
 
 
 
 
 
 
 

The Role of In-Memory Database Systems in 
Routing Table Management for IP Routers 

 
 
 
 
 
Abstract: Core Internet bandwidth grows at triple the rate of CPU power, but the promise of 
high-value applications can only be realized by managing much more data traffic at the network's 
edge. This requires rapid evolution of the fundamental edge infrastructure device, the IP router. 
To keep pace, routing table management (RTM) software within routers must respond quickly to 
changing protocol and provisioning requirements, but as demands increase, proprietary routing 
table implementations encounter limitations in scalability, extensibility, and ease of maintenance. 
 
This paper examines the use of in-memory database systems (IMDS) within RTM software to 
overcome these barriers. In addition to greater development flexibility, IMDS technology 
provides built-in data integrity and fault tolerance, while meeting data lookup and update 
demands needed for RTM software to support IP routing functions. (Performance examples are 
provided for Linux and Windows 2000.) This solution improves infrastructure vendors’ ability to 
produce new generations of routers faster and at less cost, improving their competitive position. 
 
 
 
 
 
 
 
 
 

McObject LLC 
22525 SE 64th Place 

Suite 302 
Issaquah, WA 98027 

 
Phone: 425-831-5964 

E-mail: info@mcobject.com 
www.mcobject.com 

 

Copyright 2002, McObject LLC 



 2

 
Introduction - General Routing Concepts 
 
IP Routing is the main process used by Internet hosts and routers to deliver packets. The Internet 
is based on a hop-by-hop routing model. Each host or router that handles a packet examines the 
destination address in the IP header, computes the next hop that will bring the packet one step 
closer to its destination, and delivers the packet to the next hop, where the process is repeated.  
 
To make this work, routers use routing tables to compute the next hop for a packet. Routing table 
lookup processes match destination addresses with next hop addresses. The content of the routing 
tables is determined both by routing protocols responsible for automatic (dynamic) table updates, 
and by the router’s static network management function, for manual updates. 
 
Architecturally, routers are usually divided into three components: the control plane that executes 
routing protocols, stacks, etc., the management plane that provides various provisioning and 
management functions, and the data plane (forwarding) that performs wire speed packet 
processing. (In fact, routers’ control and management planes are often discussed as a single unit. 
Because this paper focuses on dynamic updating and other automated control capabilities, the 
term “control plane” is used broadly, even when possibly overlapping with management plane 
functions.)  
 
Modern Internet router architectures perform the forwarding table lookup using either a central 
CPU or several CPUs positioned at the incoming interfaces. General-purpose CPUs work well for 
forwarding, at most, hundreds of thousands of packets per second. The port speeds of high-end 
routers range from hundreds of megabits (Mbps) all the way up to hundreds of gigabits per 
second. These high speeds imply the use of optical physical interfaces and very wide parallel 
electrical busses operating at high speeds. For instance, a 10Gbps line would need to be 
transformed into a bus operating at 100MHz that would be 64 bits wide. Even a 622Mbps 
interface may transmit up to 1.5 million packets per second. A router with 128 such interfaces 
would need to cope with 200 million forwarding decisions per second. Therefore, high-end 
routers use dedicated hardware to perform forwarding. 
 
The control plane has evolved as the site of the router’s more complex and data-hungry software 
functions, which run on a general purpose CPU and operating system. Key control plane software 
components, discussed below, include routing protocols; the routing table; and the routing table 
management (RTM) software that installs, modifies and deletes routes (often from multiple 
protocols) in the routing table, and synchronizes information between the routing and forwarding 
tables. In the fast-growing Internet environment, routing table management must provide fast 
conversions—that is, it must quickly reflect network topology changes in the router hardware. 
 
Figure 1 shows the role of control, management and forwarding planes in router architecture. 
 



