

Data Management in Set-Top Box
Electronic Programming Guides

Abstract: The electronic programming guide (EPG) offers the most fully developed interactive
browsing service on digital television, enabling users to search, filter and customize program
listings and even control access to some content. These capabilities add significant data
management considerations to the design of new set-top boxes. Seeking a proven solution, a
handful of vendors have begun incorporating off-the-shelf database technology into their set-top
boxes.

This paper explores EPG data management, with the goal of educating developers and improving
their software results. It maps emerging digital TV standards and the set-top box technology
environment, explores data management requirements, and presents typical data objects and
interrelationships found in programming guides. In examining solutions, the paper focuses on one
relatively new type of data management, the in-memory database system (IMDS), which
improves data management performance and minimizes resource demands through a streamlined
design. Code examples and sample database schema focus on efficiencies gained by
implementing set-top box data management using an off-the-shelf database system.

McObject LLC
22525 SE 64th Place

Suite 302
Issaquah, WA 98027

Phone: 425-831-5964

E-mail: info@mcobject.com
www.mcobject.com

Copyright 2002, McObject LLC

Introduction.
Digital television has no doubt emerged as one of the most fully realized networked multimedia
technologies. While other convergence applications strive to move into the mainstream, digital
TV is already delivering hundreds of channels, a crisp clear picture, and better-than-CD-quality
audio to millions of users. The period of transition from analog to digital broadcasting could last a
decade or more, but eventually all broadcasters will move to the digital domain. Viewers
accustomed to a rather passive video experience are often pleasantly startled by digital TV’s
interactive browsing of data services. Among the most useful of these are data services that
describe audio-visual content.

The electronic programming guide (EPG) is one of the most important data containers of
channel-rich digital TV. An EPG allows the user to scan available channel offerings and tune to
current programs by pointing at listings with a remote control. The EPG informs the user of the
most interesting programs that fit specified viewing criteria, and the user can check program
availability over a series of days. EPG technology is no futuristic dream—cable and satellite
receivers offer such guides today, allowing users to browse available programs by themes such as
movies, sports, news/business, family/children and education. Favorite channel lists can be
customized for easy program selection, and an info button on the remote instantly calls up
program information. Some models even enable parents and others to block content, usually
according to program ratings.

Systems designers will recognize these capabilities as entailing significant searching, filtering,
sorting, selecting and storing tasks. In fact, the EPG, more than any other feature, has added a
challenging data management component to the design of new digital television receivers (also
known as Integrated Receiver Decoders, IRDs or set-top boxes). To support the growth in EPG
features, developers increasingly must incorporate a database “layer” within receivers’ embedded
software that facilitates optimal data designs, supports transactions and data integrity, and
minimizes impact of data management tasks on performance and on RAM and CPU usage.

Developers have typically responded to this challenge with self-developed data management
components. This solution often meets the performance and small footprint requirements for set-
top boxes. But when required to manage increased volumes of data or to adapt to new IRD
features, the self-developed data management often proves difficult to upgrade, demanding
inordinate QA and extending development cycles.

Increasingly, IRD developers are turning to commercial embedded database systems, which offer
stability, extensibility and scalability gained from years of usage. However, commercial
databases’ lack of real-time performance often rule out their use in digital TV receivers—when
surfing through program offerings, viewers expect the zero-latency responses associated with
consumer electronics. These databases’ demands on processing resources also make them a poor
fit—in order to minimize costs, companies developing IRDs incorporate minimal RAM and
choose less powerful processors.

One of the greatest challenges of using off-the-shelf data management in set-top boxes is the
sheer wealth of available products and information. Set-top box designers are typically not
database experts. To assist them in understanding this emerging aspect of set-top box
development, this paper explores IRD data management requirements as well as typical data
objects and interrelationships defined by the EPG database. It examines off-the-shelf solutions,
focusing on one relatively new type of database, the in-memory database system, which meets
EPG system demands by eliminating much of the unnecessary overhead associated with
traditional (disk-based) databases.

