

1. Overview .. 2
1.1. What is Perst? .. 2
1.2. Database engine.. 2
1.3. Structure of packages .. 3

2. Storing objects in the database .. 3
2.1. Open store... 3
2.2. Root object .. 4
2.3. Persistence-capable classes.. 7
2.4. Persistence by reachability.. 8
2.5. Relations between objects.. 10

3. Retrieving objects from the database.. 11
3.1. Transparent persistence .. 11
3.2. Implicit recursive object-loading.. 11
3.3. Eliminating recursion and explicit object-loading.. 12

4.Searching objects ... 13
4.1. Using indexes .. 13
4.2. Field index... 16
4.3. Spatial index ... 16
4.4. Multifield index .. 17
4.5. Multidimensional index and query-by-example ... 18
4.6. Specialized collections: Patricia Trie, bitmap, thick and random access
indexes .. 22

5. Transaction model .. 23
5.1. Shadow objects and log-less transactions .. 23
5.2. Transaction modes ... 23
5.3. Object locking... 27
5.4. Multi-client mode ... 27

6. Relational database wrapper ... 28
6.1. Emulating tables... 28
6.2. JSQL query language .. 30

7. Advanced topics .. 33
7.1. Schema evolution ... 33
7.2. Database backup and compaction .. 33
7.3. XML import/export ... 34
7.4. Database replication .. 35

8. Perst Open Source License Agreement... 37

Perst User’s Guide Page 1

1. Overview
1.1. What is Perst?
Perst is a pure Java/.NET/Mono object-oriented embedded database system. Object-
oriented here means that Perst is able to store/load objects directly. Embedded means
Perst is intended to be included inside an application that needs its own data storage.
Perst’s goal is to provide programmers with a convenient and powerful mechanism to
deal with large volumes of data. Several fundamental assumptions determine Perst’s
design:

1. Persistent objects should be accessed in almost the same way as transient objects.

2. A database engine should be able to efficiently manage much more data than can
fit in main memory.

 3. No specialized preprocessors, enhancers, compilers, virtual machines or other
tools should be required to use the database and to develop applications using it.

1.2. Database engine
Perst is distributed as single .jar file (for Java) or .dll (for .NET). To use it in an
application, the only requirement is to include it in the classpath. The Perst distribution
includes several versions of the library:

perst.jar

Perst Java version for Java JDK 1.4
perst15.jar

Perst Java version for Java JDK 1.5 (5.0) and higher
perst11.jar

Perst.Lite Java version for JDK 1.1.*
perst-rms.jar

Perst.Lite Java version for J2ME (MIDP 1.0/CLDC 1.1)
perst-jsr75.jar

Perst.Lite Java version for J2ME with optional JSR-75 package (MIDP 1.0/CLDC
1.1/JSR-75)

PerstNet10.dll
Perst C# version for .Net 1.0

PerstNet20.dll
Perst C# version for .Net 2.0

PerstNetGenerics.dll
Perst C# version for .Net 2.0 providing generic collection classes

PerstCompactNet.dll
Perst C# version for Compact.Net

Perst User’s Guide Page 2

1.3. Structure of packages
The Perst database engine consists of two main packages, org.garret.perst and
org.garret.perst.impl (for the .NET version there are Perst and Perst.Impl
namespaces). The programmer mostly uses interfaces and classes from the
org.garret.perst package, while the impl package provides implementations of these
classes and interfaces. This structure allows easy changes to the implementation of a
particular class without affecting applications using it.
From the application's point of view, Perst consists of a Persistent class that is the base
class for all persistence-capable objects and provides methods for loading/locking and
storing objects; various collections classes (indexes) to provide fast access to objects; and
a Storage class that is both responsible for transaction management and used as a
"factory" for index classes.

The C# version of Perst was produced from the Java version using the Java-to-C#
converter provided by Microsoft Visual Studio. Additional changes to the .NET version
of Perst enabled support of enums, properties, unsigned types, decimal/guid/DateTime
data types, and dynamic generation of pack/unpack methods, among other things. To gain
compatibility with the .NET code style guide, the naming convention was changed for all
Perst methods.

As a result, Perst now provides separate Java and .NET sources trees. No automated
procedure exists to propagate changes in both source trees. Also, since Java has no built-
in preprocessor to choose between compilation paths, the Java version of Perst offers
three different source trees, for Java 1.4, Java 5.0 and for Perst Lite (Perst Lite is a sub-
edition of the database that supports Sun's Java ME, also known as Java 2, Micro Edition,
or as J2ME). This User's Guide primarily uses Java 1.4 examples, and sometimes also
Java 5.0 generic classes. Perst's .NET API closely resembles these examples, except for
differences arising from Java vs. .NET naming conventions. The most accurate
information about Perst APIs can be found in its documentation, available for free
download from McObject's Web site (follow the link from www.mcobject.com/perst).

2. Storing objects in the database
2.1. Open store
Let's start developing a Perst application. Perst's primary goal is to allow the programmer
to work with persistent objects in a manner as similar as possible to working with normal
transient objects. However, persistence has certain aspects that cannot be completely
hidden from the programmer. For example, a Perst “storage” (file) where objects will be
stored must be specified, and data consistency must be provided for, in case of faults.
With Perst, these tasks are performed by the Storage class. This class is abstract and
the programmer should use the StorageFactory class to create a storage instance:

 // get instance of the storage
 Storage db = StorageFactory.getInstance().createStorage();

Perst User’s Guide Page 3

http://www.mcobject.com/perst

Once this storage instance is created, it can be opened:

 // open the database
 db.open("test.dbs", pagePoolSize);

In the example above, the first parameter specifies the path to the database file, and the
second parameter sets the size of the page pool. The page pool is used by Perst to keep
the most frequently used database pages in memory, which reduces disk IO and improves
performance. Generally, a larger page pool leads to faster execution. However, memory
is also needed for other applications and for the operating system; if you specify a very
large page pool and it doesn't fit in main memory, it will be swapped to disk and
performance will degrade. Therefore, system resources must be considered when
specifying the page pool size.

In addition to specifying the path to the database file, it is possible to pass details of the
storage implementation to the IFile interface. This interface provides some special file
implementations, such as compressed file, encrypted file and multifile (a virtual file
consisting of several physical segments). The programmer can also provide his or her
own implementations of the IFile interface allowing Perst to work with specific media
or data sources.

It is possible to use Perst as an in-memory database, in which all data is stored and
managed in main memory. This requires using the NullFile stub class and specifying
INFINITE_PAGE_POOL as the page pool size. In this case, the page pool will be extended
on demand:

db.open(new NullFile(), // Dummy implementation of IFile interface
 Storage.INFINITE_PAGE_POOL); // page pool is extended on demand

When the application has finished using a Perst database, the database should be closed
using the Storage.close() method:

 // get instance of the storage
 Storage db = StorageFactory.getInstance().createStorage();
 db.open("test.dbs", pagePoolSize); // Open the database
 // do something with the database
 db.close(); // ... and close it

2.2. Root object
After the storage instance is opened, the database can access persistent objects from it.
When the application accesses normal (transient) objects, it uses references to these
objects kept in program variables or in fields of other objects. But when opening a
database containing persistent objects (objects whose “life” is longer than the application
session lifetime), the application has no reference to these objects.

Perst User’s Guide Page 4

A mechanism is needed to get the references, and Perst provides it using something
called a root object. The storage can have only one root object. It is obtained using the

Storage.getRoot method, which returns null if the storage is not yet initialized and the
root object not yet registered—in that case, it is necessary to create an instance of the root
object and register it in the database using the Storage.setRoot method. Root objects
can be of any persistence-capable class (a concept that is discussed in the next section).

Once a root object has been registered, the Storage.getRoot method will always return
a reference to this object. And this object can contain references to other persistent
objects that can be accessed by the application. So only the root object requires a special
access semantic. Accessing all other objects is performed the same way as getting normal
(transient) objects.