 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 
Protocols 
 
Routing protocols determine optimal routing paths through a network, usually based on paths 
with the least delay and highest reliability. Typically, the best paths are those with the least 
number of hops, but traffic volume can influence the choice of paths, as well. Most routing 
protocols facilitate communication between routers and operate in a distributed manner, learning 
the presence and responsiveness of immediate neighbors through polling and listening routines, 
and through sharing routing table information with neighbors. Through this process, each router 
maintains a complete picture of a network in terms of connectivity and quality of specific links. 
Routers’ ability to adapt to a changing network was demonstrated in dramatic fashion on 
September 11. Within an hour, Internet traffic flows returned to normal as traffic was re-routed 
around the damaged portions. Popular routing protocols include: 
 
Routing Information Protocol (RIP). This is a distance vector routing protocol, choosing paths 
based on the distance (number of hops) to the destination. RIP maintains optimal paths by 
sending out update messages if the network topology changes. For example, if a router finds a 
faulty link, it will update its routing table, and then send a copy of the modified table to its 
neighbors. These neighbors update their tables and forward information to others, and so on. 
Within a short period, all routers will have the new information. 
Open Shortest Path First (OSPF). The Internet Engineering Task Force (IETF) developed 
OSPF, which is often preferred over RIP for larger autonomous system networks. OSPF is a link-
state routing protocol (sometimes referred to as distributed-database protocol, but not to be 
confused with the OLTP DBMS definition of distributed databases.) OSPF routers maintain a 

       Control and management plane. Runs on general purpose CPU under general purpose OS 
 
 

         
 
 
 
Routing table management (RTM). RT access API 

Routing table (RT). Contains all the routing information learned by 
routing protocols. 

    Data plane. Runs a packet forwarding engine usually 
    on special hardware 
 
 
 
 
 

Forwarding table. Contains the routes actually used to forward packets through 
the router 

                                   Network interfaces

   BGP 

Packet in Packet out 

   OSPF   IS_IS   RIP   Static routes 



 4

map of the inter-network that is updated after any change to the topology. This map, called the 
link-state database, is synchronized between all the OSPF routers and is used to compute the 
routes in the routing table. Neighboring OSPF routers form an adjacency, which is a logical 
relationship between routers to synchronize the link-state database. 

Topology changes are efficiently flooded across the entire inter-network to ensure that the link-
state database on each router is synchronized and accurate. Changes to this database trigger a 
recalculation of the routing table. 

As the size of this database increases, memory requirements and route computation times 
increase. To address this scaling problem, OSPF divides the inter-network into areas (collections 
of contiguous networks) connected to one another through a backbone area. Each router keeps a 
link-state database only for areas that are directly connected. Area border routers (ABRs) connect 
the backbone area to other areas. 
 
Intermediate System to Intermediate System (IS-IS). This link-state protocol offers services 
similar to OSPF. However, IS-IS was developed by the International Organization for 
Standardization (ISO) as a part of the Open System Interconnection (OSI) network architecture. 
IS-IS periodically floods the network with link state information, allowing each router to maintain 
a complete picture of the network's topology. 
 
Board Gateway Protocol (BGP). This is a protocol for exchanging routing information between 
gateway hosts (each with its own router) in a network of autonomous systems. 
 
Routing Table Management Software 
 
Routing Table Management (RTM) software provides a means of coordinating information 
obtained by the routing protocols and statically configured routes, and communicating this data 
between the control and data planes. In the current generation of routers, the RTM software 
maintains the routing table (discussed below) as an integrated structure containing persistent data 
required by control plane processes. The RTM software’s functions allow protocols to install new 
routes (often from multiple protocols) in the routing table, provides means for efficient population 
of the forwarding data, and supports functionality to communicate new routes back to protocols. 
  
Routing Table 
 
The routing table is a central repository for storing one or more of a protocol instance's preferred 
routes to a given destination. Different protocol modules use the routing table in different ways. 
For instance, OSPF maintains its link state database separately and instantiates routes into the 
routing database when it performs a link state computation. From OSPF, there can be only one 
route to a given destination. RIP and BGP add routes received in updates from peers, so the 
routing table may contain as many BGP routes to a destination as there are peers. 
 