The EPG as local data store.
The EPG data that consists of program descriptions is issued in real-time from broadcast or
terrestrial sources. The information cycle rates in the EPG streams vary and can be relatively long
(i.e. hours). Because of this, the set-top box cannot “wait” for data upon a user selection or some
other query of EPG information. Rather, the set-top box receiver collects and retains the
information beforehand. Once the EPG data is received and stored locally in the set-top DRAM,
the viewer can search, filter, sort, and select programs for immediate or future viewing. Local
storage of the program guide isolates the consumer from any transport delays.

Brief overview of standards.
The MPEG-2 communications and processing standard for digital TV has a private broadcast
mechanism that is used to carry EPG data, although the standard does not define the data’s
format. In the United States, the Advanced Television Systems Committee (ATSC) has issued a
standard titled ATSC A/65 Program and System Information Protocol (PSIP) for Terrestrial
Broadcast and Cable. It defines how EPG data is to be carried in MPEG-2 data streams. In
Europe, the European Telecommunications Standards Institute’s Digital Video Broadcast (DVB)
standard addresses this need.

For electronic programming guides, these American and European standards define how the
program producers put program descriptions into the digital video stream, following the PSIP (in
the United States) or DVB (in Europe) protocols. The intent is to enable receivers built by
different manufacturers to build comprehensive programming guides using the same data. Like
other standards developed for the European and U.S. markets, PSIP and DVB are not
interoperable. Since EPG data is only between 0.5 percent and 3 percent of the total digital
content of a program, an MPEG-2 stream could carry both ATSC and DVB program guide data.
In actual practice, this is usually not done. A cable system may carry dozens of independent
MPEG-2 data streams, and real-time gathering of program descriptions broadcast in the MPEG-2
stream can be slow and system-dependent. For this reason, most digital broadcasting networks in
the United States use a separate out-of-band data carrier to transport EPG data to the receiver.

The ATSC standard for EPGs.
For U.S. MPEG-2 digital video systems, the ATSC A/65 standard addresses the issue of multiple
programs on a single RF channel via the concept of virtual channels. Virtual channels appear to
the user as ordinary channels, but are not carried at the frequency that is defined by the FCC for
that channel number. The A/65 definition of the channel includes its frequency, method of
modulation, a text name, channel type (analog audio/video, digital a/v, audio only, data) and the
channel number the user may use to access it.

Broadcasters consider their channel number an investment in brand recognition, so they usually
include the number in their logo. Virtual channels introduce “two-part” channel numbers that
allow broadcasters to have their secondary channels appear as part of their primary channel. For
broadcasters, the first part of the two-part channel number (called the “major” channel number)
for digital television is required to be the same as the EIA/FCC channel number already in use for
the analog channel. The second part of the number (called the “minor” channel number) identifies
one service within the group of channels defined by the major number. From the point of view of
the user, where before there was just channel 4, there may also be 4.1, 4.2, 4.3, and so on.

The protocol also standardizes parental advisory data included in broadcasts. The A/65 standard
includes a Rating Region Table (RRT) that defines a content advisory system for a specific region
(country) and a Content Advisory Descriptor that can be used to associate specific program

events with rating levels defined in the RRT. This way the system can carry different standards
for different regions.

Modern EPG solutions usually seamlessly incorporate cable, satellite and local broadcast
programming information into one easy-to-read program guide. A comprehensive EPG can
include:

 Local channels from satellite, cable or terrestrial sources.
 Structured information including titles, descriptions, categories, ratings, actors, directors,

producers, critic ratings, etc. This permits the receiver to directly interpret relevant items
of information. Structured information allows the IRD to offer better user interfaces and
convenience features.

 Multiple language support. Practically all text fields can be represented in multiple
languages. An IRD can elect to retain all available translations of a text item or retain
only the language(s) selected by a user.

 Wink support. Wink provides an end-to-end solution for sending interactive applications
along with broadcast video to viewers’ televisions. Refer to www.wink.com for
additional information.

 Formatted text. The formatting may include support for markup languages of varying
levels of sophistication, from simple text styles to a complete HTML. An IRD interprets
the markup language according to the EPG operator’s rules.