The code below shows initialization of the database:

 MyRootClass root = (MyRootClass)db.getRoot();// get storage root
 if (root == null) {
 // Root is not yet defined: storage is not initialized
 root = new MyRootClass(db); // create root object
 db.setRoot(root); // register root object
 }

In most OODBMSs, it is possible to get an object using a string key, or to get a class
extent (the set of all instances of the particular class). In Perst, such functionality is
provided by using an index collection as the root object (indexes are discussed later). The
key of this index is a string identifier or class name. And the value associated with the
key can be a persistent object or persistent set representing a class extent. Below are
examples of typical root class definitions.
In this example, the root object is used as a dictionary, allowing access to persistent
objects using a string key:

 // get instance of the storage
 Storage db = StorageFactory.getInstance().createStorage();
 // open the database
 db.open("test.dbs", pagePoolSize);

 Index dictionary = (Index)db.getRoot(); // get storage root
 if (root == null) {
 // Root is not yet defined: storage is not initialized
 root = db.createIndex(String.class, // key type
 true); // unique index
 }
 // Now we can get persistent object by string identifiers:
 MyPersistentClass obj
 = (MyPersistentClass)root.get("main-object");
 // and store it in the storage with specified key binding:
 obj = new MyPersistentClass();
 Root.put("yet-another-object", obj);

Here the root object is used as a collection of class extents. Class name is used to obtain a
collection of all instances of this class:

Perst User’s Guide Page 5

 // get instance of the storage
 Storage db = StorageFactory.getInstance().createStorage();

 // open the database
 db.open("test.dbs", pagePoolSize);

 Index dictionary = (Index)db.getRoot(); // get storage root
 if (root == null) {
 // Root is not yet defined: storage is not initialized
 root = db.createIndex(String.class, // key type
 true); // unique index
 }
 // Now we can get collection of all instances of a class
 IPersistentSet classExtent =

(IPersistentSet)root.get("com.mycorp.app.MyPersistentClass");
 if (classExtent == null) {
 classExtent = db.createSet(); // create class extent
 root.put("com.mycorp.app.MyPersistentClass", classExtent);
 }
 // iterator through all instance of the class
 Iterator i = classExtent.iterator();
 while (i.hasNext()) {
 MyPersistentClass obj = (MyPersistentClass)i.next();
 obj.show();
 }
 // Add newly created objects in corresponding class extent:
 MyPersistentClass obj = new MyPersistentClass();
 classExtent.add(obj);

Here the root object contains references to the various indexes that are needed to search
database objects:

 // There should be one root object in the database, containing
 // collections used to access all other objects in the storage.
 class MyRootClass extends Persistent
 {
 // index on MyPersistentClass.intKey
 public FieldIndex intKeyIndex;
 // index on MyPersistentClass.strKey
 public FieldIndex strKeyIndex
 // index on MyPersistentClass, which key doesn’t
 // belong to the class
 public Index foreignIndex;
 public MyRootClass(Storage db) {
 super(db);
 intKeyIndex = db.createFieldIndex(
 MyPersistentClass.class, // indexed class
 "intKey", // name of indexed field
 true); // unique index
 strKeyIndex = db.createFieldIndex(
 MyPersistentClass.class, // indexed class
 "strKey", // name of indexed field
 false); // index allows duplicates (is not unique)
 foreignIndex = db.createIndex(
 int.class, // key type

Perst User’s Guide Page 6

 false); // index allows duplicates (is not unique)
 }

 // Default constructor is needed for Perst to be able to
 // instantiate instances of loaded objects
 public MyRootClass() {}
 }

 public class AppMainClass extends Persistent
 {
 static public void main(String[] args) {
 // get instance of the storage
 Storage db =
 StorageFactory.getInstance().createStorage();
 // open the database
 db.open("testidx.dbs", pagePoolSize);

 MyRootClass root = (MyRootClass)db.getRoot();

// get storage root
 if (root == null) {
 // Root is not yet defined: storage not initialized
 root = new MyRootClass(db); // create root object
 db.setRoot(root); // register root object
 }

 // Create new object instance
 MyPersistentClass obj = new MyPersistentClass();
 obj.intKey = 1;
 obj.strKey = "A.B";
 obj.body = "Hello world";

 // ... and insert it in the corresponding indexes
 root.intKeyIndex.put(obj);

// add object to index on intKey field
 root.strKeyIndex.put(obj);

// add object to index in strKey field
 root.foreignIndex.put(new Key(1001), obj);
 ...
 db.close(); // close the storage
 }
 }

2.3. Persistence-capable classes
To achieve transparent persistence, a database engine should be able to store any class
(application or system classes). It is hard to achieve this goal without using special
development tools (like preprocessors or byte code enhancers). One of the design goals of
Perst was to avoid using special tools or adding extra steps to the build process. So in
Perst, all persistence-capable classes should implement the IPersistent interface.

Perst User’s Guide Page 7

The default implementation of this interface is the org.garret.perst.Persistent
class. In most cases, persistence-capable classes should be derived from the Persistent
base class (or from some other persistence-capable class). An alternative implementation
of the IPersistent interface may be needed if application classes must be derived from
some other external class for which sources are not available. In such cases, the solution
is to provide an implementation derived from the required base class and reuse

Persistent.java code to implement methods of the IPersistent interface.

The following example shows the derivation of a persistence-capable class:

 // All persistence-capable classes should be derived from

// Persistent base class
 class MyPersistentClass extends Persistent
 {
 public int intKey; // integer key
 public String strKey; // string key
 public String body; // non-indexed field

 public String toString() {
 return intKey + ":" + strKey + ":" + body;
 }
 }

But what is a persistence-capable class? Why not just a persistent class? The following
section explains.

2.4. Persistence by reachability

Once the root object is obtained, how are new objects to be saved in the database? One
solution is to use the store method in the Persistent class.

But Perst provides a more convenient model which is called persistence by reachability.
Its main goal, once again, is to provide transparent persistence: the programmer should
not have to worry about where an object is to be stored, or about storing the object at all.
In Java applications, objects have different lifetimes. Some are used only temporarily and
are reclaimed by the garbage collector soon after their creation. Others (for example, an
object representing a HTTP session) have longer lifetimes. A persistent object should
survive termination of the application session and be available for activation when the
application is started again.

And clearly, an object’s lifetime is determined by references to the object. If an object is
referenced only by local variables or parameters, (as in the expression
log.write(obj.toString())), then the garbage collector is able to reclaim that object
when control is returned from this method. However, if the object is referenced from
some other object or from a static field, then the object will be present in memory as long
as such references exist. If the object is referenced from the field of a persistent object,
then the referenced object should also be persistent (otherwise this reference will be
invalid after the application restarts).

This simple idea is persistence by reachability. To become persistent, an object needs to
be referenced from some other persistent object. The only exception is the root object,
which becomes persistent when it is registered as the storage root.

Perst User’s Guide Page 8

In Perst, persistence by reachability is leveraged by using the database’s

Persistent.modify() method. Consider a persistence-capable class Employee and a
persistent instance of this class e1 that is already stored in the database. Next, create a
new instance t1 of a persistence-capable class Task and assign it to the employee by
setting a reference to this object from the corresponding field of e1. Now t1 should also
become persistent because it is referenced from persistent object e1. But how does the
database engine will know that object e1 was modified? The database system is informed
about it using Persistent.modify(). (Note that modify should be invoked for e1, not
for t1. Invocation of the method for the newly created Task will have no effect, because
a newly created object is always considered to be modified.) Failure to invoke the modify
method can result in unpredictable application behavior. The object may be saved
(because modify is called from some other place), or the modification may be lost.

For the following reasons, the modify() method is often better than the store() method
for saving objects in the database:

1. modify() may only have to be invoked rarely: if several objects are
created and assigned to components of some persistent object, modify need only
be invoked once for this object.
2. By using modify()instead of store(), it may be possible to reduce the
number of times an object is written to the storage. The object can be modified
multiple times but saved to the storage only once. However, with the store()
method, it is saved each time the method is invoked.
3. In many cases, the programmer need not explicitly invoke the modify()
method, because newly created objects are inserted in some Perst collection class
implementations that track modifications themselves.

Below is an example of storing an object:

 // Create instance of the persistence-capable class.
 MyPersistentClass obj = new MyPersistentClass();
 obj.intKey = 1;
 obj.strKey = "A.B";
 obj.body = "Hello world";

 root.intKeyIndex.put(obj);

// add object to index on intKey field
 root.strKeyIndex.put(obj);

// add object to index in strKey field

Persistent objects will be present in the storage until explicitly de-allocated using the
deallocate method defined in the Persistent class, or until they are implicitly de-
allocated by the Perst garbage collector. With Perst, using garbage collection is optional.
Explicit memory de-allocation is faster but lacks protection against bugs such as dangling
references or memory leaks.

Perst User’s Guide Page 9

Perst garbage collection can be started explicitly using the Storage.gc method, or
started automatically by specifying an amount of allocated objects as a threshold. The
garbage collector de-allocates all persistent objects that are not reachable from the root
object. Even when explicit memory de-allocation is preferred, it is possible to use the
garbage collector to ensure there are no memory leaks in the database.

