Devel::NYTProf

Perl Source Code Profiler

http://blog.timbunce.org/tag/nytprof/
http://blog.timbunce.org/tag/nytprof/

Devel::DProf

Oldest Perl Profiler — 1995

Design flaws make it practically useless
on modern systems

Limited to 0.01 second resolution
even for realtime measurements!

Devel::DProt 1y Broken

$ perl -we 'print "sub s$ { sqrt(42) for 1..100 };
s$S ({});\n" for 1..1000' > x.pl

S perl -d:DProf x.pl

S dprofpp -r
Total Elapsed Time = 0.108 Seconds
Real Time 0.108 Seconds

Exclusive Times

$Time ExclSec CumulS #Calls sec/call Csec/c Name
9.26 0.010 0.010 1 0.0100 0.0100 main::s76
9.26 0.010 0.010 1 0.0100 0.0100 main::s323
9.26 0.010 0.010 0.0100 0.0100 main::s626
9.26 0.010 0.010 0.0100 0.0100 main::s936
0.00 - -0.000 - - main::s77
0.00 - -0.000 - - main::s82

Lots ot Perl Prohilers

® Take your pick...

Devel:
Devel:
Devel:
Devel:
Devel:
Devel:
Devel:
Devel:
Devel:
Devel:

:DProf
:SmallProf
:AutoProfiler
:Profiler
:Profile
:FastProf
:DProfLB
:WxProf
:Profit
:NYTProf

Subroutine

Line

Subroutine
Subroutine
Subroutine

Line

Subroutine
Subroutine

Line

Line & Subroutine

Evolution

Devel: :SmallProf | 1997 |

Devel: :FastProf | 2005 |

Devel: :NYTProf vl | 2008 |
Devel: :NYTProf v2 | 2008 | & Subroutine
...plus lots of innovations!

What To Measure?

Subroutines

Statements

CPU Time

Real Time

CPU Time vs Real Time

e CPU time

— Very poor resolution (0.01s) on many systems

— Not (much) affected by load on system

— Doesn’t include time spent waiting for 1/o etc.

® Real time

— High resolution: microseconds or better

— Is affected by load on system

— Includes time spent waiting

Sub vs Line

® Subroutine Profiling
— Measures time between vubroutine entry and exit

— That's the Inclusive time. Exclusive by subtraction.

- Reasonably fast, reasonably small data files

® Problems

— Can be confused by funky control flow
— No insight into where time spent within large subs

— Doesn’t measure code outside of a sub

Sub vs Line

® Line/Statement profiling
— Measure time from start of one statement to next

— Fxclusive time (except includes built-ins & xsubs)

— Fine grained detail

® Problems

— Very expensive in CPU & 1/O

— Assigns too much time to some statements

— Too much detail for large subs (want time per sub)

Hard to get overall subroutine times

Devel::NYTProf

v1 Innovations

® Fork of Devel::FastProf by Adam Kaplan

- working at the New York Times
¢ HTML report borrowed from Devel::Cover

® More accurate: Discounts proﬁler overhead
including cost of writing to the file

® Test suite!

v2 Innovattony

® Profiles time per block!

— Statement times can be aggregated
to enclosing block

and enclosing sub

v2 Innovattony

e Dual Profilers!

— Is a statement proﬁler
— and a subroutine profiler

— At the same time!

v2 Innovattony

® Subroutine profiler
tracks time per calling location
even for xsubs
calculates exclusive time on-the-fly
discounts overhead of statement proﬁler
immune from funky control flow
in memory, writes to file at end

extremely fast

v2 Innovattony

® Statement profiler gives correct timing
after leave ops

— unlike previous statement profilers...

— last statement 1n loops doesn’t accumulate
time spent evaluating the condition

— Jast statement 1n subs doesn’t accumulate time
spent in remainder of calling statement

v2 Other Features

Profil
Profil

es compile-time activity

ing can be enabled & disabled on the fly

Hand

les forks with no overhead

Correct timing for mod_perl

Sub-microsecond resolution

Multiple clocks, including high-res CPU time

Can snapshot source code & evals into profile

Built-in zip compression

NYTProf 2.04 - Effect of Compression Levels

— Real Secs - UserSecs -~ SysSecs - Data MB

0.6 0.5

v Al

4 5
Compression Level

Profiling Performance

Perl
SmallProf
FastProf : 42,927KB
NY T Prof : | 1,174KB

+ blocks=0 : 9,628KB
+ stmts=0 : 205KB
DProf : 60,736KB

vd Features

Profiles slow opcodes: system calls, regexps, ...
Subroutine caller name noted, for call-graph
Handles goto ⊂ e.g. AUTOLOAD
HTMUL report includes interactive Tree Maps
Outputs call-graph in Graphviz dot format

