
Re-Inventing Data Management

For Intelligent Devices

Abstract: To survive in the market, intelligent devices such as set-top boxes and networking gear must

rapidly expand their features. This means adding software “smarts” and managing larger volumes of

more complex data—a challenge typically met with database management systems (DBMS). But

traditional databases, with roots in business processing, present CPU and memory requirements that

are too expensive for price-sensitive high-tech gear.

The situation demands a new kind of data management engine, designed to exclude unnecessary,

business-oriented processing layers while delivering developer tools for the tightest possible

integration. This paper examines the new on-device database requirements, and looks at one product,

eXtremeDB, developed in response to these needs.

McObject LLC

22525 SE 64th Place

Suite 302

Issaquah, WA 98027

Phone: 425-831-5964

E-mail: info@mcobject.com

www.mcobject.com

Copyright 2001, McObject LLC



Overview

Devices ranging from set-top boxes to casino slot machines require proven data management

in order to support innovative new features. Existing DBMSs, with their roots in business

computing, provide only partial solutions in this radically different application domain. For

economic as well as technical reasons, the ideal data management engine for high-tech gear

must offer a tiny memory and CPU footprint, real-time performance, optimization for

handling streams of complex data, and the ability to integrate tightly with device-based

applications.

This paper examines one new product, McObject’s eXtremeDB, that meets many of these

challenges with an engine utilizing main memory data management and an architecture that

has been designed with an understanding of what is required—and just as important, what

represents excess baggage—in a device-based data manager.

Devices – Data Management’s New Frontier

Growth in intelligent, connected devices is soaring, even as sales of traditional PCs level off.

In offices and cars, atop TV sets, in pockets and purses, and built into industrial,

communications and transportation systems, these hardware devices typically lack the

familiar PC-style interface but offer advantages in size, mobility and ease of use. Once

considered mere “embedded systems” with minimal smarts, such gear has evolved to include

powerful CPUs and sophisticated software.

To support expanding feature sets, applications generally must manage larger volumes of

more complex data. This computing truism has held true for devices, and as a result, many

device developers are exploring moving from self-developed data management solutions, to

proven commercial database management systems (DBMSs). During a short period recently,

one veteran database software company heard from manufacturers involved in building

− A new Internet-enabled set-top box requiring data management to support a dynamic

programming guide, including images and video clips

− A next-generation office device capable of scanning documents and e-mailing them to

thousands of addresses and mailing lists stored in the database

− A computerized casino slot machine requiring data management for payoff tables and

real-time game management

− A smart telecommunications switch for long-distance carriers, needing real-time user

and equipment data in order to route calls

− A LAN-based office phone network requiring instant user and configuration data

− Automobile diagnostics equipment including a data store for pinpointing engine trouble

and providing solutions



Which Data Management Technology Fits?

Device developers are turning to commercial data management solutions with greater

frequency—but existing database software has not provided the ideal fit. Relational

databases, the most widely used type, emerged well over a decade ago to support

corporations’ business functions. Their features include support for SQL—a high-level

interface—and other business-oriented features such as lock arbitration, cache control, and

abnormal termination recovery. But on a device—within a set-top box or next-generation fax

machine, for example—these abilities are often unnecessary and cause the application to

exceed the memory, CPU and storage resources available on the device.

Object-oriented DBMSs have also been promoted as a solution, but these, like relational

databases, were originated to meet business objectives, and have been too slow for the real-

time needs of intelligent devices. At various times, relational and object-oriented vendors

offered lighter products by removing features. But these stripped-down relational and OO

databases begged the question, “What would a database look like if it were designed from the

start for intelligent, connected devices?”

Devices Are Different

Devices represent a new development domain, with unique needs. What constitutes ideal data

management for this new kind of application?

Small footprint. Manufacturers strive to reduce devices’ memory, CPU and storage

requirements for economic reasons. Most devices are intended for mass distribution, often in

extremely competitive markets. Even a slightly lower per-unit price increases market share,

and a lower per-unit cost drops right to the bottom line. Software that saves kilobytes of

RAM, or requires a slightly less expensive processor, can determine product success.

Real-time performance. Latency, or the wait between system command and response, is an

accepted part of desktop and client/server computing. Not so for devices—consumer

electronics and communications gear are expected to perform instantly, and “hard real-time”

systems must respond within pre-set bounds often measured in milliseconds. Data

management for devices must be based on an inherently efficient architecture, with sources

of performance overhead minimized or, better yet, eliminated.