Example of object de-allocation:

 Iterator i = root.intIndex.iterator();

// iterate through all objects
 while (i.hasNext()) {
 MyPersistentClass obj = (MyPersistentClass)i.next();
 i.remove(); // exclude object from index
 obj.deallocate(); // deallocate object
 }

2.5. Relations between objects
The simplest one-to-one relation between objects A and B is represented by assigning a
reference to object B in a field of object A. References can also be used to represent one-
to-many relationships, with a reference to the relation “owner” stored in the field of
relation “members” (for example class Student can have field Tutor tutor referencing
his tutor). An index for this reference field can serve to efficiently locate all members of
the relation (given a reference to the tutor, we can locate all his students).
But many-to-many relations must also be represented. And sometimes, even for one-to-
many relations, it is more convenient or efficient to keep a list of all relation members
instead of locating them using a query. Perst offers six (!) different ways to associate one
object with multiple objects:

1. Standard Java/.NET arrays. This is certainly the most familiar approach
for most users. But it has disadvantages, including:
• All array members must be loaded when the object containing this

array is loaded.
• Adding/removing elements to/from the array is not possible. Instead, a

new array must be created and elements copied to it.
• An array is stored as content of a persistent object, rather than as a

separate object, so the same array can’t be referenced from different
persistent objects. Also, when modifying the content of the array, care
must be taken to invoke the modify() method for the container object.

• It is inefficient to have arrays with large numbers of members (greater
than 100), since search and update operations will become too costly.

2. Perst Link class. This is Perst’s analogue to standard Java’s persistence-
capable ArrayList class. The main difference is that Perst’s Link class
loads its elements on demand. As an array, a link is not a separate
persistent object, but is embedded in a container object. Limitations on the
number of members are almost the same as for arrays, since manipulation
with large lists requires significant CPU and memory resources.

3. Perst Relation class. The only difference between this and the Link class
is that Relation is a persistence-capable class that is stored in the
database as a separate object. Therefore, it can be referenced from
multiple persistent classes. Internally, Relation uses Link as its
component, so size limitations are the same as for links and arrays.

Perst User’s Guide Page 10

4. Perst list implementations (IPersistentList interface). Implementation
of a persistent list is based on a B-Tree index, so it can handle very large

relations. Its main drawback is its relatively large space consumption in
the case of small relations: even if the relation consists of one element, it
will use several kilobytes.

5. Perst set implementations (IPersistentSet interface). Persistent set is
also implemented using the B-Tree and the main difference from
persistent list is that set elements have no fixed position and cannot be
accessed by the index. Instead, the program iterates through all set
members, checks if the set contains specified elements, and then adds or
removes elements. The size overhead is the same as for persistent list.

6. Perst scalable set implementations. This implements the same
IPersistentSet interface but combines advantages of the array-based
Link and the B-Tree-based PersistentSet. For small numbers of
elements, this class uses the Link class to store relation members. When
the number of elements exceeds a threshold, a B-Tree is created and used
instead of Link. The scalable set combines the minimal space overhead of
an array with the B-Tree’s ability to work with large amounts of data. It is
practical when estimating the typical size of a relation is difficult or
impossible. The Perst scalable set doesn't provide access to elements by
position.

3. Retrieving objects from the database
3.1. Transparent persistence
Assume that a database containing persistent objects is initialized and an application
wants to access these objects. As mentioned above, the first step is to obtain the root
object using the Storage.getRoot method. All other persistent objects can be obtained
using references and methods of the root object. But how does this work in practice?

Java doesn't allow detection, overwriting or wrapping the invocation of a method or
access to an object field. This suggests that a database engine cannot load an object from
storage on demand without using a preprocessor or a specialized virtual machine—in
other words, that the programmer will have to load the object explicitly. But the main
goal of Perst, and of most other object-oriented database systems, is to provide
transparent persistence: to allow the programmer to work with persistent objects in the
same way as with normal (transient) objects. If the programmer has to explicitly load an
object, transparency seems compromised. However, Perst offers solutions for object-
loading that reduce the impact on transparency to a vanishingly small level.
3.2. Implicit recursive object-loading
One solution is recursive loading of all referenced objects. When an object is loaded, the
database engine inspects all reference fields of this object and recursively loads all
referenced objects.

Perst User’s Guide Page 11

This requires a mechanism to detect loops and prevent infinite recursion. Each storage
has a root object, and all other persistent objects are accessible from it. So calling the

Storage.getRoot method causes all persistent objects in the database to be loaded into
memory. This is usually undesirable, especially when working with large databases that
can’t fit into main memory. A better solution is the following:

3.3. Eliminating recursion and explicit object-loading

Two options have been presented: make the programmer explicitly load all accessed
objects, or recursively load all referenced objects. Both have disadvantages. As it turns
out, real transparent loading of objects occurs only when the language supports
behavioral reflection, i.e. the ability for the language to change the behavior of objects.
Neither Java nor C# support this. Behavioral reflection can also be emulated using source
level or byte code processors (also called code enhancers). Perst doesn't contain such a
preprocessor, but it does provide integration with popular products such as JAssist and
AspectJ that can patch byte code (either statically or at load time) and so achieve
transparent activation of objects.

And even without using these tools, Perst provides a compromise solution that eliminates
the worst aspects of both explicit loading, and implicit recursive loading. By default,
Perst recursively loads all referenced objects. But recursion can be controlled by the
programmer. The recursiveLoading method in the Persistent class has a very simple
implementation: it always returns true. To eliminate recursion, the programmer can
redefine this method to return false instead. When this is done, recursive loading of
referenced objects is stopped at the instance of this class, so that components of the class
are not implicitly loaded and the implementer of this class has to explicitly load them
using the Persistent.load method.

At first, this compromise might not seem so helpful for developers, who still have to find
a way to eliminate recursion and explicitly load objects. But in practice, it meshes well
with object-oriented applications’ typical data model, in which persistent data consists of
tightly coupled clusters of interrelated objects (groups of objects referencing each other).
For example, the object representing a computer in a shop may contain references to the
objects describing it: CPU, HDD, memory, monitor, etc. Objects in such a cluster are
typically accessed together by the application, using indexes (for example, the computer
can be selected by CPU type, by price range, or by amount of memory). Perst’s index
implementations always stop recursive loading of objects. All Perst indexes load
retrieved objects on demand. This means that when such an index is accessed, it will
never try to fetch all its members. Instead, members will be loaded only when they are
located by iterating through index members or search results.

So in most cases there is no need for the programmer to eliminate recursion and explicitly
load objects. A programmer should follow a simple rule: avoid using large arrays and
linked lists of persistent objects. Instead, use Perst’s collections, which efficiently
implement loading of their members on demand. Programmers implementing their own
collection class in Perst must remember to eliminate recursive loading and to explicitly
load collection members.

Perst User’s Guide Page 12

4.Searching objects
4.1. Using indexes
Perst’s power lies in its varied collection classes for persistent objects, which enable the
choice of indexes best suited for particular applications. Standard Java and persistence-
capable class libraries provide many different collection classes: lists, arrays, maps, trees,
etc. But database applications have additional demands for persistent data containers. For
example, search methods should support range queries (select order where shipment
date is between 01.01.2008 and 01.12.2008) and sorting of returned data (select
employee order by salary).

Collections for persistent data should be able to handle large volumes of data that don’t
fit in main memory. However, all standard JDK or persistence-capable collection classes
are optimized on the assumption that all collection members are present in memory.
Using such classes when most persistent objects are on disk is very inefficient. Because
of such limitations, Perst doesn't try to support or emulate standard JDK or persistence-
capable collection classes. Instead, Perst provides its own collections (which nevertheless
implement many basic interfaces from system collections packages).

The most efficient and universal index data structure for persistent data located on disk is
the B-Tree. B-Trees consist of large pages (tree nodes) which contains a lot of <key,
value> pairs, where key is an index key and value refers to either the child B-Tree page,
or to the indexed object. So a B-Tree is a tree with large width and small height. Small
height is the key factor of good B-Tree performance for on-disk data. Each operation
with a B-Tree (insert, search, remove) requires access to at most H pages where H is the
height of the B-Tree (in other words, the complexity of basic operations with a B-Tree is
O(log(N)), where N is number of elements in the B-Tree). The page (node) size is
typically large enough to contain hundreds of elements. So even with a large number of
members (millions), the height of a B-Tree is small (2-3 levels). The root page is almost
always cached, and location or insertion of elements using a B-Tree requires quite few
(1-2) reads/writes of B-Tree pages.

Fortunately, a programmer needn’t know all the details of the B-Tree implementation in
order to use it (although it is useful to know the underlying nature of the index). In Perst,
a simple index is created using the createIndex method of the Storage class; in fact,
this method is used as a factory for different kinds of indexes:

 Index myIndex = db.createIndex(String.class, // key type
 true); // unique index

Perst User’s Guide Page 13

The first parameter of the createIndex method specifies the data type of the key, and the
second parameter specifies whether the index is unique or allow duplicates. The Index
class is derived from the GenericIndex class and provides methods for strict match
search, range search, prefix search (string keys only) and various iteration methods.
Results of a search can be returned as

• a single value (only for unique indexes; if a value is not found, null is

returned)
• an array of objects matching the search criteria and in the specified

order
• an iterator through objects matching the search criteria in a specified

direction (ascending or descending)

Because Java versions prior to 5.0 don't support implicit value boxing (transformation of
scalar values into objects, for example, int->java.lang.Integer), and also because a
range-type boundary (inclusive/exclusive) must be specified, in Perst a key is specified
using the Key class. Overloaded constructors of this class accept all possible types of keys
and optional specifications of boundary type. For string keys (which are used most
frequently) it is possible to pass a key value directly without creating a Key object
instance. If a boundary is not specified (open interval), then a null value should be
passed.