Operating environment.
Cable, satellite, and over-the-air digital receivers are usually built as embedded systems with
limited amounts of DRAM as the primary storage. Set-top boxes usually don’t run traditional
operating systems, such as those found in PCs and workstations. Only multi-tasking real-time
operating systems can support the high data rates and performance demands of an IRD solution.

On the other hand, as set-top boxes evolve in their capabilities and features, their embedded
software is becoming more robust and multiple applications now co-exist within the box. In
addition to video display and basic television functions, the growing list of add-ins includes e-
mail, video-on-demand, Personal Video Recorder (PVR), etc. Often these services are integrated
with the EPG. Not only does the EPG have to store the data in a timely fashion, it must provide
various search capabilities to these applications. Thus, the EPG needs a database system that will
serve as underlying storage and expose an application programming interface (API) to EPG
functions. This underlying database storage has to integrate seamlessly with the OS environment.
It must be robust to handle complex requests for data storage and retrieval, but not monopolize
the CPU, which is required to handle other tasks, such as PVR.

Storage management requirements: EPG data.
On-screen program guides are composed of two major parts: 1) the application software (often
called the EPG presentation engine) that runs in the set-top and 2) the data that the application
software receives and formats for display. The EPG-equipped set-top must be frequently updated
with guide data via an external source. The IRD extracts the program guide data, stores it in
memory (DRAM) and keeps it for display as either a full-screen grid guide or as an overlay to
active video. The amount of future programming covered by a guide is determined by the amount
of DRAM storage available in the set-top box. In this sense, the EPG storage management sub-
system competes with EPG content for the use of these memory resources, so that minimizing the
application’s memory footprint enhances the end-user’s experience by enabling richer, more
complete content.

Based on the above standards, the following data objects are usually kept by the IRD to form the
content of the EPG:

Channel-related data. A channel represents each satellite or cable channel and terrestrial
broadcast channel. At a minimum, each channel is characterized by:

 The two-part (major.minor) channel number for access to the service
 Text name (up to seven characters)
 How the service is physically delivered (carrier frequency and modulation mode)
 The channel’s “source ID” (referencing a unique name in a national database for program

sources)
 The type of service (analog TV, digital TV, audio only or data)

Other types of data specific to each channel include a flag that tells whether the service is access-
controlled or not, and an indication as to whether or not “extended text” is available to provide a
text description of the service (optional descriptor).

Event data. Events carry program schedule information for each channel. Each event consists of:

 Event start time
 Event duration
 Event title (text)
 Pointer to optional additional descriptive text - Program data described below, which

may contain a synopsis, cast, director, etc.
 Program content advisory data (optional)
 Caption service data (optional)
 Audio service descriptor, which can list available languages (optional)

Events are usually organized in Schedules. A schedule consists of a start time and a list of events.
The complete schedule for a channel is made up of a number of schedules linked together.

Program data. As a minimum, program information contains program title, and optionally the
program’s description, category and rating information, and conditional access information.

Rating regions data define a “rating system” for a given region, characterized by a number of
rating dimensions. Each dimension is composed of two or more rating levels. An example of a
typical rating dimension used on cable is the Motion Picture Association of America (MPAA)
system. The levels within the MPAA dimension include “G,” “PG,” “PG-13,” “R,” and “NC-17.”

Category data. The category system defines a hierarchical structure and descriptions of program
categories used by the EPG. The category system changes dynamically over the life of EPG. New
or updated definitions can be sent and must be inserted into the EPG.