Streams of complex data. Unlike business applications, devices rarely manage data that fits

neat, tabular structures. High-tech gear often must work with complex data, such as trees and

arbitrarily long arrays of simple or complex fields. And while business databases are

optimized to handle very large, complex transactions, devices more often deal with streams

of small, fast transactions, such as a telecom switch routing ongoing calls according to

available hardware channels, or a gaming device responding to the unfolding events of real-

time play.



Developer features. Business databases are designed to be accessible to non-programmers

using SQL, reporting packages, and other high-level tools. In contrast, devices are usually

designed for dedicated purposes, with data access defined, in advance, by the developer. In

addition, tight integration between data management code and the application creates greater

run-time efficiency, reducing the need for CPU cycles and other computing resources. These

factors emphasize the need for developer tools. Instead of providing querying languages for

end-users, a database for intelligent devices must empower the developer with features that

integrate with the powerful programming environments—namely C, C++ and Java—utilized

in such projects.

Introducing eXtremeDB

McObject LLC recently introduced eXtremeDB, the first data management engine built from

scratch for intelligent, connected devices. Founded by software, database and embedded

systems development veterans, McObject incorporated into its technology lessons from the

real-world device projects described above. The result is eXtremeDB, the first small-

footprint, main memory database optimized for fast streams of complex data, with powerful

developer tools and an innovative architecture that bypasses many of the sources of

performance overhead found in traditional DBMS software.

eXtremeDB’s Architecture

eXtremeDB’s design recognizes the unique performance needs of embedded systems—as

well as the irrelevance of certain resource-intensive features found in business-oriented

DBMSs. One important fact is that embedded systems are inherently not distributed. All of

the processes or threads interacting with the database are running in the same CPU. This

doesn’t mean there isn’t a network—a set-top box is part of a very large network. But one of

the threads running in the set-top box application, not the database, is responsible for

communication. This renders unnecessary remote procedure call mechanisms and other

complex communications logic at the core of business databases.

eXtremeDB also recognizes that databases within intelligent devices will have a different

interpretation of “users.” A user is a process or thread, and there are generally very few of

them. Such a database doesn’t need complex lock arbitration, concurrency controls, cache

synchronization, and abnormal termination recovery. Building on this knowledge keeps

eXtremeDB smaller and faster and, since it eliminates complexity, more error-free.

For assured data integrity, eXtremeDB fully supports ACID-compliant transactions.

However, the data management engine’s transaction queue has been designed for minimal

resource consumption. It also provides for dynamic queuing, which allows the application to

assign priority to different kinds of transactions.



This lean architecture, along with several additional capabilities described below, keep

eXtremeDB’s footprint to a minimum—100K or less, depending on the processor and

compiler. It also enables optimal performance on the less powerful processors favored for

economic reasons in consumer devices.

Main Memory, Direct Access Database

eXtremeDB stores data entirely in main memory, eliminating disk access overhead. Main

memory processing, combined with a transaction manager specifically designed for

intelligent devices, accelerates the handling of streams of small, fast transactions. It also cuts

overhead from data transfer. Earlier data management technology required copying records

from database to cache, and then to a new location for manipulation by the application. With

eXtremeDB, the application works directly with the data in main memory, eliminating the

need for duplicate data sets as well as the requirement to move data from persistent to

transient environments (see Figure 1).

Figure 1



Unlike SQL databases, eXtremeDB stores information in the exact form in which it is used

by the application. Other technologies require translation—mapping a C data element to a

relational representation, for example, or requiring additional code to pick fields from tables

and copy them to C structures. By eliminating this overhead, eXtremeDB reduces memory

and CPU resource demands. Figure 2 illustrates the overhead of data decomposition and

assembly imposed by a relational database when dealing with complex objects.

Figure 2



Developer Orientation

McObject understands that applications developed for intelligent devices will not “plug

into” their databases. Rather, for optimal run-time efficiency, developers will tightly

integrate data management with application software. Today, embedded systems are

overwhelmingly developed in C/C++. eXtremeDB enhances the preferred development

environment and supports the data-centric approach of object-oriented analysis and design.

Important developer tools include eXtremeDB’s support for complex data types and query

methods, a rich and intuitive application programming interface, and a powerful debugging

environment.

Support for complex data and efficient queries. Relational databases—even those

permitting main memory hosting—require shoehorning data into neat rows and columns of

basic data types. In contrast, eXtremeDB facilitates tight, efficient coding by supporting

virtually all data types, including structures, vectors and BLOBs. For querying, McObject

provides hash indexes for exact match searches; b-tree indexes for pattern match, range

retrieval and sorting; and object-identifier references, for direct access. Rather than storing

duplicate data, indexes contain only a reference to data, keeping memory requirements to an

absolute minimum. (For more information, see “Appendix – Data Types and Storage

Attributes, eXtremeDB vs. SQL database”).

