.

(We use $^X in these examples because it's tainted by default.)

DESCRIPTION

Perl version 5.20.1 documentation - re

Page 2http://perldoc.perl.org

'taint' mode
When use re 'taint' is in effect, and a tainted string is the target
 of a regexp, the regexp
memories (or values returned by the m// operator
 in list context) are tainted. This feature is useful
when regexp operations
 on tainted data aren't meant to extract safe substrings, but to perform
 other
transformations.

'eval' mode
When use re 'eval' is in effect, a regexp is allowed to contain (?{ ... }) zero-width
assertions and (??{ ... }) postponed
 subexpressions that are derived from variable interpolation,
rather than
 appearing literally within the regexp. That is normally disallowed, since
 it is a
 potential
security risk. Note that this pragma is ignored when the regular
 expression is obtained from tainted
data, i.e. evaluation is always
 disallowed with tainted regular expressions. See "(?{ code })" in perlre
and "(??{ code })" in perlre.

For the purpose of this pragma, interpolation of precompiled regular
 expressions (i.e., the result of
qr//) is not considered variable
 interpolation. Thus:

 /foo${pat}bar/

is allowed if $pat is a precompiled regular expression, even
 if $pat contains (?{ ... }) assertions
or (??{ ... }) subexpressions.

'/flags' mode
When use re '/flags' is specified, the given flags are automatically
 added to every regular
expression till the end of the lexical scope.

no re '/flags' will turn off the effect of use re '/flags' for the
 given flags.

For example, if you want all your regular expressions to have /msx on by
 default, simply put

 use re '/msx';

at the top of your code.

The character set /adul flags cancel each other out. So, in this example,

 use re "/u";
 "ss" =~ /\xdf/;
 use re "/d";
 "ss" =~ /\xdf/;

the second use re does an implicit no re '/u'.

Turning on one of the character set flags with use re takes precedence over the locale pragma
and the 'unicode_strings' feature, for regular
 expressions. Turning off one of these flags when it is
active reverts to
 the behaviour specified by whatever other pragmata are in scope. For
 example:

 use feature "unicode_strings";
 no re "/u"; # does nothing
 use re "/l";
 no re "/l"; # reverts to unicode_strings behaviour

'debug' mode
When use re 'debug' is in effect, perl emits debugging messages when
 compiling and using
regular expressions. The output is the same as that
 obtained by running a -DDEBUGGING-enabled
perl interpreter with the -Dr switch. It may be quite voluminous depending on the complexity
 of the
match. Using debugcolor instead of debug enables a
 form of output that can be used to get a

Perl version 5.20.1 documentation - re

Page 3http://perldoc.perl.org

colorful display on terminals
 that understand termcap color sequences. Set $ENV{PERL_RE_TC} to a
comma-separated list of termcap properties to use for highlighting
 strings on/off, pre-point part
on/off.
 See "Debugging Regular Expressions" in perldebug for additional info.

As of 5.9.5 the directive use re 'debug' and its equivalents are
 lexically scoped, as the other
directives are. However they have both compile-time and run-time effects.

See "Pragmatic Modules" in perlmodlib.

'Debug' mode
Similarly use re 'Debug' produces debugging output, the difference
 being that it allows the fine
tuning of what debugging output will be
 emitted. Options are divided into three groups, those related
to
 compilation, those related to execution and those related to special
 purposes. The options are as
follows:

Compile related options

COMPILE

Turns on all compile related debug options.

PARSE

Turns on debug output related to the process of parsing the pattern.

OPTIMISE

Enables output related to the optimisation phase of compilation.

TRIEC

Detailed info about trie compilation.

DUMP

Dump the final program out after it is compiled and optimised.

Execute related options

EXECUTE

Turns on all execute related debug options.

MATCH

Turns on debugging of the main matching loop.

TRIEE

Extra debugging of how tries execute.

INTUIT

Enable debugging of start-point optimisations.

Extra debugging options

EXTRA

Turns on all "extra" debugging options.

BUFFERS

Enable debugging the capture group storage during match. Warning,
 this can
potentially produce extremely large output.

TRIEM

Enable enhanced TRIE debugging. Enhances both TRIEE
 and TRIEC.

STATE

Perl version 5.20.1 documentation - re

Page 4http://perldoc.perl.org

Enable debugging of states in the engine.