Java 5.0 and persistence-capable 2.0 versions of Perst allow the use of generic versions of
indexes. For such indexes, the developer can specify index members’ type as a template
parameter, in order to avoid extra type casts and to allow the compiler to perform extra
type-checking. The code fragments below illustrate all these cases.
Strict match search in unique index:

 Index myIndex = db.createIndex(int.class, // integer key
 true); // unique index
 // Construct a key with an int value 1001 and
 // perform a strict match search in the index
 MyPersistentClass obj \
 = (MyPersistentClass)myIndex.get(new Key(1001));
 if (obj != null) { // check if object is found
 // do something
 } else {
 // there is no object with that key in the index
 }

Strict match search in non-unique index (JDK 1.5 version):

 Index<MyPersistentClass> myIndex
 = db.<MyPersistentClass>createIndex(
 String.class, // string key type
 false); // allow duplicates
 Key key = new Key("A.B");
 ArrayList<MyPersistentClass> list = myIndex.getList(key, key);
 for (MyPersistentClass obj : list) {
 // iterate through selected objects
 }

Range search:

Perst User’s Guide Page 14

 Index myIndex = db.createIndex(int.class, // integer key

 false); // allow duplicates

 // Get a forward iterator through the records belonging to
 // the specified key range
 Iterator iterator = myIndex.iterator(
 new Key(100, true), // inclusive low boundary
 new Key(10000, false), // exclusive high boundary
 Index.ASCENT_ORDER); // ascent order
 while (iterator.hasNext()) {
 MyPersistentClass obj = (MyPersistentClass)iterator.next();
 }

Iteration though all objects in the index in ascending order:

 Index<MyPersistentClass> myIndex
 = db.<MyPersistentClass>createIndex(
 String.class, // string key type
 false); // allow duplicates
 for (MyPersistentClass obj : myIndex) {
 obj.doSomething();
 }

In Perst, index maintenance is the programmer’s responsibility. This means that the
programmer should insert objects in the proper indexes, and also take care to delete
objects from the indexes when needed.

The Index class provides two methods for inserting objects into an index: put and set.
Each has slightly different semantics. The put method inserts an object into a unique
index only if no object with the same key already exists in that index. Otherwise, it
returns false. The set method replaces a previously associated object with a new one and
returns the previous object, or returns null if there was no such object already in the
index.

An object can be deleted from the index using the remove method. It requires the
programmer to specify the key, and in the case of a non-unique index the object to be
removed (in other words, a unique index only requires the key, and not also the object). If
there is no such object in the index, then the StorageError(StorageError.KEY_NOT_FOUND)
exception is thrown. Please note that removing an object from an index does not remove
the object itself from the database. Deleting an object from the storage requires explicitly
calling the Deallocate method defined in the Persistent class.

The code fragment below illustrates inserting and removing objects from the index:

 Index myIndex = db.createIndex(int.class, // integer key
 false); // allow duplicates
 if (!myIndex.put(new Key(1), obj)) {
 // insert object in the index
 reportError("Object with such key already exists");

Perst User’s Guide Page 15

 }
 myIndex.remove(new Key(1), obj);

// remove object from the index

4.2. Field index
In most cases, a key is stored in one of the object fields. To make insert/remove
operations in such cases more convenient, Perst provides a special kind of index, the
FieldIndex. With this index, the programmer needn’t explicitly specify the key type.
Instead, when the index is created, the programmer specifies the name of the indexed
field (key) and Perst itself will fetch the value of this field. The Field index is created
using the createFieldIndex method:

 FieldIndex myFieldIndex
 = db.createFieldIndex(
 MyPersistentClass.class,// indexed class
 "intKey", // name of indexed field
 true); // unique index

As with normal indexes, objects can be inserted in a field index using put or set
methods and removed with the remove method. But with field indexes it is not necessary
to specify a key value, because this value is extracted from the object:

 myFieldIndex.put(obj);
 myFieldIndex.remove(obj);

When using JDK 1.5, Perst’s field index also implements the java.util.Collection
interface, which enables use of the Collection.add and Collection.remove methods.

If an object’s key value is updated, the programmer must maintain the index, so the
object should first be deleted from the index (with the old value of the key), and then an
update performed to reinsert the object into the index with a new key value:

 myFieldIndex.remove(obj);
 obj.intKey = 2;
 myFieldIndex.put(obj);

In the .NET version of Perst, it is also possible to use field indexes to update properties. If
an update of this or some other object would change a property’s value, then the
programmer should delete the object from the index before the update and reinsert it after
the update.

4.3. Spatial index
The widespread use of GPS devices (especially in PDAs and mobile phones), and the
popularity of services such as Google Maps, significantly increases the demand for
applications to work with geographical data. But normal database indexes can’t be used
to locate an object nearest to the user’s current location, or to select a point of interest in
the immediate neighborhood.

Perst User’s Guide Page 16

This requires an index that is specialized for working with multidimensional data. Perst
provides such a spatial index based on Guttman's R-Tree algorithm. Perst Storage
contains two methods for creating spatial indexes: createSpatialIndex for a spatial

index based on a two-dimensional rectangle with integer coordinates, and
createSpatialIndexR2 for a spatial index based on a two-dimensional rectangle with
floating point coordinates.

To work with a spatial index, the programmer needs to specify a wrapping rectangle. If
an object is represented by point coordinates, then the wrapping rectangle is a
degenerated rectangle in which the width and height are zero. For all other geographical
objects (lines, polygons, arbitrary shapes), the wrapping rectangle is such that the
coordinates of the top left corner are smaller than or equal to the coordinates of any point
of the object, and the coordinates of the bottom right corner are greater than or equal to
the coordinates of any point of the object. In other words, a wrapping rectangle is the
smallest rectangle that fully contains the specified object.

To perform a search for all objects whose distance from the specified point doesn't
exceed D, the program performs a search, in the spatial index, of rectangle <x-D,y-
D,x+D,y+D> and for all the objects returned, calculates and checks the actual distance
(which can be larger than D, because the distance between the center of a square and its
corner is D*sqrt(2)). To locate the restaurant that is nearest to the current location, the
program performs several iterations: first an initial distance D (let's say 100m) is chosen
and the rectangle <x-D,y-D,x+D,y+D> is searched. If there are no restaurants in the
specified rectangle, the distance is doubled by searching the rectangle <x-D*2,y-
D*2,x+D*2,y+D*2> and so on, until the rectangle contains some restaurants. Then the
program calculates the distance for each restaurant, and selects the closest one.
This fragment of code inserts/searches and deletes spatial objects:

 SpatialIndex index
 = db.createSpatialIndex();// create spatial index

 // Create object with geographical coordinates
 SpatialObject so = new SpatialObject();
 // wrapping rectangle
 Rectangle r = new Rectangle(top, left, bottom, right);
 index.put(r, so); // insert object in spatial index

 // get list of objects which wrapping rectangles intersect r
 IPersistent[] sos = index.get(r);

 index.remove(r, so); // remove object from the index

4.4. Multifield index
Often an application requires a compound index, or a key consisting of several values—
for example, when a person's first and last names both must be considered during a
search. To address this, Perst supports both compound and multi-field indexes. A
compound index is similar to a normal index, but its key consists of multiple parts:

 Index compoundIndex

Perst User’s Guide Page 17

 = db.createIndex(
 new Class[] { // key consists of two string values

 String.class, String.class
 },
 true); // index is unique
 compoundIndex.put(new Key(new object[] {
 "Smith", "John" }), person);

A multi-field index is similar to a field index, but its key contains several fields:

 FieldIndex multifieldIndex
 = db.createFieldIndex(
 Person.class, // indexed class
 new String[] { // key consists of two string fields
 "lastName", "firstName"
 },
 true); // index is unique
 Person person = new Person("John", "Smith");
 multifieldIndex.put(person);

To perform a search using a compound or multi-field index, first specify the values of all
the key components or the values of the first K components (for a partial key search):

 // Get person by last and first name
 Person person = (Person)compoundIndex.get(
 new Key(new object[] { "Smith", "John" }));

 // Locate all persons with specified last name
 Key lastName = new Key((new object[] { "Smith" });
 Iterator iterator
 = multifieldIndex.iterator(
 key, // low boundary(default is inclusive)
 key, // high boundary (also inclusive)
 Index.ASCENT_ORDER);
 while (iterator.hasNext()) {
 person = (Person)iterator.next();
 }

Please note that searching by first name only is not permitted. A compound index
requires that the entire key prefix be specified. When this is impossible, an alternative is
the multidimensional index, described below.