While “routing table” suggests a single, straightforward data set, the term actually encompasses 
various data structures that are of interest to protocol implementations and are maintained by 
RTM software. For instance, the RTM usually maintains a list of changes to the routing table. 
This list is communicated to the forwarding plane and to all protocol instances every time a 
change occurs; protocols, in turn, pass the changes back to the network. Another example is 
structures that support equal-cost multi-path (ECMP) algorithms, which facilitate routing packets 
along multiple paths of equal cost. Overall, routing table algorithms are very data hungry – the 
routing table is accessed frequently with data requests ranging from simple to complex. To add to 



 5

the complexity, the routing table can be updated by various protocols simultaneously, requiring 
the RTM software to synchronize access and maintain data integrity. 
 
To meet these demands, RTM software has typically maintained routing tables as in-memory data 
structures with multi-threaded access methods that satisfy protocol requirements and forwarding 
table synchronization policies. However, these proprietary routing table solutions are emerging as 
one of the principal challenges in developing next generation routing equipment. As device 
functionality increases, routers encounter significant data management issues in the areas of 
scalability, reliability, addressing complex data relationships, and ease of programming and 
maintenance.  
 
Database Technology on the Control Plane? 
 
Historically, developers of traditional (non-embedded) applications have addressed mounting data 
complexity with database management systems (DBMSs) which provide formalized methods for 
maintaining data integrity, constructing complex data relationships, and providing access to 
information quickly and efficiently. By replacing self-developed code with proven database APIs, 
DBMS technology reduces coding, debugging and maintenance requirements, decreasing the 
developer’s burden. 
 
Commercial database technology has been viewed as unsuitable for real-time processes such as 
Internet routing. Conventional DBMSs incorporate disk I/O, a mechanical process that is 
tremendously expensive in terms of performance. Even when deployed in memory—such as on a 
RAM-disk— conventional databases lag due to caching procedures, and to logging functions that 
provide for data recovery but are unnecessary for routing tables that are constantly replenished 
via the routing protocols. 
 
The emergence of in-memory database systems (IMDSs) makes possible the use of true DBMS 
technology on the router control plane. Designed from the start for memory-only deployment, 
IMDS technology eliminates disk I/O, caching, logging and other performance overhead of 
conventional databases. Compared to “traditional” (disk-based) database systems, IMDSs save 
significant overhead in the following areas: 
 

o There is no connection overhead – data management libraries are typically tightly linked 
with the application code 

o Eliminates extra layers - designed from scratch with the assumption that data is in 
memory. This design streamlines data management tremendously, removing the layers of 
overhead typical of disk-based DBMSs 

o Search algorithms are highly optimized for memory access 
o Search translation – The IMDS points directly to the memory location of data elements. 

In contrast, conventional DBMSs usually point to a block number and an offset. The 
database needs to locate the block, load it into memory and find the appropriate memory 
location in the memory buffer 

o IMDSs eliminate the need for buffer management. Conventional DBMSs assume that 
new data from disk will replace data in memory buffers, and therefore constantly write 
memory buffers to disk 

o IMDS technology provides direct access to data. In a disk-based DBMS an application 
never gets access to a data element in the memory buffer. Instead, the data is copied 
elsewhere to memory, adding more overhead yet 

 



 6

 
Benefit: Simplified Development and Maintenance 
 
In-memory databases are fast, but speed is just one benefit IMDSs bring to the control plane. 
Existing proprietary routing table implementations have typically been fast enough—but have 
fallen down in the areas of flexibility and maintainability. For example, new features that require 
new data to be managed, new access methods, or new relationships between data elements, often 
require substantial changes to the proprietary routing table data management, which lengthen 
implementation and debugging cycles, and increase risk. 
  