Additional data that is commonly present in modern IRDs include:

 Favorite channels lists – this feature allows the viewer to edit the EPG to show only those
channels that are of interest. It also speeds up the sorting process by allowing the viewer
to create a personalized guide that shows only favorite channels

 Help screens to guide the novice EPG user, updated as needed if new features or
functions are downloaded

 Cable systems and local off-air programming. There are roughly 12,000 cable systems in
the US, for which the IRD should be able to provide an adequate service

 Advertisement and other material that the IRD could be required to accept, including
images and sound

 Wink support data

Storage management requirements: search capabilities.
Given these data objects and the receiver’s required features, the underlying data management
module should expose a number of search methods, including:

 Usually, the EPG data elements (objects) are assigned unique identifiers, which are used
by the programming source to help combine relevant programming data. The data
management module should provide a fast search mechanism based on such identifiers

 Source-id based search mechanism. Source-id identifies a unique programming source
for a channel. A complete schedule for a channel is made up with programming
information linked together by a common source-id. In order to obtain a channel’s
programming data, the IRD needs to locate all the programming sources with the given
source-id within the EPG database

 Sequential fetch through objects of the same type, such as a list of all acquired programs
or channels

 Channel sorting based on major and minor numbers, or by channel call sign (title). The
storage management usually must provide a mechanism to change the channel sort order
at runtime according to the user’s preference to see channels listed numerically or
alphabetically

 Alternative sort mechanisms, such as program show times across all channels

Storage management requirements: memory management.
The amount of memory available for local EPG data storage is usually quite limited. In general,
the more RAM that a receiver devotes to processing and storing the EPG, the more capable the
IRD will be. IRD capabilities that affect RAM usage include the number of days of schedule
information to retain, use of short vs. long descriptions, which credits to retain, language(s)
supported, and graphics. Therefore, it is imperative that the storage management module make
efficient use of IRD memory. The storage management should be able to support various data
alignments – EPG data elements commonly occupy just one byte, for example. About 90 percent
of all EPG data is, in fact, dynamic text. The storage management should not store dynamic data,
such as variable length strings, in data types demanding excessive memory. That could easily
become prohibitive.

Service providers usually require the IRD to keep 3, 7 or 14 days of guide data. The 3-day
schedule means that the IRD always carries 2 days of programming into the future, plus the
current day’s schedule. The EPG should be able to handle “boundary conditions” gracefully.
When all the memory dedicated for storage is used up, the data management should allow the
EPG to run “clean-up” procedures—remove expired data and return memory to the memory pool
for reuse. Ideally, the EPG would implement OS-independent dynamic memory management,
since embedded operating systems usually lack efficient memory managers.

Storage management requirements: multi-threaded access, and transaction mechanism.
The EPG database is accessed by multiple threads (tasks) simultaneously, including those
dedicated to writing new data into the EPG database, user interfaces queries, conditional access
queries, Wink support tasks, etc. Some of these tasks—such as writing new data to its permanent
location as soon as it is available—should gain prioritized access to the database, while lower

priority tasks can execute in the background during otherwise idle CPU time. The storage
management module must, therefore, provide multi-threaded functionality to the EPG, and
implement a transaction prioritization mechanism.

Storage management requirements: performance.
EPG data must be transmitted at a high rate. These rates vary from one service provider to
another, but all providers try to utilize the available bandwidth to the greatest extent possible.
IRD software processes received packets before storing this data in the EPG database. Such
processing may include assembling EPG objects from frames, decompressing the data, and
filtering. Generally, the transmission rate is in the range of tens of megabits per second. For the
IRD to be accepted by service providers, the storage management software must be able to keep
up with this or even higher rates on the order of hundreds of megabits per second. Accordingly,
the storage management should use a specialized and extremely fast transaction control
mechanism as well as memory-oriented search algorithms. At the same time, it is important for
the EPG database management module not to monopolize the CPU, because other important
functions of the IRD, such as video recording, require its cycles. EPG storage algorithms should
be optimized to minimize CPU cycles.

In-memory database systems: a recipe for EPG database management.

Maintaining an EPG database is a challenging and complex task. Historically, developers of
traditional (non-embedded) applications have addressed mounting data complexity with database
management systems that provide formalized methods for maintaining data integrity, constructing
complex data relationships, and providing access to information quickly and efficiently. By
replacing self-developed code with proven database APIs, DBMS technology reduces coding,
debugging and maintenance requirements, decreasing the developer’s burden. However,
“traditional” databases make substantial memory and CPU demands and deliver decidedly non-
real-time performance.