Running NYTProf

perl -d:NYTProf

perl -MDevel::NYTProf

PERL50PT=-d:NYTProf

NYTPROF=file=/tmp/nytprof.out:addpid=1:slowops=1

Reporting NYTProf

e CSV -old, imited, dull

S nytprofcsv

Format: time,calls,time/call,code
0,0,0,sub foo {

0.000002,2,0.00001,print "in sub foo\n";
0.000004,2,0.00002,bar();

0,0,0,}

0,0,0,

Reporting NYTProf

® KcacheGrind call graph - new and cool
— contributed by C. L. Kao.

— requires KcacheGrind

S nytprofcg # generates nytprof.callgraph
S kcachegrind # load the file via the qui

File View Go Settings Help

O~ QQ Q/|% P& 1@ ([Ticks B

' = Pod::Perldoc::grand_search_init
kil H(No Grouping) ; Types Callers | All Callers | Source | Callee Map L
Incl. Self Calle: Function =

= 99.89 0.02 1 mPod::Perldoc::run
= 99,89 0.00 (0)m=main::RUNTIME ‘
= 99,51 0.10 1 mPod::Perldoc::process

94,99 0.06 1mPod::Perldoc::render... 3 \‘_f[f_‘f);j ",E,}_'{], 1
canonpe 7“|‘

mr 93.15 0.13 1 mPod::Perldoc::render...
mw 74.05m73.95 1 wPod::Perldoc::ToMan:.
» 18.81 0.01 1mPod::Perldoc::new o...
y 18.80r 14.81 1mPod::Perldoc::new_te..
| ::Perldoc::

1.77 141 1mPod::Perldoc::find_go.
1.70 0.18 1 mPod::Perldoc::searchfc
1.68 0.59 1 wPod::Perldoc::page
1.46 0.28 34 wPod::Perldoc::check ..
1.17 0.01 1mExporter::export_tags
1.17 1.12 1 mExporter::as_heavy
1.11 0.92 16 mExporter::import

0.99 0.19 18 mPod::Perldoc::minus_..
0.85 0.85 189mPod::Perldoc::CORE:...
0.79 0.05 20 mFile::Spec::Functions..
0.78 0.13 20wmFile::Spec::Unix::catf..

061 044 41-File::Spec::Unix::can..@ & i
1 . |) Caller Map Call Graph | Callees | All Calle% »

Reporting NYTProf

® HTML report

— page per source file, annotated with times and links
subroutine index table with sortable columns

interactive Treemaps of subroutine times

generates Graphviz dot file of call graph

S nytprofhtml # writes HTML report in ./nytprof/...
S nytprofhtml --file=/tmp/nytprof.out.793 --open

Performance Profile Index

For /usr/local/perl510-pure/bin/perldoc

Run on Wed Jul 22 00:04:40 2009

Reported on Wed Jul 22 00:04:48 2009

Profile of /usr/local/perl510-pure/bin/peridoc for 3.18s, executing 3629 statements and 1655
subroutine calls in 34 source files and 8 string evals.

[Jump to file...

m

Top 15 Subroutines — ordered by exclusive time

Calls

P

F

Exclusive
Time

Inclusive
Time

Subroutine

—

—

4

See all 407 subroutines

-) = = A D)W =N =

3

1
1
1
1
1
2
2
2
1
2
2
1
9
1
1

1.87s
637ms
108ms
82.9ms
76.6ms
60.3ms
54.5ms
52.1ms
49.4ms
22.5ms
4.17ms
2.81ms
2.71ms
1.96ms
1.18ms

1.878 Pod: :Perldoc::ToMan:
Pod: :Perldoc:
Pod: :Perldoc:
Pod: :Perldoc:
Pod: :Perldoc:

base:

XSLoader:

: :Perldoc:

base:

: :Perldoc:

: :Perldoc:
Exporter:
Exporter:

Pod: :Perldoc:
File::Spec::Unix:

750ms

169ms
83.6ms
77.0ms

110ms
54.5ms
52.1ms
49.4ms
22.5ms
4.17ms
2.88ms
3.24ms
28.8ms
1.70ms

:parse from file
:new_tempfile

:find good formatter class
:opt_o with

:maybe diddle INC
:import

:load
:CORE:sleep(xsub)
:has_version

:CORE: readline(xsub)
:CORE:print(xsub)
:as_heavy

:import

:page

:canonpath

Performance Profile Index

For /usr/local/perl510-pure/bin/perldoc

Run on Wed Jul 22 00:04:40 2009

Reported on Wed Jul 22 00:04:48 2009

Profile of /usr/local/perl510-pure/bin/peridoc for 3.18s, executing 3629 statements and 1655
subroutine calls in 34 source files and 8 string evals.