With a database engine it is much easier to write and maintain the data management portion of 
the RTM code. Like proprietary routing tables, IMDSs provide an in-memory data repository 
enabling multi-threaded data access—but with the added benefits of proven data organization, 
efficient access methods and support for data integrity. Data layout, search algorithms, 
transaction implementations, error handling, and multi-threaded data access are handled by the 
database engine code and are of no concern for the RTM developer. In fact, a database 
management system is a tool that is specifically designed to help maintain data description 
changes - it is easy to change data structures, such as changing a field’s data type, and to change 
access methods, such as adding a route enumeration request. 
 
Carrier-class IP routers often demand high availability for both internal configuration and internal 
state data. The router architecture is engineered to meet “five-nines” availability requirements 
(99.999% up-time, which equals 5 minutes down per year) and often provides hardware and 
software fault-tolerance to support this requirement. The storage subsystem used for building the 
routing table management is a critical component in meeting this requirement. A DBMS’s 
contribution to fault tolerance can include distributed transactions and two-phase commit, as 
well as a transaction manager and a distributed inter-process communication (IPC) mechanism 
that allows coordination between multiple data nodes. 
 
The following examples show how in-memory database technology can enhance control plane 
development in next-generation routing technology. The database used in the examples is 
McObject’s eXtremeDB, a small-footprint IMDS designed to meet the needs of 
telecommunications equipment, set-top boxes, and other resource-constrained intelligent devices.  
 
Let’s consider a trivial example. The routing table below shows the valid forwarding paths from a 
given source. Paths are based on static routes, learned via routing protocols, interface addresses, 
etc.  
 
Address Mask Next Hop Interface Protocol Preference Age Metric 
0.0.0.0 0.0.0.0 100.220.0.57 1 RIP 1 22 2 
100.0.0.0 255.0.0.0 0.0.0.0 1 Static 1 0 1 
212.0.1.0 255.255.255.0 100.49.0.1 1 OSPF 1 8 1 
…        
…        
        
        
 
 
Address refers to the packet destination IP address to which this route applies. This address is 
combined with the subnet mask to determine the destination route. 0.0.0.0 indicates the default 
gateway. 



 7

 
Mask is the subnet mask for the destination IP address in the Address field. The Mask 0.0.0.0 
indicates the default gateway. 
 
Next Hop is the IP address of the next system, for remote routes, in the path to the destination. 
0.0.0.0 indicates a local route, in which there is no next hop. 
 
Interface refers to the network interface through which traffic moves on this route. 
 
Protocol represents the source of this routing table entry: 

• RIP = Learned via Routing Information Protocol.  

• OSPF = Learned via Open Shortest Path First protocol.  

• Static = Configured static route.  

• Default = The default gateway. 
 
 
Preference is an arbitrary value that is used to rank routes received from different protocols or 
interfaces. The routing protocol process generally determines the active route by selecting the 
route with the lowest preference value. 
 
Age represents a timer, which is counting down, and if that timer reaches zero, the route is 
removed. 
 
Metric specifies the cost of using that particular route. A higher number in the metric column 
indicates a higher cost for using that route. 
 
Database management systems describe real-world data using a Data Definition Language 
(DDL), which defines the names and attributes of the data items and data aggregates included in 
the database, and the relationships that exist and must be maintained between occurrences of 
those elements. A description of a database based on the DDL is called a database schema. The 
following eXtremeDB schema fragment describes the routing table: 
 
class rt 
{ 
 string destination; 
 string mask; 
 string next_hop; 
 string interface_name; 
 uint1 interface; 
 uint1 age; 
 uint1 metric; 
 uint1 preference;  
 
 tree  <destination, mask> route_idx; 
 
}; 
 
In this example, a tree index is maintained for all routes in the database based on the 
destination/mask pair. Given this design, the RTM software will be able to perform various 
routing table lookups or updates. Additional tree-based or hash-based indexes could be declared 



 8

to satisfy virtually any search requirements. The database could maintain other indexes to support 
various enumeration capabilities. For example, when a new route is inserted into the table by a 
protocol, an index could be used to update the forwarding table with the best route based on the 
destination/mask and the metrics.  
 