4.5. Multidimensional index and query-by-example
A typical search form in an application allows the user to specify multiple search criteria.
For example, a car can be located by specifying a range for its price, year, mileage, etc.
Certainly, an index can be used to pinpoint one of the specified fields (price, for example)
and then objects can be filtered to match other criteria. But this is inconvenient for the
programmer and inefficient (because it is hard to choose criteria with the highest
selectivity, and no such criteria may exist—in which case, the application must inspect a
large number of records to select the ones matching the search conditions).

Perst User’s Guide Page 18

A multidimensional index can be very useful here. Like multi-field and compound
indexes, a key in a multidimensional index consists of multiple values. In a multi-field

index, the order of the key components is very important: an index on
<lastName,firstName> enables searching for persons by specifying both first name and
last name or only last name. But it does not allow a search using only first name. A
multidimensional index, however, allows any combination of key components.

A multidimensional index described above, the R-Tree, is used for spatial search. Perst
supports two-dimensional rectangles; it is also possible to extend the R-Tree algorithm to
handle any number of dimensions. But using a spatial index for searches with multiple
search criteria is problematic, because the R-Tree requires all dimensions to be specified
and to have the same type (double, for example). If an application must allow users to
specify the color of a car (string type) as well price range, the R-Tree is not suitable.

To solve this problem, Perst provides another index, the KD-Tree (K-dimensional tree).
There are two ways to define such a multi-dimensional tree:

1. By specifying a multi-dimensional comparator (a special class used to
compare different components of a key):

 static class Stock extends Persistent {
 String symbol;
 float price;
 int volume;
 };

 static class StockComparator extends MultidimensionalComparator
 {
 public int compare(Object m1, Object m2, int component) {
 Stock s1 = (Stock)m1;
 Stock s2 = (Stock)m2;
 switch (component) {
 case 0: // Stock.symbol
 if (s1.symbol == null && s2.symbol == null) {
 return EQ;
 } else if (s1.symbol == null) {
 return LEFT_UNDEFINED;
 } else if (s2.symbol == null) {
 return RIGHT_UNDEFINED;
 } else {
 int diff = s1.symbol.compareTo(s2.symbol);
 return diff < 0 ? LT : diff == 0 ? EQ : GT;
 }
 case 1: // Stock.price
 return s1.price < s2.price
 ? LT : s1.price == s2.price ? EQ : GT;
 case 2: // Stock.volume
 return s1.volume < s2.volume
 ? LT : s1.volume == s2.volume ? EQ : GT;
 default:
 throw new IllegalArgumentException();
 }
 }

Perst User’s Guide Page 19

 public int getNumberOfDimensions() {
 return 3;

 }

 public IPersistent cloneField(IPersistent obj,
 int component) {
 Stock src = (Stock)obj;
 Stock clone = new Stock();
 switch (component) {
 case 0: // Stock.symbol
 clone.symbol = src.symbol;
 break;
 case 1: // Stock.price
 clone.price = src.price;
 break;
 case 2: // Stock.volume
 clone.volume = src.volume;
 break;
 default:
 throw new IllegalArgumentException();
 }
 return clone;
 }
 }

 ...
 MultidimensionalIndex index
 = db.createMultidimensionalIndex(new StockComparator());

2. Using reflection to generate such a comparator automatically:

 static class Quote extends Persistent
 {
 int timestamp;
 float low;
 float high;
 float open;
 float close;
 int volume;
 }

 ...

 MultidimensionalIndex index
 = db.createMultidimensionalIndex(
 Quote.class, // class of index elements
 new String[] { // list of searchable fields
 "low", "high", "open", "close", "volume"
 },
 false); // do not treat 0 as undefined value

Perst User’s Guide Page 20

A search using a multidimensional index can take the form of a query-by-example
approach. This approach is very simple: for a search for objects of a class with restricted
field values, just create an empty instance of this class and assign the required values to
the relevant fields. Consider the following class:

 class Car {
 String model;
 String make;
 String color;
 int mileage;
 int price;
 int productionYear;
 boolean airCondition;
 boolean automatic;
 boolean navigationSystem;
 };

Given that class, the following code searches for green Fords:

 Car pattern = new Car();
 pattern.make = "Ford";
 pattern.color = "green";
 IPersistent[] cars = index.queryByExample(pattern);

But what if the desired search is for cars priced between $1000 and $2000, with mileage
less than 100,000 and including air conditioning? In this case, use two pattern objects,
specifying the upper and lower boundaries:

 Car low = new Car();
 // no lower boundary for this field
 low.mileage = Integer.MIN_VALUE;
 low.price = 1000;
 // no lower boundary for this field
 low.productionYear = Integer.MIN_VALUE;
 low.airCondition = true; // air condition is required

 Car high = new Car();
 high.mileage = 100000;
 high.price = 2000;
 // no upper boundary for this field
 high.productionYear = Integer.MAX_VALUE;
 high.airCondition = true;// air condition is required
 high.automatic = true; // full range: [false,true]
 high.navigationSystem = true; // full range: [false,true]

 IPersistent[] cars = index.queryByExample(low, high);

Perst User’s Guide Page 21

Here it is essential to specify boundaries for all scalar and boolean fields (encompassing
all potential allowed values, not just the ones used in this query) or to set a
minimum/maximum value for this type. If this is inconvenient, the default field value can
be excluded from the search conditions. The default value for numeric (integer and
floating point) types is 0. The last parameter treatZeroAsUndefinedValue of
createMultidimensionalIndex makes it possible to ignore all fields of numeric type
with a 0 value. In our example, mileage can be 0 for a new car, but the boolean fields’
ranges still have to be specified.

There are several limitations of the current KD-Tree implementation in Perst (this may
change in the future):

1. The KD-Tree now is represented as a binary tree, in which nodes contain
left and right pointers, and a pointer to the object. This means that a search
using a KD-Tree requires fetching a significantly larger number of nodes
than, for example, a search that uses a B-Tree. Also, the search key is not
located in a node itself (as in the case of B-Trees), but is fetched from a
referenced object. As a result, the current implementation is most suitable
for in-memory databases (databases which reside entirely in main
memory).

2. Currently, no balancing of the KD-Tree is performed. Inserting objects in
a "bad" order can cause degeneration of the tree, resulting in a longer
search time.

3. The KD-Tree is never truncated. When some object is removed from the
tree and it is referenced from a non-leaf node, it is replaced with a stub.

4.6. Specialized collections: Patricia Trie, bitmap, thick and random access indexes

Perst provides other useful collection classes, described in the Perst API documentation.
Briefly, here are a few key features of these collections:

Patricia Trie

The Patricia Trie is the most efficient data structure for prefix searches—for
example, in a table containing information about telephone operators and their
numerical prefixes, the Patricia Trie can efficiently locate the proper operator to
handle a received call. This ability is applicable to IP addresses and masks, and
hence to algorithms used in IP routers, filters, and other telecommunications and
network communications applications.

Bit index
This is another data structure for multidimensional search, and is most efficient
when a class has a large set of characteristics with a small range of possible
values.

Thick index
This index, based on the B-Tree, is optimized for keys with large numbers of
duplicates. Removing such objects from a standard B-Tree is very inefficient
because it requires sequential searching through all elements with the same key
value. The Thick index adds some extra overhead in terms of code size and
memory consumed, but the complexity of the remove operation remains the same
(O(log(N)) even if all N objects contain the same key value.

Random access index

Perst User’s Guide Page 22

When a data set is presented visually in a user interface (UI), an application
frequently must locate elements by their position (for example, to perform
navigation and scrolling in UI form). The standard B-Tree can’t efficiently locate
elements by position (because sequential traversal starting from the first element
is required). The Random access index solves this problem while adding only

minimal extra code footprint and memory overhead.

Note that Perst collections typically are, themselves, normal persistent objects. So the
developer can easily create new collections that best fit an application’s requirements.

5. Transaction model
5.1. Shadow objects and log-less transactions
Although the main goal of object-oriented database systems is to provide transparent
persistence—to eliminate any difference between working with persistent and transient
objects—some aspects of persistent data cannot and should not be hidden from the
programmer. One of them is transaction control. Transactions are a fundamental
mechanism of database systems, and serve two main goals: enforcing database
consistency, and providing concurrent access to the database by multiple clients. The
transaction body is the atomic sequence of logically related operations that should all be
accepted together, or rejected together.

Perst uses a shadow object transaction mechanism. When the application modifies an
object, this process does not rewrite the object directly; rather, a copy of the object is
created and updated. During transaction commit, originals of the objects are replaced
with their updated copies. This is achieved atomically, switching the database from one
consistent state to another.