Programming interface. McObject provides a library of standard database functions, used

in all eXtremeDB-based applications. However, most of the API for accessing persistent

data in an application is generated by eXtremeDB when the database is compiled. Because

it is based on the developer’s own data design, this application-specific API is easy to learn

and optimized for the project’s exact needs.

Debugging environment. A developer edition of the McObject run-time takes advantage of

numerous traps in the database code, detecting programming errors and enabling easy

repair. In addition, compile-time type checking in the C environment applies to the methods

McObject uses to access stored data. Methods that are generated to provide access to a

certain object require a reference to that data type as a parameter. Any mistake will generate

a compiler warning.

Conclusion

Gear manufacturers’ two-fold mission remains constant: offer new capabilities—preferably

amazing capabilities—continuously, and stay ahead of competitors by chipping away at

price. In the past half decade, the software required for great new features crossed a

threshold. Data grew sufficiently complex, and developers turned to databases, even when

this meant shoehorning SQL databases where they didn’t particularly fit. But just as

relational databases arose to meet client/server needs, new data management technology is

emerging for smart devices. The new software, evidenced by eXtremeDB, emphasizes

developer flexibility, performance, and frugality in resource use as the three key

requirements for device data management.



Appendix – Data Types and Storage Attributes

eXtremeDB vs. SQL database

The table below compares data types and storage attributes supported by eXtremeDB, with

those of a traditional SQL-based relational database. Support for a wider range of data types,

especially complex data types, is one of the main features that sets eXtremeDB apart, both in

flexibility to write more efficient code, and ability to support the complex data associated

with device-based applications.

Vectors and structures are what give eXtremeDB the ability to manage complex data.

Without them, a database is left with simple (atomic) fields. With vectors and structures, the

developer can address with a single data type information that in a relational database would

require an entire table, and its accompanying processing overhead.

OID and ref enable the developer using eXtremeDB to establish fast, efficient and natural

relationships between classes that have natural object identifiers (OIDs) (e.g. a network of

sensors would each have a unique identifier. Each measurement by a sensor would have a ref

of the sensor that gathered the measurement).

The higher-level data types Date, Time, Timestamp and Decimal are not required by all

applications; when footprint is important, it is better to leave the implementation of higher

level types to the application rather than burden every application with the code to support

them whether they are needed or not.

The eXtremeDB data modifiers Compact, Optional and Voluntary are all important to

minimizing the memory consumed by the database. Voluntary is also important for reducing

CPU cycles. Declaring a class Compact will reduce the amount of overhead imposed by the

database runtime to manage objects of the class: Compact objects are known to be less than

64K and can be used with a short integer (2 bytes) for the internal offsets, compared to non-

compact objects requiring a large integer (4 bytes) for the offsets.

Optional fields do not consume space in the database unless they are explicitly populated by

the application.

Voluntary means that an index is created only when the application causes it to be. Until it is

created, or after it is dropped, it requires no space and the CPU cycles to maintain it during

insert/update/delete operations are also not used. Index creation can be timed selectively to

coincide with availability of computing resources.

Having unsigned types provides some built-in safety (you can’t accidentally store a negative

number in a field that logically should never be negative, like weight).



eXtremeDB SQL Meaning

Char<n> Char(N) Fixed length character strings

String Long Variable length character strings < 64K

Varchar

Signed<1> Tinyint One-byte signed integer

Signed<2> Smallint Two-byte signed integer

Signed<4> Integer Four-byte signed integer

Unsigned<1> One-byte unsigned integer

Unsigned<2> Two-byte unsigned integer

Unsigned<4> Four-byte unsigned integer

Float Real Four-byte floating point number

Double Float Eight-byte floating point number

Blob Long Variable length binary (opaque) data

varbinary

Vector Variable length array of any (ex blob) type

OID Unique object identifier

Ref Reference to the OID of another object

Struct Names a new type and specifies its fields, that can have

different types

Optional Declares a field that might not be stored

Date Vendor-specific storage format for YYYYMMDD dates

Time Vendor-specific storage for HHMMSS.dddd times

Timestamp Vendor-specific storage for

YYYYMMDD:HHMMSS.dddd date/time

Decimal Vendor-specific storage for numeric (precision, scale)

format, usually BCD

Compact Declares that a class will always be < 64K, allowing

McObject to minimize overhead

Voluntary Declares an index that is built and destroyed on demand,

saving space and CPU cycles to maintain it during

periods when the index is not required or desired