The above example is merely used for demonstration purposes. In fact, modern routing tables 
support multiple protocols, requiring more complex data structures and application queries. In 
actual implementations, database structures will be driven by protocol specifications, whose 
revisions, packet formats etc., are defined by Requests For Comments (RFCs) as well as desired 
features of the router. For example, the OSPF version 2 protocol is documented in RFC 2328, 
which also specifies the organization of the routing table data, routing table updates and lookups. 
As specifications evolve to address new requirements, use of a formal DDL greatly simplifies the 
description and maintainability of the application’s data layout. The alternative is to provide 
management from within the application’s source code, using a programming language like C. 
 
Benefit: Isolation of Complex Data Management Functions 
 
Methods provided by the database API enable further isolation of protocol software from 
complex data management functions. Such an “isolation layer” hides the database implementation 
details and the database access “rules” for transaction processing, cursor navigation, error 
handling and other functions. For example, in order to update a database, an application must start 
a transaction, make an update, then commit or roll back the transaction. An isolation layer is 
based on the API exported by the database runtime and combines all this processing into a simple 
macro or inline function exposed to protocols. 
 
An isolation layer can also hide some interim data structures from the protocols. For example, 
when a protocol adds a new route into the database, that route has to be communicated to the 
other registered protocols and, in some cases, to the forwarding table. To do this, the RTM 
maintains a “change list” of the most recent routing table changes. The database isolation layer 
can maintain such a list in the form of a database cursor. A cursor is an entity that establishes a 
position within a sequence of objects, which may be defined by a tree index. It is possible to 
maintain a “virtual” change list and use the cursor API to navigate through the database, read the 
updated data and “notify” registered clients of the change.  
 
In short, in addition to eliminating the need to implement complex data management software, an 
isolation layer can further simplify the implementation of the remaining RTM functions by 
providing a compact and straightforward API to routing table data structures. 
 
A simple isolation layer API might take the form of: 
 
Registration API 
 

 

rt_attach() Opens a database session 
rt_register() Registers a database client notification callback 

Routing table update API  
rt_add_route() Adds a new route to the database 
rt_update_route() Updates an existing route 
rt_delete_route() Removes a route from the database 



 9

Enumeration API 
 

 

rt_enum_routes() Enumerates all the routes over the entire database 
rt_enum_dest() Enumerates all the destinations in the database 

Search API  
rt_find_route() 
 

Searches the routing table for a route that exactly 
matches the specified route. The route to search for is 
indicated by a network address, subnet mask, and 
other route-matching criteria  

rt_find_destination() Searches the routing table for a destination that 
exactly matches the specified network address and 
subnet mask 
 

rt_find_best_route() Searches for the best route based on a route-matching 
criteria 

 
Figure 2 shows the place for a database engine in the overall RTM architecture.  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 

Protocol-specific routing table management API. Could be implemented through macros on top of 
the database engine API  

   BGP 

Database engine API. Only those APIs that are necessary to provide access to the routing database 
are exposed. Provides data change notifications passed back to protocols 

eXtremeDB database engine. Provides optimized access to the data repository, supports user-
defined access methods and exported functional API. Provides transaction management and muli-
threaded data access 

   OSPF   IS-IS   RIP 

Routing table database: 
In-memory database that provides an 
optimized layout for all user-defined 
data structures and indexes 

Static Routes 



 10

 
Benefit: Support for Multiple Routing Tables 
 
A database management system greatly simplifies the use of multiple routing tables—a 
requirement of many emerging routers. For example, a router might maintain three different 
tables: one for unicast routes, one for multicast routes, and a third for Multi-Protocol Label 
Switching (MPLS). Today’s multi-protocol routers also use multiple routing tables to separate 
particular groups of routes and add greater flexibility in manipulating routing information. For 
example, a router might maintain a default unicast routing table, another table for unicast routes 
used for multicast reverse path forwarding (RPF) lookup, a MPLS routing table for path 
information, a MPLS routing table for label-switched path (LSP) next hops, and so on. Further, 
router software might allow configuring a unicast routing table for a particular routing instance. 
 