A shadow object transaction mechanism has several advantages:

1. The need for a transaction log file is eliminated, allowing all data to be
stored in single database file

2. Fast recovery
3. Dynamic re-clustering of objects that are accessed together

The main disadvantage of the approach is its difficulty supporting multiple concurrent
transactions (the transaction log approach allows many entries in the log, each
corresponding to a different transaction, but shadow objects permit only two states for the
database: original and new). However, Perst offers a work-around for this limitation,
described below.

Perst’s guiding principle is to provide programmers full control over interaction with the
database, without introducing extra overhead or limitations. In keeping with this rule,
concurrency control and providing transaction isolation levels are the responsibility of the
programmer.
5.2. Transaction modes
Perst supports the following basic modes of synchronization:

Synchronized access to the database

All access to the database is performed from one thread. No synchronization is
needed at the database level.

Perst User’s Guide Page 23

Cooperative transactions

• Multiple threads can share a transaction, and all of them must “see” the
others’ changes. The programmer should use locking to avoid race
conditions. Tools to accomplish this include the Java/C# internal
synchronization mechanisms as well as the Perst locking mechanism (see
section 5.3, Object locking).

• Committing a transaction in this mode stores to disk all changes made by
the threads, and a rollback of the transaction undoes the work of all
threads.

• Cooperative transactions should be used with special care, because
different threads’ lack of isolation can cause synchronization problems
that are hard to detect, reproduce and eliminate.

• In this mode, the programmer only uses two methods from the Storage
class: commit and rollback. There is no need to explicitly start a
transaction. A new transaction is implicitly started when the old one is
committed.

Exclusive per-thread transactions
• This mode, in which each thread accesses the database exclusively, is the

safest, because unintended interaction between threads is impossible. No
locking is needed. But it represents the worst case for concurrency, since
at any time, only one transaction can be executed (even if it is a read-only
transaction). So this should be used only for applications with few
concurrent activities needing access to the persistent data.

• In this mode, exclusive transactions should be started using
Storage.beginThreadTransaction(Storage.EXCLUSIVE_TRANSACTIO
N) and finished either by Storage.endThreadTransaction() or by
Storage.rollbackThreadTransaction():

 db.beginThreadTransaction(Storage.EXCLUSIVE_TRANSACTION);
 try {
 // do something
 // commit changes in case of normal completion
 db.endThreadTransaction();
 } catch (Exception x) {
 // rollback transaction in case of exception
 db.rollbackThreadTransaction();
 }

Serializable per-thread transactions

Perst User’s Guide Page 24

The notion of serializable transactions means that transactions executing in
parallel do not overlap or affect each others’ outcomes. In other words, it means
that each transaction can work as if it is the only transaction accessing the
database. However, this “serializability” of the transaction is not enforced by the
Perst database engine—it is the programmer’s responsibility to set proper locks.
One database system theorem says that to achieve serializability, it is sufficient to
apply locks to all accessed objects until the end of the transaction. Further, this
thinking holds that for an object to be accessed in read-only mode, it is enough to
set a shared lock; updating an object requires an exclusive lock. The Perst locking
mechanism should be used by the application to lock objects. With serializable

transactions, locks are automatically released during transaction commit, so there
is no need to unlock objects explicitly.

Serializable transaction should be started using
Storage.beginThreadTransaction(Storage.SERIALIZABLE_TRANSACTION)
and finished either by Storage.endThreadTransaction() or
Storage.rollbackThreadTransaction():

 class MyClass extends PersistentResource
 // persistence-capable class with resource control
 {
 void someReadOnlyMethod() {
 // this method only reads the state of the object
 sharedLock();
 // prevents modification of the object by
 // other transactions
 ...
 }

 void someUpdateMethod() {
 // method updates the state of the object
 exclusiveLock(); // exclusive access to the object
 ...
 }
 }

 class Activity
 {
 MyClass obj1;
 MyClass obj2;

 void run() {
 Storage db = obj1.getStorage();
 // start serializable transaction
 db.beginThreadTransaction(
 Storage.SERIALIZABLE_TRANSACTION);
 try {
 obj1.someReadOnlyMethod();
 obj2.someUpdateMethod();
 // commit changes in case of normal completion
 db.endThreadTransaction();
 } catch (Exception x) {
 // rollback transaction in case of exception
 db.rollbackThreadTransaction();
 }
 }
 }

Perst User’s Guide Page 25

As explained above, Perst implements transactions using a “shadow objects” mechanism
and is not able to handle more than one concurrent transaction. Serializable per-thread
transactions can be executed concurrently because Perst holds all modified objects in
memory, so the database file is not changed until the transaction is committed. Therefore,
a transaction rollback just means that the database “forgets” about all modified objects.
And when the Storage.endThreadTransaction() method is executed, then for a short

time, Perst sets an exclusive lock and performs a normal transaction commit: it saves
modified versions of objects in the storage, and atomically switches the storage to the
new consistent state.

The obvious disadvantage of this approach is that the transaction size is limited by the
amount of memory available for the application. Overly large transactions can cause
memory overflow. Another potential complication arises from Perst’s internal use of B-
Trees to implement various indexes. Unlike all other persistent objects, a B-Tree interacts
directly with the page pool. This design provides better performance, since B-Tree pages
are fetched and stored directly in the page pool. But it interferes with serializable
transactions that are based on pinning objects in memory. So, when using serializable
transactions, an application should take advantage of Perst’s alternative B-Tree
implementation, which stores B-Tree pages as persistent objects that are pinned in
memory like all other objects. Switching to this alternative B-Tree implementation
requires setting the "perst.alternative.btree" property before opening the storage:

 // alternative B-Tree implementation is needed
 // for serializable transactions
 db.setProperty("perst.alternative.btree", Boolean.TRUE);
 db.open("testdb.dbs", pagePoolSize); // open storage

When the database is opened, Perst checks if it was normally closed (that the
Storage.close() method was called before application termination). If it wasn’t, Perst
automatically performs database recovery, restoring a consistent database state
corresponding to the last committed transaction. It is important to note that the
Storage.close() method implicitly triggers a commit and so commits all uncommitted
changes. Therefore, if the application is terminated abnormally (for example, because of
some critical exception), the developer must be cautious about trying to close the storage,
since this action can cause the inconsistent state to be committed, preventing the recovery
that would normally occur when the database is opened:

 public class Application
 {
 public static void main(String[] args)
 {
 // get instance of the storage
 Storage db =
 StorageFactory.getInstance().createStorage();
 // open the database
 db.open("test.dbs", pagePoolSize);
 try {
 // do something with the database
 db.close();
 } catch (Throwable x) {
 System.err.println("Catch " + x);
 // Do not close the database,
 // let recovery mechanism do it at next opening
 }

Perst User’s Guide Page 26

 }
 }

5.3. Object locking
As its locking mechanism, Perst provides the PersistentResource class, derived from
Persistent, which is assumed to be the base class for all classes requiring synchronization.
All Perst collections are derived from the PersistentResource class in order to use it as
a synchronization root. The PersistentResource class provides methods for setting
shared and exclusive locks and for unlocking the object. Many threads can concurrently
set shared locks, but only one thread can set an exclusive lock. Locks can be released
explicitly by calling the unlock method, but in the case of serializable transactions, this
should not be done, because locks are automatically released at the end of the transaction.
Two main challenges of locking are as follows:

• The possibility of forgetting to lock some object and thereby causing a
race condition.

• Deadlock, if two or more threads are locking the same objects in
different order, or if both are trying to upgrade their shared lock to
exclusive for the same object. A deadlock can stop both threads’
processing.

When using the standard Java/.NET synchronization primitives, the developer must
choose the proper locking policy to prevent race conditions and deadlock. Perst offers a
separate “Continuous” package which provides object versioning, optimistic locking, and
full text search. With the addition of this technology, all required synchronization is
handled by Perst, preventing deadlocks and race condition. The Continuous package is
described in a separate document.
5.4. Multi-client mode
The Perst embedded database is meant to be accessed by one client (process). But some
applications require multi-client access, including access from remote clients in a
network. Perst for Java supports multi-client database access based on the standard file
system locking mechanism. In this mode, transactions to modify the database are
exclusive (only one transaction can concurrently update the database), while read-only
transactions can run in parallel. Using locks is not needed in read-only mode.