STACK

Enable debugging of the recursion stack in the engine. Enabling
 or disabling this
option automatically does the same for debugging
 states as well. This output from this
can be quite large.

OPTIMISEM

Enable enhanced optimisation debugging and start-point optimisations.
 Probably not
useful except when debugging the regexp engine itself.

OFFSETS

Dump offset information. This can be used to see how regops correlate
 to the pattern.
Output format is

 NODENUM:POSITION[LENGTH]

Where 1 is the position of the first char in the string. Note that position
 can be 0, or
larger than the actual length of the pattern, likewise length
 can be zero.

OFFSETSDBG

Enable debugging of offsets information. This emits copious
 amounts of trace
information and doesn't mesh well with other
 debug options.

Almost definitely only useful to people hacking
 on the offsets part of the debug engine.

Other useful flags

These are useful shortcuts to save on the typing.

ALL

Enable all options at once except OFFSETS, OFFSETSDBG and BUFFERS.
 (To get
every single option without exception, use both ALL and EXTRA.)

All

Enable DUMP and all execute options. Equivalent to:

 use re 'debug';

MORE

More

Enable the options enabled by "All", plus STATE, TRIEC, and TRIEM.

As of 5.9.5 the directive use re 'debug' and its equivalents are
 lexically scoped, as are the other
directives. However they have both
 compile-time and run-time effects.

Exportable Functions
As of perl 5.9.5 're' debug contains a number of utility functions that
 may be optionally exported into
the caller's namespace. They are listed
 below.

is_regexp($ref)

Returns true if the argument is a compiled regular expression as returned
 by qr//, false if it is
not.

This function will not be confused by overloading or blessing. In
 internals terms, this extracts
the regexp pointer out of the
 PERL_MAGIC_qr structure so it cannot be fooled.

regexp_pattern($ref)

If the argument is a compiled regular expression as returned by qr//,
 then this function

Perl version 5.20.1 documentation - re

Page 5http://perldoc.perl.org

returns the pattern.

In list context it returns a two element list, the first element
 containing the pattern and the
second containing the modifiers used when
 the pattern was compiled.

 my ($pat, $mods) = regexp_pattern($ref);

In scalar context it returns the same as perl would when stringifying a raw qr// with the same
pattern inside. If the argument is not a compiled
 reference then this routine returns false but
defined in scalar context,
 and the empty list in list context. Thus the following

 if (regexp_pattern($ref) eq '(?^i:foo)')

will be warning free regardless of what $ref actually is.

Like is_regexp this function will not be confused by overloading
 or blessing of the object.

regmust($ref)

If the argument is a compiled regular expression as returned by qr//,
 then this function
returns what the optimiser considers to be the longest
 anchored fixed string and longest
floating fixed string in the pattern.

A fixed string is defined as being a substring that must appear for the
 pattern to match. An
anchored fixed string is a fixed string that must
 appear at a particular offset from the beginning
of the match. A floating
 fixed string is defined as a fixed string that can appear at any point in
 a
range of positions relative to the start of the match. For example,

 my $qr = qr/here .* there/x;
 my ($anchored, $floating) = regmust($qr);
 print "anchored:'$anchored'\nfloating:'$floating'\n";

results in

 anchored:'here'
 floating:'there'

Because the here is before the .* in the pattern, its position
 can be determined exactly.
That's not true, however, for the there;
 it could appear at any point after where the anchored
string appeared.
 Perl uses both for its optimisations, preferring the longer, or, if they are
 equal,
the floating.

NOTE: This may not necessarily be the definitive longest anchored and
 floating string. This
will be what the optimiser of the Perl that you
 are using thinks is the longest. If you believe that
the result is wrong
 please report it via the perlbug utility.

regname($name,$all)

Returns the contents of a named buffer of the last successful match. If
 $all is true, then returns
an array ref containing one entry per buffer,
 otherwise returns the first defined buffer.

regnames($all)

Returns a list of all of the named buffers defined in the last successful
 match. If $all is true,
then it returns all names defined, if not it returns
 only names which were involved in the match.

regnames_count()

Returns the number of distinct names defined in the pattern used
 for the last successful
match.

Note: this result is always the actual number of distinct
 named buffers defined, it may not
actually match that which is
 returned by regnames() and related routines when those
routines
 have not been called with the $all parameter set.

Perl version 5.20.1 documentation - re

Page 6http://perldoc.perl.org

SEE ALSO
"Pragmatic Modules" in perlmodlib.