A DBMS to support data storage and data access methods for multiple routing tables provides a 
standard and robust way of mapping between them. A database engine naturally supports various 
ways of referencing related data through indexes, object identifiers, etc., and exposes a standard 
data access API that allows quick programmatic methods to easily find related objects. Scenarios 
in which this would prove useful include importing interface routes into more than one routing 
table, and applying different routing policies when exporting the same route to different peers. 
 
The Performance Issue 
 
Can a database deliver the required performance? Most routers have used proprietary routing 
table management due largely to concerns over this issue. Modern routers can hold up to several 
million entries in their routing table and should be able to perform at least hundreds of thousands 
of lookups per second. The database management systems intended for disk-based data 
repositories are algorithmically designed to minimize disk I/O; this is achieved at significant cost 
in CPU cycles dedicated to disk avoidance. In order to achieve the necessary performance, a 
memory-based database management system should be used, because the ultimate “performance” 
goal of the memory-based DBMS is to minimize CPU cycles since disk I/O is eliminated by 
definition.  
 
The sample program below measures the performance of an in-memory database – eXtremeDB – 
for routing table inserts and lookups. In actual usage, the routing table software would perform 
more inserts than lookups. However, the goal of this application is not to provide an absolutely 
true-to-life example, but rather to prove the point that a database management engine can provide 
sufficient performance.  
 
The program randomly generates IP addresses, each masked with three masks – 255.255.0.0, 
255.255.255.0 or 255.255.255.255. We then insert these routes into the routing table, creating a 
unique tree-based index based on the {mask/ip address} pair. The database engine filters out 
duplicate pairs of {mask/ip address} as the new routes are installed into the routing table. 
 
After the table is populated, the program searches for a route for a random packet. The algorithm 
is a combination of a linear search and a tree search, masking the address with each of the three 
possible masks and then using the index to locate the route. Therefore each address is searched up 
to three times to find the best match. If more than one route exists, the one with the longest 
matching prefix is chosen. 
 
The following table reports the performance of insert operations and lookups using the 
eXtremeDB 1.2 in-memory database on Windows 2000 with a Pentium 4 1.4 GHz CPU and 



 11

256Mbytes of RAM, and Red Hat Linux 7.1 with a Celeron 1.1 GHz CPU and 512Mbytes of 
RAM.  All times are in microseconds (there are one million microseconds per second). 
 
 Win2K w/Tree Index Linux w/Tree Index
Route insert 5.75 7.7 
Total search time for a single route 6.5 7.3 
Per read (total search time divided by the average 
number of reads per transaction) 

3.25 3.6 

 
The example program used the following eXtremeDB database schema: 
 
/********************************************************** 
 *                                                        * 
 * Copyright(c) 2001 McObject, LLC. All Right Reserved.   *  
 *                                                        *  
 **********************************************************/ 
#define uint4 unsigned<4> 
#define uint2 unsigned<2> 
#define uint1 unsigned<1> 
 
declare database Rt1 [ 1000000 ]; 
 
 
/* This class contains all possible masks */ 
class Mask 
{ 
  uint4 mask; 
  uint1 nbits; 
 
  unique tree< nbits, mask > all; 
}; 
 
class Route 
{ 
  uint4 dest; 
  uint4 mask; 
  uint4 gateway; 
  uint4 interf; 
  uint2 preference; 
  uint2 metric; 
 
  unique tree < mask, dest > byMaskDest; 
}; 

Figure 3 
 
Two classes are declared for the database. Class Mask is used to hold network masks sorted by 
the number of significant bits in the mask (the longest mask is the last one). The code fragment in 
Figure 4 calculates the number of significant bits in the mask. Class Route represents the routing 
table itself – dest is a destination network address, mask is the mask for the network, gateway, 
interf, metric and preference fields (while being filled in) are not otherwise used in the example. 
The class is sorted by the pair <mask, dest>. 
 