But a relatively young technology, the in-memory database system (IMDS), benefits from a
design that eliminates certain unnecessary database functions and streamlines others to fit
demanding embedded systems. Designed from the start for memory-only deployment, IMDSs
accelerate processing through an architecture that eliminates disk I/O, caching and other high-
overhead functions. One database in this category, McObject’s eXtremeDB, was designed for
memory-only deployment in device-based applications including set-top boxes. To provide
realistic examples, eXtremeDB will be used in the remainder of this paper to illustrate the
advantages of integrating an IMDS as a set-top box’s data management layer. eXtremeDB
provides additional development capabilities that prove valuable in addressing the EPG
requirements described above, such as support for certain data types, object relationships and
search methods. While not unique to in-memory database systems, such support provides
compelling advantages for EPG development, and is discussed at some length below.

Memory management: main memory database.
As illustrated above, EPG data management demands support for a high transmission rate. The
database must also be exceptionally frugal in its use memory and CPU resources. Compared to
disk-bound database systems, eXtremeDB eliminates memory demands and related overhead in
the following ways:

 There is no application-database connection overhead – eXtremeDB is tightly linked with
the EPG code

 No extra layers - designed with the assumption that data is in memory, eXtremeDB
streamlines data management tremendously, removing the layers of overhead, such as
caching, typical of disk-based DBMSs

 Search algorithms are highly optimized for memory access (disk-based databases are
optimized to minimize disk I/O)

 Search translation – eXtremeDB points directly to the memory location of data elements.
In contrast, conventional DBMSs usually point to a block number and an offset. The
database needs to locate the block, load it into memory and find the appropriate memory
location in the memory buffer

 eXtremeDB eliminates the need for buffer management. Conventional DBMSs assume
that new data from disk will replace data in memory buffers, and therefore constantly
write memory buffers to disk

 eXtremeDB provides direct access to data. In a disk-based DBMS, an application never
gets access to a data element in the memory buffer. Instead, the data is copied elsewhere
to memory, adding more overhead yet

Memory management: memory managers.
eXtremeDB is designed to operate with limited amounts of memory. eXtremeDB’s own memory
managers are optimized to provide low overhead data and index layouts. The eXtremeDB runtime
does not use the operating system’s malloc()/free() – which in the RTOS environments can be
inefficient. Instead, it uses its own highly optimized memory managers. These managers provide
packing of object data, keeping object sizes small and, to a degree, controllable from the
application.

Transactions and multi-threaded access to data.
A database should make the most of its operating environment. While a data manager for an
electronic programming guide must fully support the ACID principles, it should also take
advantage of the embedded, limited multi-tasking nature of the set-top box. In this setting, only a
few tasks execute simultaneously, and rarely do simultaneous tasks require write access to the
object store. Therefore it is practical to minimize footprint and simplify the transaction manager
by serializing write transactions, which eliminates the demand for complex transaction
synchronization.

eXtremeDB allows multiple simultaneous read requests to be executed at a time—i.e. multiple
“read” transactions are allowed. “Write” transactions have exclusive access to the database
runtime. This approach to coordination eliminates the need for locking mechanisms with their
overhead and complex deadlock prevention problems, while maintaining database integrity.
Serialization of write transactions is transparent to the EPG programmer. Because the transaction
manager is “light,” properly designed and implemented transactions execute swiftly and
serialization is not a performance concern.

eXtremeDB also supports transaction priorities – it is possible to assign a priority value to each
transaction at runtime. Using the transaction priority mechanism, the EPG can also “boost” the
execution of a transaction at runtime if necessary (for example, to clean up the transport buffer
during high-speed transmissions).

eXtremeDB mapping of EPG data.
The availability of certain native data types, object relationships and search methods greatly
simplifies construction of efficient electronic programming guides. For example, EPG data is
often tree-structured. While “traditional” (disk-based) databases may address this by offering
simple b-tree capabilities, eXtremeDB provides rich tools for implementing such relationships

through compound data types. Specifically, eXtremeDB supports vectors (an arbitrarily large
stream of typed data), structures (a structure declaration names a type and specifies elements of
the structure that can have different types; structures and simple types are building blocks to
construct object definitions; structures can be used as elements of other structures), and optional
data fields.