[Jump to file...

Q

Top 15 Subroutines — ordered by exclusive time

Links to annotated
source code

Calls

F

Exclusive

Time

Inclusive
Time

Subroutine

See all 407 subroutines

3

1
1
1
1
1
2
2
2
1
2
2
1
9
1
1

1.87s
637ms
108ms
82.9ms
76.6ms
60.3ms
54.5ms
52.1ms
49.4ms
22.5ms

1.878 Pod: :Perldoc::ToMan:
Pod: :Perldoc:
Pod: :Perldoc:
Pod: :Perldoc:
Pod: :Perldoc:
base:
XSLoader:
Pod: :Perldoc:
base:

Pod: :Perldoc:

750ms
169ms
83.6ms
77.0ms
110ms
54.5ms
52.1ms
49.4ms
22.5ms

5 Link to sortable table

2

1.18ms

of all subs

.70ms

:parse_from file
:new_tempfile
:find good formatter class
:opt_o with
:maybe_diddle INC

:import

:load

:CORE:sleep(xsub)
:has_version

:CORE: readline(xsub)

: :CORE:print(xsub)
::as_heavy

: :import

e oee onix: TimMings for perl buil’rinsl

{

Exclusive vs. Inclusive

® Exclusive Time = Bottom up
— Detail of time spent “just here”

— Where the time actually gets spent
— Usetul for localized (peephole) optimisation

® Inclusive Time = Top down
— Overview of time spent “in and below”

— Useful to prioritize structural optimizations

Line | State Time Calls| Time Code
ments | on line in subs

17
spent 505ms (273+233) within Ex01::Subs::call a which was called 10
1000 times (273ms+233ms) by main::RUNTIME at line 16, avg 505us/cal

sub call a {

18 11000 232ms my €args = @_;

1% 11000 39.0ms 1000 233ms call b(éargs);
spent 233ms making 1000 calls to Ex0l::Subs::call b, avg 233u

Overall time spent in and below this sub

(in + below)

Line | State Time Calls| Time
ments | on line in subs

17
spent 505ms (273+233) within Ex0l::Subs::call a which was called 10

1000 times (273ms+233ms) by main::RUNTIME at line 16, avg 505us/cal

sub call_a {
18 11000 232ms my fargs = €_;
18 11000 39.0ms 1000 233ms call b(€args);

spent 233ms making 1000 lls to Ex0l::Subs::call b, avg 233u

= \ }
Color coding based on

Median Average Deviation
relative fo rest of this file

Timings for each location calling into,
or out of, the subroutine

represent time spent in a subroutine. Coloring represents packages. Click to drill-down into package hierarchy.

h bype ore

__TOKI

T I ' '
_add_element _lex_docun =reX_10 /= serialize Lvisual_lenne ,
_delz _re re o

| resolve_n add_ state

M—W e '~l ‘- ﬂ_‘mﬂm 'lmm‘ﬂ

_lex_statement

L

4l |
__ANON__[(eval Rl PPI: :Lexer: :_lex_structure
0)[/usr/local/peri510-

pure/lib/site_perl/5.10.0/
ELCE Called 246 times from 1 place in 1 file
find Exclusive time: 36.5ms, 0.56%
Inclusive time: S504ms, 7.68%
Recursion: max depth 5, recursive inclusive time 262ms

_..add_element

Boxes represent time spent in a Treem GP sh owin g . €| ative to drill-down into package hierarchy.

e proportions of exclusive time |5 | G- .

G
imp 'a

Boxes represent subrou;ines
Colors only used to show
packages (and arent pretty yet)

N_[(eval UELEEE L PPI: :Lexer::_lex_structure
0)[/ust/local/per510-

pure/lib/site_perl/S.10.0/
BUZ. - Called 246 times from 1 place in 1 file
find | Exclusive time: 36.5ms, 0.56%
Inclusive time: S504ms, 7.68%
Recursion: max depth 5, recursive inclusive time 262ms

B | | . b ~Fe 5g
Hover over box to see details |y

Click to drill-down one level
in package hierarchy

Let s take a look...

