
Devel::NYTProf
Perl Source Code Profiler

Tim Bunce - July 2009
Screencast available at

http://blog.timbunce.org/tag/nytprof/

http://blog.timbunce.org/tag/nytprof/
http://blog.timbunce.org/tag/nytprof/

Devel::DProf

• Oldest Perl Profiler —1995

• Design flaws make it practically useless
on modern systems

• Limited to 0.01 second resolution
even for realtime measurements!

Devel::DProf Is Broken
$ perl -we 'print "sub s$_ { sqrt(42) for 1..100 };
 s$_({});\n" for 1..1000' > x.pl

$ perl -d:DProf x.pl

$ dprofpp -r
Total Elapsed Time = 0.108 Seconds
 Real Time = 0.108 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 9.26 0.010 0.010 1 0.0100 0.0100 main::s76
 9.26 0.010 0.010 1 0.0100 0.0100 main::s323
 9.26 0.010 0.010 1 0.0100 0.0100 main::s626
 9.26 0.010 0.010 1 0.0100 0.0100 main::s936
 0.00 - -0.000 1 - - main::s77
 0.00 - -0.000 1 - - main::s82

Lots of Perl Profilers
• Take your pick...

 Devel::DProf | 1995 | Subroutine
 Devel::SmallProf | 1997 | Line
 Devel::AutoProfiler | 2002 | Subroutine
 Devel::Profiler | 2002 | Subroutine
 Devel::Profile | 2003 | Subroutine
 Devel::FastProf | 2005 | Line
 Devel::DProfLB | 2006 | Subroutine
 Devel::WxProf | 2008 | Subroutine
 Devel::Profit | 2008 | Line
 Devel::NYTProf | 2008 | Line & Subroutine

Evolution

 Devel::DProf | 1995 | Subroutine
 Devel::SmallProf | 1997 | Line
 Devel::AutoProfiler | 2002 | Subroutine
 Devel::Profiler | 2002 | Subroutine
 Devel::Profile | 2003 | Subroutine
 Devel::FastProf | 2005 | Line
 Devel::DProfLB | 2006 | Subroutine
 Devel::WxProf | 2008 | Subroutine
 Devel::Profit | 2008 | Line
 Devel::NYTProf v1 | 2008 | Line
 Devel::NYTProf v2 | 2008 | Line & Subroutine

...plus lots of innovations!

CPU Time Real Time

Subroutines

Statements

? ?
? ?

What To Measure?

CPU Time vs Real Time

• CPU time
- Very poor resolution (0.01s) on many systems

- Not (much) affected by load on system

- Doesn’t include time spent waiting for i/o etc.

• Real time
- High resolution: microseconds or better

- Is affected by load on system

- Includes time spent waiting

Sub vs Line

• Subroutine Profiling
- Measures time between subroutine entry and exit

- That’s the Inclusive time. Exclusive by subtraction.

- Reasonably fast, reasonably small data files

• Problems
- Can be confused by funky control flow

- No insight into where time spent within large subs

- Doesn’t measure code outside of a sub

Sub vs Line

• Line/Statement profiling
- Measure time from start of one statement to next

- Exclusive time (except includes built-ins & xsubs)

- Fine grained detail

• Problems
- Very expensive in CPU & I/O

- Assigns too much time to some statements

- Too much detail for large subs (want time per sub)

- Hard to get overall subroutine times

Devel::NYTProf

v1 Innovations

• Fork of Devel::FastProf by Adam Kaplan
- working at the New York Times

• HTML report borrowed from Devel::Cover

• More accurate: Discounts profiler overhead
including cost of writing to the file

• Test suite!

v2 Innovations

• Profiles time per block!
- Statement times can be aggregated

to enclosing block
and enclosing sub

v2 Innovations

• Dual Profilers!
- Is a statement profiler

- and a subroutine profiler

- At the same time!

v2 Innovations

• Subroutine profiler
- tracks time per calling location

- even for xsubs

- calculates exclusive time on-the-fly

- discounts overhead of statement profiler

- immune from funky control flow

- in memory, writes to file at end

- extremely fast

v2 Innovations

• Statement profiler gives correct timing
after leave ops
- unlike previous statement profilers...

- last statement in loops doesn’t accumulate
time spent evaluating the condition

- last statement in subs doesn’t accumulate time
spent in remainder of calling statement

v2 Other Features

• Profiles compile-time activity

• Profiling can be enabled & disabled on the fly

• Handles forks with no overhead

• Correct timing for mod_perl

• Sub-microsecond resolution

• Multiple clocks, including high-res CPU time

• Can snapshot source code & evals into profile

• Built-in zip compression

Profiling Performance

Time Size
Perl

SmallProf
FastProf
NYTProf
+ blocks=0
+ stmts=0
DProf

x 1 -

x 22 -

x 6.3 42,927KB

x 3.9 11,174KB

x 3.5 9,628KB

x 2.5* 205KB

x 4.9 60,736KB

v3 Features

• Profiles slow opcodes: system calls, regexps, ...

• Subroutine caller name noted, for call-graph

• Handles goto ⊂ e.g. AUTOLOAD

• HTML report includes interactive TreeMaps

• Outputs call-graph in Graphviz dot format

Running NYTProf

perl -d:NYTProf ...

perl -MDevel::NYTProf ...

PERL5OPT=-d:NYTProf

NYTPROF=file=/tmp/nytprof.out:addpid=1:slowops=1

Reporting NYTProf

• CSV - old, limited, dull

$ nytprofcsv

Format: time,calls,time/call,code
0,0,0,sub foo {
0.000002,2,0.00001,print "in sub foo\n";
0.000004,2,0.00002,bar();
0,0,0,}
0,0,0,

Reporting NYTProf

• KcacheGrind call graph - new and cool
- contributed by C. L. Kao.