To enable multi-client mode, set the “perst.multiclient.support” property for the storage
accordingly, before the database is opened. All access to the database should be
performed within a transaction body. Transactions are started by the
Storage.beginThreadTranaction(mode) method where the mode is either
Storage.READ_WRITE_TRANSACTION or Storage.READ_ONLY_TRANSACTION:

 // enable multiclient access
 db.setProperty("perst.multiclient.support", Boolean.TRUE);
 db.open("testdb.dbs", pagePoolSize); // open storage

 // start read-only transaction
 db.beginThreadTransaction(Storage.READ_ONLY_TRANSACTION);
 try {
 // do something

Perst User’s Guide Page 27

 db.endThreadTransaction();
 } catch (Exception x) {

 db.rollbackThreadTransaction();
 }

 // start read-write transaction
 db.beginThreadTransaction(Storage.READ_WRITE_TRANSACTION);
 try {
 // do something
 db.endThreadTransaction();
 } catch (Exception x) {
 db.rollbackThreadTransaction();
 }

6. Relational database wrapper
6.1. Emulating tables
Perst’s purpose is to let the programmer work with persistent objects in almost the same
way as with normal transient objects. The "pros" of this approach are elimination of
overhead, and greater efficiency for tasks such as maintaining class extents (the set of all
instances of the class), object locking, comparing old and new object instances to detect
updated fields, updating indexes, parsing queries, optimization and processing. But the
major "con" is extra work for the programmer, who must maintain indexes, manage
locking, write code to implement queries, etc.

This work can be avoided by Perst’s Database class, which provides a more convenient
API that is similar to those used in relational database systems (this is not supported in
Perst Lite, the version of Perst for Java ME).

The Database class provides the following functionality:

1. Maintains class extents (tables) that allow iterating through all instances of
the particular class. The programmer does not need to create the root
object.

2. Maintains indexes: these indexes are either explicitly created by the
programmer, or automatically created by the Database class based on
relevant field annotations (Java 5.0) or persistence-capable attributes.
Database automatically includes an object in all indexes when the object
is inserted in the database, and removes it from indexes when the object
itself is removed. But object updates must be explicitly handled by the
programmer: an object should be removed from an index before it is
updated, and reinserted in the index after it is updated.

3. Provides serializable transactions using table-level locking.
4. Provides a query language, JSQL, which is Perst’s object-oriented subset

of SQL. A JSQL query returns a set of objects, not tuples. It doesn't
support joins, nested selects, grouping or aggregate functions.

Perst User’s Guide Page 28

The Database class can be termed a relational database wrapper because it provides
associations between an RDBMS table and a Java/.NET class, as well as between row
and object instances. In the Java 1.5 and.NET versions of Perst, it is possible to mark
fields of the class for which indexes should be created using the Indexable annotation

(attribute):

 static class Record extends Persistent {
 @Indexable(unique=true, caseInsensitive=true)
 String key;

 String value;
 }

When using this wrapper, to open the database, first open the storage and pass it to the
Database class constructor:

 Storage storage = StorageFactory.getInstance().createStorage();
 // create in-memory storage
 storage.open(new NullFile(), Storage.INFINITE_PAGE_POOL);
 Database db = new Database(storage, // opened storage
 true); // allow multithreaded
 // access
 ...
 db.close();

To add a record to the database, create an instance of a persistence-capable class (derived
from Persistent or another persistence-capable class) and invoke the
Database.addRecord method. This method will automatically insert the record in all
indexes. All database access should be performed within a transaction body that is
enclosed by Database.beginTransaction/Database.commitTransaction methods:

 db.beginTransaction();
 try {
 Record rec = new Record();
 db.addRecord(rec);
 db.commitTransaction();
 } catch (Exception x) {
 db.rollbackTransaction();
 }

The application can iterate though all instances of the class using the getRecords
method:

 for (Record rec : db.<Record>getRecords(Record.class)) {
 rec.dump();
 }

It is possible to define a JSQL query:

 for (Record rec : db.<Record>select(Record.class,
 "key like 'ABC%'"))
 {
 System.out.println(rec);
 }

Perst User’s Guide Page 29

If a query must be executed multiple times, the application can prepare the query in order

to reduce query parsing overhead for each execution. A prepared query can contain
positioned parameters (specified by the '?' character). Before execution, values should be
assigned to parameters using the Query.setParameter, Query.setIntParameter,
Query.setRealParameter or Query.setBoolParameter methods. The parameter index
is 1-based. Query execution should include an iterator through all records of the result set
(returned by Database.getRecords method):

 Query<Record> query = db.<Record>prepare(Record.class,
"key=?");
 // '?' is parameter placeholder
 for (int i = 1; i < 1000; i++) {
 query.setIntParameter(1, i); // bind parameter
 Record rec = query.execute(
 db.<Record>getRecords(Record.class)).next();
 rec.doSomething();
 }

To update or delete selected records, perform a “select for update” and pass true as the
second optional parameter forUpdate of the select method. Perst then sets an
exclusive lock on the table, to prevent other concurrent transactions from modifying it.
When updating a record, remember to call the Persistent.modify() method to mark
the record as modified. If a key field of the record is changed, the object must first be
deleted from the corresponding index, and then inserted again using an update:

 Iterator<Record> i = db.<Record>select(
 Record.class, // target table
 "key='1'", // selection predicate
 true); // select for update
 if (i.hasNext()) { // if record is found
 Record rec = i.next();
 // exclude if from index before update
 db.excludeFromIndex(rec, "key");
 rec.key = "2"; // update record
 rec.modify(); // mark record as modified
 db.includeInIndex(rec, "key"); // reinsert in index
 }

To delete a record from the database, call the deleteRecord method:

 Record rec = db.<Record>select(Record.class, "key='2'",
 true).next();
 db.deleteRecord(rec);

6.2. JSQL query language

Perst User’s Guide Page 30

JQSL is Perst’s object-oriented subset of SQL. It provides almost the same syntax as
standard SQL. The main difference is that a JSQL query returns a set of objects, not
tuples. In addition, JSQL doesn't support joins, nested selects, grouping and aggregate
functions. When defining a JSQL query, it is not necessary to specify a "select ... from ...
where" clause because, as mentioned above, JSQL always selects objects, and the
relevant table is specified as a parameter of the select method.

All Perst collections accept a JSQL query as a filter. Please note that in this case, Perst
traverses all collection members (so it is a sequential search through the collection).

The Database class provides a simple optimizer for JSQL queries: it is able to use
existing indexes if the query predicate uses indexed fields. But indexes can be used in this
way only within a single table – if the search predicate also contains some condition for a
field in a referenced table, then this query will require a sequential scan.

The following rules, in BNF-like notation, specify the grammar of JSQL query language
search predicates:

Grammar conventions
Example Meaning

expression non-terminals
not Terminals

| disjoint alternatives
(not) optional part
{1..9} repeat zero or more times

Perst User’s Guide Page 31

select-condition ::= (expression) (traverse) (order)
expression ::= disjunction
disjunction ::= conjunction
 | conjunction or disjunction
conjunction ::= comparison
 | comparison and conjunction
comparison ::= operand = operand
 | operand != operand
 | operand <> operand
 | operand < operand
 | operand <= operand
 | operand > operand
 | operand >= operand
 | operand (not) like operand
 | operand (not) like operand escape string
 | operand (not) in operand
 | operand (not) in expressions-list
 | operand not between operand and operand ()
 | operand is (not) null
operand ::= addition
additions ::= multiplication
 | addition + multiplication
 | addition || multiplication
 | addition - multiplication
multiplication ::= power
 | multiplication * power
 | multiplication / power
power ::= term
 | term ^ power
term ::= identifier number | string |
 | true | false | null
 | current | first | last
 | (expression)
 | not comparison

 | - term
 | term [expression]
 | identifier . term
 | function term
 | count (*)
 | contains array-field (with expression) (group by identifier
having expression)
 | exists identifier : term
function : abs | length | lower | upper :=
 | integer | real | string |
 | sin | cos | tan | asin | acos |
 | atan | log | exp | ceil | floor
 | sum | avg | min | max
string ::= ' { { any-character-except-quote } ('') } '
expressions-list := (expression { , expression }) :
order ::= order by sort-list
sort-list ::= field-order { , field-order }
field-order ::= field (asc | desc)
field ::= identifier { . identifier }
fields-list ::= field { , field }
user-function ::= identifier

Identifiers are case sensitive, begin with a..z, A..Z, '_' or '$'
character, contain only a-z, A..Z, 0..9 '_' or '$' characters, and do
not duplicate any SQL reserved words.

List of reserved words

abs acos and asc asin
atan avg between by contains
cos ceil count current desc
escape exists exp false floor
group having in integer is
length like log lower max
min not null or real
sin string sum tan true
upper with

More information about JSQL functions can be found in the Perst manual.

Below are examples of JSQL queries:

db.select(Person.class, "age > 30 and salary < 100000");
db.select(Detail.class, "color='grey' order by price");
db.select(Order.class, "detail.delivery between '01/01/2008'" +
 "and '02/01/2008'");
db.select(Bool.class, "title like '%DBMS%'");
db.select(Company.class,
 "exists i: (contract[i].company.location = 'US')");

Perst User’s Guide Page 32

7. Advanced topics
7.1. Schema evolution
With Perst, the life-time of persistent objects exceeds the life-time of an application
session. So what happens if application code is changed between sessions—for example,
by adding new fields to the class or renaming/removing fields? The database engine must
convert stored persistent objects to the new format. This procedure is called schema
evolution.