These constructs greatly simplify the representation of native EPG data. With them, EPG
information is typically separated into data objects, consolidated into classes. Object classes
include channels, schedule, programs, etc. Each object is formatted according to its type, but in
general, objects are comprised of basic elements and additional elements, sometimes called
descriptors. The basic elements are defined in a rigid structure particular for that object type.
Additional elements are typically attached to the basic portion of the object and there can be zero
to many additional elements following the basic portion. Usually, for the purpose of
identification, all EPG objects are assigned unique integer identifiers within a common pool. This
number is called the object_id and is an object’s serial number for the life of the object.

Let’s consider a hypothetical description of a channel object. A channel is the destination, usually
a number, name, and logo, that is recognized by the user as a single entity that will provide access
to a TV program. The channel object shown in Example 1 identifies the channel and its contents.

channel_object
{

object_id;
time_acquired;

source_id;
major_number;
minor_number;
short_name_size;
short_name();
indicator;
if (indicator == 1) {
 expression_size();
 expression();
}
descriptors()
{
 [text | category | channel_content | audio_service]
}

}
Example 1. Typical channel object

The definition of fields in the above pseudo-code is as follows:

object_id this 32-bit field uniquely identifies this object
time_acquired time of the object’s acquisition by the IDR
source_id this 16-bit field identifies the programming source for the channel. The

source_id allows an IRD to link a channel to its schedule
major_number this 16-bit field identifies the major number for this channel
minor_number this 16-bit field identifies the minor number for this channel
short_name these are the bytes for the string that represent the channel’s short name
indicator a 1-bit field, if it is set it indicates that the object contains an expression

associated with it. This expression can be used by a conditional access engine

to determine whether to include or exclude the object into the guide
text this field provides a textual description about this channel. May or may not be

present for the channel
category if present, this field provides the category classification for this channel
channel_content if present this field provides alternate information about the content of this

channel
audio_service if present contains information on available languages for the channel

The eXtremeDB schema for the above fragment, shown in Example 2, defines the channel object:

struct ID {
uint4 object_id

};
declare oid ID [200000];
/* Class Channels */
struct Expression {
 string str_expression;
};
/* These descriptors are used in various objects */
struct Text {
 string str;
};
struct Category {
 . . .
};
struct AudioS {
 . . .
};
compact class channel {
 mco_time time_acquired;
 uint2 source_id;
 uint2 major_number;
 uint2 minor_number;
 string short_name;
 uint1 indicator;
 optional Expression opt_expression;

 /* descriptors */
 optional Text this_text;
 optional Category this_category;
 optional Content this_content;
 optional AudioS this_audio;

tree < major_number, minor_number> chan_number;
 tree <short_name> chan_name;
 oid;
};

Example 2.

The eXtremeDB Data Definition Language (DDL) supports C structures and dynamic strings,
object identifiers, and indexes. Note how the optional modifier is used above. All the descriptors
as well as the Expression field are declared as optional. An optional declaration means that the
field may or may not be actually stored in the database by the application. If the application does
not store the field, the runtime does not reserve (allocate) space for it within the data layout. The
compact class qualifier limits the total size of the class’ elements to 64K. That includes not just
raw EPG data, but also the overhead required by eXtremeDB. However, the compact declaration
significantly reduces the overhead that is necessary to maintain the class data. (Since it is known

that the object fits within 64K, eXtremeDB can use 2-byte offsets instead of 4-byte offsets. The
2-byte savings multiplied by thousands of objects translates to meaningful savings.)

The EPG is usually required to display the list of channels sorted either by their number or call
signs. The above code fragment defines two indexes for the channel class: chan_number index
provides sorting/searching by major and minor number, while the chan_name index provides
sort/searching channels based on their short names. The EPG can use the eXtremeDB cursor API
to navigate the sorted channel list and also to quickly switch between the two indexes.