- requires KcacheGrind

$ nytprofcg # generates nytprof.callgraph

$ kcachegrind # load the file via the gui

Reporting NYTProf
• HTML report

- page per source file, annotated with times and links

- subroutine index table with sortable columns

- interactive Treemaps of subroutine times

- generates Graphviz dot file of call graph

$ nytprofhtml # writes HTML report in ./nytprof/...

$ nytprofhtml --file=/tmp/nytprof.out.793 --open

Summary

Links to annotated
source code

Timings for perl builtins

Link to sortable table
of all subs

Exclusive vs. Inclusive

• Exclusive Time = Bottom up
- Detail of time spent “just here”

- Where the time actually gets spent

- Useful for localized (peephole) optimisation

• Inclusive Time = Top down
- Overview of time spent “in and below”

- Useful to prioritize structural optimizations

Timings for each location calling into,
or out of, the subroutine

Overall time spent in and below this sub

(in + below)

Color coding based on
Median Average Deviation
relative to rest of this file

Boxes represent subroutines
Colors only used to show

packages (and aren’t pretty yet)

Hover over box to see details
Click to drill-down one level

in package hierarchy

Treemap showing relative
proportions of exclusive time

Let’s take a look...

Optimizing
Hints & Tips

Phase 0
 Before you start

DONʼT
DO IT!

“The First Rule of Program Optimization:
Don't do it.

The Second Rule of Program Optimization
(for experts only!): Don't do it yet.”

- Michael A. Jackson

http://en.wikipedia.org/wiki/Michael_A._Jackson
http://en.wikipedia.org/wiki/Michael_A._Jackson

Why not?

“More computing sins are committed in the
name of efficiency (without necessarily
achieving it) than for any other single
reason - including blind stupidity.”

- W.A. Wulf

http://en.wikipedia.org/wiki/W.A._Wulf
http://en.wikipedia.org/wiki/W.A._Wulf

“We should forget about small efficiencies,
say about 97% of the time: premature
optimization is the root of all evil.
Yet we should not pass up our
opportunities in that critical 3%.”

- Donald Knuth

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Donald_Knuth

“We should forget about small efficiencies,
say about 97% of the time: premature
optimization is the root of all evil.
Yet we should not pass up our
opportunities in that critical 3%.”

- Donald Knuth

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Donald_Knuth

How?

“Bottlenecks occur in surprising places, so
don't try to second guess and put in a speed
hack until you have proven that's where the
bottleneck is.”

- Rob Pike

http://en.wikipedia.org/wiki/Rob_Pike
http://en.wikipedia.org/wiki/Rob_Pike

“Measure twice, cut once.”

- Old Proverb

Phase 1
Low Hanging Fruit

Low Hanging Fruit
1. Profile code running representative workload.

2. Look at Exclusive Time of subroutines.

3. Do they look reasonable?

4. Examine worst offenders.

5. Fix only simple local problems.

6. Profile again.

7. Fast enough? Then STOP!

8. Rinse and repeat once or twice, then move on.

“Simple Local Fixes”

Changes unlikely to introduce bugs

Move invariant
expressions
out of loops

Avoid->repeated
->chains

->of->accessors(...)

Use a temporary variable

Use faster accessors

Class::Accessor
-> Class::Accessor::Fast
--> Class::Accessor::Faster
---> Class::XSAccessor

Avoid calling subs that
don’t do anything!

my $unsed_variable = $self->foo;

my $is_logging = $log->info(...);
while (...) {
 $log->info(...) if $is_logging;
 ...
}

Exit subs and loops early
Delay initializations

return if not ...a cheap test...;
return if not ...a more expensive test...;
my $foo = ...initializations...;
...body of subroutine...

Fix silly code

- return exists $nav_type{$country}{$key}
- ? $nav_type{$country}{$key}
- : undef;
+ return $nav_type{$country}{$key};

Beware pathological
regular expressions

NYTPROF=slowops=2

Avoid unpacking args
in very hot subs
 sub foo { shift->delegate(@_) }

 sub bar {
 return shift->{bar} unless @_;
 return $_[0]->{bar} = $_[1];
 }

Retest.

Fast enough?

STOP!
Put the profiler down and walk away

Phase 2
Deeper Changes

Profile with a
known workload

E.g., 1000 identical requests

Check Inclusive Times
(especially top-level subs)

Reasonable percentage
for the workload?

Check subroutine
call counts

Reasonable
for the workload?

Add caching
if appropriate

to reduce calls

Remember invalidation

Walk up call chain
to find good spots

for caching

Remember invalidation

Creating many objects
that don’t get used?

Lightweight proxies
e.g. DateTimeX::Lite

Retest.

Fast enough?

STOP!
Put the profiler down and walk away

Phase 3
Structural Changes

Push loops down

 - $object->walk($_) for @dogs;

 + $object->walk_these(\@dogs);

Change the data
structure

hashes <–> arrays

Change the algorithm

What’s the “Big O”?
O(n2) or O(logn) or ...

http://en.wikipedia.org/wiki/O_notation
http://en.wikipedia.org/wiki/O_notation

Rewrite hot-spots in C

Inline::C

It all adds up!

“I achieved my fast times by
multitudes of 1% reductions”

- Bill Raymond

Questions?

Tim.Bunce@pobox.com
@timbunce on twitter occasionally

http://blog.timbunce.org

mailto:Tim.Bunce@pobox.com
mailto:Tim.Bunce@pobox.com
http://blog.timbunce.org
http://blog.timbunce.org