Perst performs automatic schema evolution. This allows the developer to stop worrying
about changing the database format. Perst follows the lazy schema evolution strategy,
meaning that it doesn't try to convert all objects to the new format immediately, when the
database is opened. Instead, an object is converted to the new format when it is loaded.
But even then, it is not immediately stored to disk in the new format. This occurs only if
the application updates it and commits the transaction. Then the object is stored in the
new format and evolution is completed for this object instance. But if an object is not
accessed or modified, it remains in the database in the old format. Thus, a storage may
contain different generations of objects.

Perst’s schema evolution mechanism is based on name-matching, so the database will not
be able to handle modifications correctly if a field or class is renamed. More precisely,
Perst does not allow the following code changes:

1. Renaming a class
2. Renaming a field
3. Moving a field to a base or derived class
4. Changing class hierarchy
5. Incompatible changes of field type (for example int->String). Perst can

convert field types only using the explicit conversion operator in Java
When an application requires one of these modifications, Perst’s XML import/export
facility must be used to convert the database to the new format.
7.2. Database backup and compaction
Perst aims to allocate objects sequentially and reduce database storage fragmentation. But
after intensive object allocation and de-allocation, fragmentation can still occur. The
developer can compact the storage using the Storage.backup(java.io.OutputStream
out) method. Storage backup doesn't require closing the application, but it needs
exclusive access to the database (no transactions are allowed while backup is in
progress).

Because the Perst database exists in a single file, restoring from backup is very simple:
just copy the backup file in place of the original database file. In addition to its usefulness
in compaction, the backup function can also be used to restore a database in case of a
failure not handled by the transaction recovery mechanism (for example, hard drive
corruption).

Perst User’s Guide Page 33

This code fragment illustrates database backup:

 Storage db = StorageFactory.getInstance().createStorage();
 db.open("test.dbs", pagePoolSize); // Open the database
 try {
 // open output stream for backup
 OutputStream out = new FileOutputStream("test.bck");
//perform database backup to the specified stream
 db.backup(out);
// backup doesn't close the stream, it should be done here
 out.close();
 } catch (IOException x) {
 System.err.println("Backup failed: " + x);
 }
 db.close();

7.3. XML import/export
Because Perst is an object-oriented database, its data format can be quite complex. So it
is difficult to implement export utilities to popular data formats (such as DBase, Excel
CSV, etc.). This is why Perst exports only to the XML format. XML is now considered
one of the most universal data exchange formats. A wide range of tools exist for
processing XML data; it can even be inspected in a standard Web browser.

Export to the XML is performed using the Storage.exportXML(java.io.Writer
writer) method, and import is done with the importXML(java.io.Reader reader)
method. The application performing XML import to a Perst database should include the
definition of the corresponding classes (obviously, Perst cannot generate a class file from
XML data). Please note that Perst doesn't generate a DTD description of the database
scheme.

The following code illustrates XML-based export and import:

Perst User’s Guide Page 34

 Storage db = StorageFactory.getInstance().createStorage();

 db.open("test1.dbs", pagePoolSize); // Open the database
 try {
 Writer writer
 = new BufferedWriter(new FileWriter("test.xml"));
 // export the whole database to the specified writer in XML
 // format
 db.exportXML(writer);
 // exportXML doesn't close the stream, close it here
 writer.close();
 } catch (IOException x) {
 System.err.println("Export failed: " + x);
 }
 db.close();

 db.open("test2.dbs", pagePoolSize);

 try {
 Reader reader
 = new BufferedReader(new FileReader("test.xml"));

 db.importXML(reader); // import data from XML stream
// importXML doesn't close the stream, close it here
 reader.close();
 } catch (IOException x) {
 System.err.println("Import failed: " + x);
 }
 db.close();

7.4. Database replication

Database replication means maintaining multiple database copies (replicas) at different
network nodes. Replication is used for two main purposes:

1. Fault tolerance
2. Load balancing

If several copies of the database exist, then if one node fails, access can still be provided
from other nodes (fault tolerance). Moreover, if one server is unable to serve all client
requests, these requests can be redirected to other nodes (load balancing). Replication
increases system scalability: if the number of clients increases and existing nodes cannot
provide the desired throughput and response time, more nodes can be added, existing
clients can be served, and the number of clients can even increase further.

Perst supports master-slave replication: there can only be one master node on which the
application updates the database, and one or more slave nodes that receive updates from
the master and can execute read-only database requests. Replication is performed at the
page level: when a transaction is committed, Perst sends the updated pages to all replicas.
Within this architecture, transactions can be implemented asynchronously (by a separate
thread, without waiting for acknowledgement from the replica) or synchronously (in
which the master waits for acknowledgement from the replica before committing the
transaction). To toggle between asynchronous and synchronous replication, specify the
"perst.replication.ack" property.

Perst provides yet another replication option: replication can be static (when the number
of replicas is fixed at the time the master database is opened) and dynamic, in which new
replicas can be connected to the master node at any time. The main difference between
these two modes is the time at which the replica is connected to the master - in static
mode, all replicas are assumed to be in identical states, so the master only broadcasts
modified pages to the replicas. The main difference is that in dynamic mode, a newly-
attached replica is assumed to be empty or out of sync. In this case, Perst synchronizes
the database state between the master and the new replica node, sending the full content
of the database to this replica. Synchronization is performed by a separate thread, so it
should not block the master.

Please note that Perst does not itself detect node failure, choose a new master node
(failover) or perform recovery of crashed nodes. These actions are the responsibility of
the application itself.

Perst User’s Guide Page 35

Below is an example of the database replication process:

Master side:

 ReplicationMasterStorage db =
 StorageFactory.getInstance().createReplicationMasterStorage(
 -1,
// port at which master will accept connections of new
// replicas,-1 means that connections of new replicas are
// not supported
 new String[]{"localhost:" + port},
// list of slave node addresses
 async ? asyncBufSize : 0); // size of asynchronous
buffer

 // Disable synchronous flushing of disk buffers because
 // in case of fault database can be recovered from slave node
 db.setProperty("perst.file.noflush", Boolean.TRUE);
 // set replication mode
 db.setProperty("perst.replication.ack", Boolean.valueOf(ack));
 db.open("master.dbs", pagePoolSize); // open master storage

 // ... Work with the database

 db.close(); // close master storage

Slave node:

 // Create replica which accepts master connection at the
 // specified port
 ReplicationSlaveStorage db =

StorageFactory.getInstance().createReplicationSlaveStorage(port);
 // Disable synchronous flushing of disk buffers because
 // in case of fault database can be recovered from slave node
 db.setProperty("perst.file.noflush", Boolean.TRUE);
 // set replication mode
 db.setProperty("perst.replication.ack", Boolean.valueOf(ack));
 db.open("slave.dbs", pagePoolSize); // open slave storage

// Slave node receives modifications from master in separate
// thread. Concurrently it can execute its own read-only
// transactions. But to perform some processing at slave node
// only when some data is changed (transaction is committed by
// master node)then the
// ReplicationSlaveStorage.waitForModifications() method can be
// used to wait for update of the database.
 while (db.isConnected()) { // while master is alive
 // Wait until master commits new transaction
 db.waitForModification();
 // Start special read-only transaction at replica
 db.beginThreadTransaction(
 Storage.REPLICATION_SLAVE_TRANSACTION);
 ... // Do some processing of the database

Perst User’s Guide Page 36

 db.endThreadTransaction();
 }

 db.close(); // close slave storage

8. Perst Open Source License Agreement

Perst is open source: you can redistribute it and/or modify it under the terms of version 2
of the GNU General Public License as published by the Free Software Foundation.
If you are unable to comply with the GPL, a commercial license for this software may be
purchased from McObject LLC

Perst User’s Guide Page 37

	 1. Overview
	1.1. What is Perst?
	1.2. Database engine
	1.3. Structure of packages

	2. Storing objects in the database
	2.1. Open store
	2.2. Root object
	2.3. Persistence-capable classes
	2.4. Persistence by reachability
	2.5. Relations between objects

	3. Retrieving objects from the database
	3.1. Transparent persistence
	3.2. Implicit recursive object-loading
	3.3. Eliminating recursion and explicit object-loading

	4.Searching objects
	4.1. Using indexes
	4.2. Field index
	4.3. Spatial index
	4.4. Multifield index
	4.5. Multidimensional index and query-by-example
	4.6. Specialized collections: Patricia Trie, bitmap, thick and random access indexes

	5. Transaction model
	5.1. Shadow objects and log-less transactions
	5.2. Transaction modes
	5.3. Object locking
	5.4. Multi-client mode

	6. Relational database wrapper
	6.1. Emulating tables
	6.2. JSQL query language

	7. Advanced topics
	7.1. Schema evolution
	7.2. Database backup and compaction
	7.3. XML import/export
	7.4. Database replication

	8. Perst Open Source License Agreement