To avoid unnecessary transmissions and save resources, EPG objects should provide the
capability to be stored once but referenced by many other EPG objects. Such content might be,
for instance, a nonspecific News program without any detailed description of the topics covered
from one showing to the next. The News program might be sent once in the EPG transmission but
repeatedly referenced night after night at 6 o’clock. A unique object identifier is used to maintain
this information referencing. eXtremeDB natively supports object identifiers, and provides a
special “reference” - ref data type as well as extremely fast search capabilities based on oid. In
the above example, the channel class is declared with oid. That corresponds to the unique object
identifier assigned to all EPG objects by the service provider. The eXtremeDB runtime enforces
the “uniqueness” of the object id at runtime, thus simplifying referencing channel objects by other
EPG objects.

In a further elaboration of tree-structuring, EPG objects often include variable-length arrays of
structures. For example, a schedule object such as the one in Example 3, below, defines a portion
of a channel’s schedule. The various schedule objects make up a complete schedule. The schedule
objects are associated with their referencing channel(s) by means of the source_id. In addition,
each schedule object carries start time, duration, and a number of events.

object_id this 32-bit field uniquely identifies this object
time_acquired time of the object’s acquisition by the IRD
source_id this 16-bit field identifies the programming source presented in this

schedule object. The source_id allows an IRD to relate a channel object to
this schedule object

start_time this 32-bit field identifies the schedule start time
duration this field indicates the total number of hours of scheduling information

provided by this object
number_of_events this 8-bit field indicates the number of events in this schedule
event_start_time start time of the event
event_duration this field indicates the duration of an event
program_object_id this 32-bit field defines the object_id for the program object in this time

period

schedule_object
{
 object_id;
 time_acquired;

source_id;
start_time;
schedule_duration;
number_of_events;
for (i = 0; i < number_of_events; i++)
{
 event_start_time;
 event_duration;
 ref program_object_id;
}

}

Example 3.

eXtremeDB represents the schedule by using vectors. Vectors are useful when the object model
in an application already contains natively dynamically structured items such as events within a
schedule. Example 4 illustrates eXtremeDB’s use of vectors in organizing scheduled events.

struct Event {
 time start_time;
 uint2 duration;
 ref program_id;

};
compact class schedule {

time time_acquired;
uint2 source_id;
uint4 start_time;

 uint2 duration;
 vector <Event> events;
 tree <source_id, start_time> lineup;
 oid;
};

Example 4.

To represent the program data, eXtremeDB defines a class program illustrated in the Example 5.
Note that the Event structure references an oid of the corresponding program. Each program can
be aired at different times on various channels, however, the data associated with the program
description, program rating information, etc., is only stored once in the database. Also note that
the description of the rating system is simplified for brevity. Please refer to the ATSC standard
for the complete description of the rating system.

struct dimension {
 uint1 level;
 uint1 value;
};
struct rtt { /* rating region table */
 vector <dimension> dim;
 string text; /* the text that describes this rating dimension
*/
};
struct content {
 vector <rrt> region;
};
class program {
 time time_acquired;
 string title;
 optional content this_content;
 optional text this_text;
 oid;
};

Example 5.

Very often the IRD needs to obtain a complete schedule for a channel. It is very straightforward
to implement this request using the eXtremeDB API. The diagram in Figure 1 below illustrates
the program flow.

����������	
��
������
��
�������������
���������������
���

���
���
������

���������

��
����� ��
����!���
�������
�������

���������

"���������������������
����

!����������#�������
���
�
���
���
���
������������
�

���
�!�

���

Figure 1.