 
 
 
 



 12

static uint1 calcNbits(uint4 mask) 
{ 
  static int n8[16] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}; 
  int rc = 0, i; 
  for(i =0; i <8; i++)  { 
    int halfbt = ( mask >> (i<<2) ) & 15; 
    rc += n8[halfbt]; 
  } 
  return (uint1)rc; 
} 

Figure 4 
 
static MCO_RET addRoute(mco_db_h db, 
  uint4 dest, uint4 mask, uint4 gatew, uint4 interf, uint2 pref,  
  uint2 weight) 
{ 
  MCO_RET     rc; 
  mco_trans_h t; 
  Mask        hmask; 
  Route       rt; 
  uint1       nbit = calcNbits(mask); 
   
  /* open write transaction. All database updates must be done in  
     the context of a “write” transaction */ 
  rc =  
   mco_trans_start(db,MCO_READ_WRITE,MCO_TRANS_FOREGROUND,&t); 
  if(rc) return rc; 
  /* add a new mask if necessary */ 
  rc =  Mask_all_find( t, nbit, mask, & hmask ); 
  if(rc == MCO_S_NOTFOUND){ 
    /* allocate a new mask object */ 
    rc = Mask_new(t, & hmask); 
    if(rc) goto End; 
   
    /* add values for the mask and nbits */ 
    Mask_mask_put(& hmask, mask); 
    Mask_nbits_put(& hmask, nbit); 
  }  else  { 
    if(rc) goto End; 
  } 
  /* add a new route */ 
  rc = Route_new(t, &rt); 
  if(rc) goto End; 
 
  Route_dest_put(&rt, dest); 
  Route_mask_put(&rt, mask); 
  Route_gateway_put(&rt, gatew); 
  Route_interf_put(&rt, interf); 
  Route_interf_put(&rt, pref); 
  Route_metric_put(&rt, weight); 
 
End: 
  rc = mco_trans_commit(t); 
  return rc; 
} 

Figure 5 
 
 



 13

The code fragment in Figure 5 inserts (installs) new routes into the table. In this code fragment, a 
write transaction is opened, a new Route object is allocated (Route_new()) and written 
(Route_XXX_put()) and the transaction is committed. Note that there is no need for application 
to do anything to maintain indexes – they are built on the fly by the database engine. If any of the 
database operations within the transaction brackets (between mco_trans_start() and 
mco_trans_commit()) fail, then mco_trans_commit() will handle that situation gracefully and 
internally roll back the entire transaction, leaving the database in a consistent state. 
 
The last code fragment, Figure 6, searches for the best route. A read-only transaction is started. A 
database cursor is built based on the “mask” index (Mask_all_index_cursor()). The cursor is 
traversed from the last object backwards, since the index is ordered so that the longest mask is the 
last. For each mask, the “find” (Route_byMaskDest_find()) method is used to match the 
destination address. 
 
/* This function searches for a best match route in the database */ 
static int searchRoute 
 (mco_db_h db, uint4 ip, uint4 * res_gatew, uint4 * res_interf) 
{ 
  mco_cursor_t csr; // will hold a database cursor 
  Mask hmask;       // will hold a handle to the Mask object 
  uint4 mask;       // will hold mask value read from the database 
  mco_trans_h t;    // transaction handle 
  int ok = 0;       // status 
 
/* start a read-only transaction; it is necessary to perform 
     search-by-cursor operation */ 
  MCO RET rc =  
   mco_trans_start(db,MCO_READ_ONLY,MCO_TRANS_FOREGROUND,&t); 
 
 /* make sure the transaction is started successfully */ 
  if(rc) return rc;  
  /* Create a database cursor based on Mask_all tree index */ 
  rc = Mask_all_index_cursor(t, &csr); 
  if(rc) goto End; 
 