Optimizing

Hints e> Tips

Phase 0

Before you ostart

“The First Rule of Program Optimization:
Don't do 1it.

The Second Rule of Program Optimization

(for experts only!): Don't do 1t yet.”

- Michael A. Jackson

http://en.wikipedia.org/wiki/Michael_A._Jackson
http://en.wikipedia.org/wiki/Michael_A._Jackson

Why not?

“More computing sins are committed 1n the
name of efficiency (without necessarily

achieving 1t) than for any other single

reason - including blind stupidity.”

- W.A. Wault

http://en.wikipedia.org/wiki/W.A._Wulf
http://en.wikipedia.org/wiki/W.A._Wulf

“We should forget about small efhciencies,
say about 97% of the time: premature

optimization is the root of all evil.
Yet we should not pass up our

opportunities in that critical 3%.”

- Donald Knuth

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Donald_Knuth

“We should forget about small efhiciencies,
say about 97% of the time: premature
optimization 1s the root of all evil.

Yet we should not pass up our

opportunities in that critical 3%.”

- Donald Knuth

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Donald_Knuth

“Bottlenecks occur in surprising places, so
don't try to second guess and put 1n a speed

hack until you have proven that's where the
bottleneck 1s.”

- Rob Pike

http://en.wikipedia.org/wiki/Rob_Pike
http://en.wikipedia.org/wiki/Rob_Pike

11 °))
Measure twice, cut once.

- Old Proverb

Phase 1

Low Hanging Fruut

Low Hanging Fruit

Profile code running representative workload.

. Look at Exclusive Time of subroutines.

. Do they look reasonable?

. Examine worst offenders.

. Profile again.
. Fast enough? Then STOP!

. Rinse and repeat once or twice, then move on.

1.
2
3
4
5. Fix only simple local problems.
6
7
8

“Simple Local Fixes”

Changes unlikely to introduce bugs

Move 1nvariant
eXpressions

out of loops

Avoid->repeated

->chains
->of->accessors(...)

Use a temporary variable

Use faster accessors

Class: :Accessor

-> Class::Accessor: :Fast
——> Class::Accessor::Faster
——-> Class: :XSAccessor

Avoid calling subs that

don'’t do anything!

my Sunsed variable = $self->foo;

my $is_logging = $log->info(...);
while (...) {
$log->info(...) if $is_logging;

}

Exit subs and loops early

Delay initializations

return if not ...a cheap test...;

return if not ...a more expensive test...;
my $foo = ...initializations...;

...body of subroutine...

Fix silly code

return exists $nav_type{Scountry}{Skey}
? Snav_type{Scountry}{Skey}
: undef;

return $nav_type{Scountry}{Skey};

Beware pathological

regular expressions

NYTPROF=slowops=2

Avoid unpacking args

In very hot subs

sub foo { shift->delegate(@) }

sub bar {
return shift->{bar} unless @ ;
return $§ [0]->{bar} = $ [1];

}

Retest.

Fast enough?

STOP!

Put the profiler down and walk away

Phase 2

Deeper Changeds

Profile with a
known workload

E.g., 1000 identical requests

Check Inclusive Times
(especially top-level subs)

Reasonable percentage
for the workload?

Check subroutine
call counts

Reasonable
tor the workload?

Add caching
if appropruate

to reduce calls

Remember invalidation

Walk up call chain
to find good spots

for caching

Remember invalidation

Creating many objects
that don't get used?

Laghtweight proxies

c.g. DateTimeX::Lite

Retest.

Fast enough?

STOP!

Put the profiler down and walk away

Phase 3

Structural Changes

Push loops down

Sobject->walk($) for @dogs;

Sobject->walk these(\@dogs);

Change the data

structure

hashes <—> arrays

Change the algorithm

What's the “Big O”?
O(n*) or O(logn) or ...

http://en.wikipedia.org/wiki/O_notation
http://en.wikipedia.org/wiki/O_notation

Rewrite hot-spots in C

ITnline: :C

It all adds up!

“I achieved my fast times by
multitudes of 1% reductions”

- Bill Raymond

Quedstions?

mailto:Tim.Bunce@pobox.com
mailto:Tim.Bunce@pobox.com
http://blog.timbunce.org
http://blog.timbunce.org