The EPG first locates all schedule objects associated with a channel by navigating schedules
based on the lineup tree-based index. For each schedule in this group, the EPG reads the vector of
events. Each event points out to a program_id, i.e. the object identifier of a program object that
has all the textual information about the event. Using this reference, the EPG quickly locates the
associated program_object and reads out the description and other related information of the
event. The code fragment in example 6 below implements this query using the eXtremeDB
application-specific application programming interface (API). eXtremeDB-based applications use
an API generated by the eXtremeDB schema compiler to store, read, and manipulate objects in

the database. This is in contrast to many database products that offer a static proprietary
navigational API, or a static standard API (like SQL). The eXtremeDB API is always tailored to
the specific application, resulting in an intuitive database/application integration—as if the
database were written for the exact needs of the application.

uint1 channels_schedule(mco_db_h db, uint2 source_id_from_channel)
{
 /*
 * t is a transaction handle
 * csr is a database cursor
 * sch is a handle to a schedule object
 * epgoid is the object id structure defined in the schema
 * event is a handle to an Event object. Event is a part of a
 schedule that has descriptive information attached
 * prog is a handle to a program object - the descriptive
 information for the event could be shared between

 multiple events
 */
 mco_trans_h t = 0;
 mco_cursor_t csr;
 MCO_RET rc;
 schedule sch;
 MyEPG_oid epgoid;
 Event event;
 Program prog;
 char title[MAX_TITLE];
 uint2 real_size;
 uint2 schedule_source_id;
 uint2 number_of_events;
 uint2 I;

 rc =

 mco_trans_start(db, MCO_READ_WRITE, MCO_TRANS_FOREGROUND, &t);
 if(rc)

 goto err;
 /* instantiate a cursor for the ‘lineup’ index */
 rc = schedule_lineup_index_cursor(t, &csr);
 if (rc)

 goto err;
 /* search the ‘lineup’ index and position the cursor with the
 supplied argument ‘source_id_from_channel’ */
 rc = schedule_lineup_search(t, &csr, MCO_GE,

 source_id_from_channel, 0);

 /* set up a loop to interate over the ‘lineup’ index */
 for(; rc == MCO_S_OK; rc = mco_cursor_next(t, &csr))
 {
 /* obtain the schedule and... */
 schedule_from_cursor (t, &csr, &sch);
 /* ... read the source_id field out of it */
 schedule_source_id_get(&sch, &schedule_source_id);

 /* have we enumerated all the schedules for the channel */
 if (schedule_source_id != source_id_from_channel)
 break;

 /* the current schedule has the same source as the channel,
 * so we read all events that make the schedule. */

 /* find out the size of the events vector */

 schedule_events_size (&sch, &number_of_events);

 /* scan through them */
 for (i = 0; i < number_of_events; i++) {
 /* obtain a handle to the event within the vector */
 schedule_events_at (&sch, i, &event);
 /* read the program's identifier */
 Event_program_id_get (&event, &epgoid);
 /* locate the program that contains textual
 information about the event. Use extremely fast
 oid-based search */
 rc = program_oid_find (t, &epgoid, &prog);
 if (rc)
 /* no information available for this time period */
 break;
 /* read and print out the title. In reality this
 information is forwarded to the presentation
 engine for further processing and display */
 program_title_get

 (&prog, title, MAX_TITLE, &real_size);
 printf("%s\n", title);
 }
err: }
}

Example 6.

Summary
Electronic Program Guides are no longer just alternatives to printed media program guides.
Enhanced with intelligently structured and frequently updated content, an EPG provides a way to
gain detailed program information, sort through viewing choices, and even record a personal
selection of viewing alternatives. Personal viewing services that couple EPG technology with
digital video recorders further enhance the possibility of truly personal television.

The company selected to develop and maintain an EPG needs to have special knowledge and
experience with the TV screen (as distinct from the PC screen) and the remote control unit. It also
must have significant knowledge of data processing, especially given the memory constraints in
the decoder. Developing the database management module for an EPG is extremely challenging
by itself, and the IRD developer needs to adhere to the EPG operator rules.

In-memory databases systems (IMDSs) such as McObject’s eXtremeDB provide an ideal
underlying database management system for EPG applications. Offering support for the multi-
threaded environment of many embedded operating systems, as well as a small footprint, the
eXtremeDB runtime exemplifies database technology that is highly optimized for minimizing
CPU and RAM usage. It also provides compact storage layout, supports advanced search
methods, and natively implements data types required by the EPG, leading to more efficient
development and maintenance of EPG code.