/* using a cursor, navigate through all possible masks */ 
  for(rc = mco_cursor_last(t, &csr); rc == MCO_S_OK;  
      rc = mco_cursor_prev(t, &csr) ) { 
    Route rt; 
    /* obtain a handle to the Mask object from cursor */  
    Mask_from_cursor(t, &csr, & hmask); 
    /* using the handle, read mask value */ 
    Mask_mask_get( & hmask, & mask ); 
 
    rc = Route_byMaskDest_find(t, mask, mask & ip, & rt); 
    if(rc == MCO_S_OK) { 
      ok = 1; break; 
    } 
  } 
 End: 
  /* commit our transaction */ 
  rc = mco_trans_commit(t); 
  return ok; 
} 

Figure 6 
 



 14

“No hassle” performance improvement of the test 
 
There are ways to further improve the performance of the sample. Consider a trivial one – instead 
of building a unique tree index for the destination/mask pair, declare a hash index. The following 
schema reflects the change: 
 
/********************************************************** 
 *                                                        * 
 * Copyright(c) 2001 McObject,LLC. All Right Reserved.    *  
 *                                                        *  
 **********************************************************/ 
 
#define uint4 unsigned<4> 
#define uint2 unsigned<2> 
#define uint1 unsigned<1> 
 
declare database Rt1 [ 1000000 ]; 
 
class Mask 
{ 
  uint4 mask; 
  uint1 nbits; 
 
  unique tree< nbits, mask > all; 
}; 
 
class Route 
{ 
  uint4 dest; 
  uint4 mask; 
  uint4 gateway; 
  uint4 interf; 
  uint2 preference; 
  uint2 metric; 
 
  /* this is new: we are declaring a hash index instead of a tree-  
     based index*/ 
  hash < mask, dest > byMaskDest[2000000]; 
}; 

Figure 7 
 
As shown in the following table, this change dramatically increases performance. The “price” for 
the performance increase is an extra 116K of memory used for the hash table. But no changes are 
required in the sample code! 
 
 Win2K w/Hash Index Linux w/Hash Index 
Route insert 3 3.75 
Total search time for a single route 4 4.5 
Per read (total search time divided by the 
average number of reads per transaction) 

2 2.25 

 
 
 
 
 
 



 15

Conclusion 
 
Dramatic Internet traffic growth rates have ISPs worried. While CPU speeds may double every 
18 months (Moore’s law), Internet bandwidth grows three times as rapidly (Gilder’s law). More 
traffic means today’s routers need a huge performance boost, which providers are addressing via 
more powerful CPUs and network adapters, and increasingly sophisticated parallel architectures. 
 
However, speed isn’t the only problem. Within hardware routing technologies that realize wire 
speed transport capabilities, next-generation carrier-class routers need routing software that can 
scale as operators expand their networks and develop relationships with revenue-sharing partners. 
Each routing protocol should accommodate maximum expansion to support new services, 
subscribers and providers. Routing hardware must support a full suite of unicast routing 
protocols, including carrier-class implementations capable of restoring connectivity from any 
source to any destination very quickly, in the event of any link or router failure. These demands 
are outpacing the conception of routing tables as a proprietary outgrowth of routing table 
management software. 
 
Until recently, commercial database technology was unsuitable for near real-time IP routing. 
However, the emergence of in-memory databases and other advances in database technology 
allow the application of DBMS technology to non-traditional areas, including routing table 
management. For IP router developers, proven database technology provides the benefits of 
DBMS features, including optimized access methods and data layout, standard and simplified 
navigation methods, built-in concurrency and data integrity mechanisms, and improved flexibility 
and fault-tolerance, while delivering the necessary performance.  Adoption of this new breed of 
DBMS as a control and management plane software component simplifies IP router development, 
while addressing inter-network growth and ensuring high availability and reliability. 
 


