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Abstract: It stands to reason that accessing data from memory will be faster than from 
physical media. A new type of database management system, the main memory database 
(MMDB), claims breakthrough performance and availability via memory-only 
processing. But doesn’t database caching achieve the same result? And if complete 
elimination of disk access is the goal, why not deploy a traditional database on a RAM-
disk, which creates a file system in memory?  
 
This paper tests the eXtremeDB main memory database against the db.linux embedded 
database in both traditional (disk-based) and RAM-disk modes, running on Red Hat 
Linux 6.2. Deployment in RAM boosts db.linux’s performance by as much as 74 percent. 
But even then, the traditional database lags the MMDB. Fundamental architectural 
differences explain the disparity. Overhead hard-wired into disk-based databases includes 
data transfer and duplication, unneeded recovery functions and, ironically, caching logic 
intended to avoid disk access.  
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Introduction 
 
It makes sense that maintaining data in memory, rather than retrieving it from disk, will 
improve application performance. After all, disk access is one of the few mechanical (as 
opposed to electronic) functions integral to processing, and suffers from the slowness of 
moving parts. On the software side, disk access also involves a “system call” that is 
relatively expensive in terms of performance. The desire to improve performance by 
avoiding disk access is the fundamental rationale for database management system 
(DBMS) caching and file system caching methods. 
 
This concept has been extended recently with a new type of DBMS, designed to reside 
entirely in memory. Proponents of these main memory databases (MMDBs) point to 
groundbreaking improvements in database speed and availability, and claim the 
technology represents an important step forward in both data management and real-time 
systems. 
 
But this begs a seemingly obvious question: since caching is available, why not extend its 
use to cache entire databases to realize desired performance gains? In addition, RAM-
drive utilities exist to create file systems in memory. Deploying a traditional database on 
such a RAM-disk eliminates physical disk access entirely. Shouldn’t its performance 
equal the main memory database? 
 
This white paper tests the theory. Two nearly identical database structures and 
applications are developed to measure performance in reading and writing 30,000 
records. The main difference is that one database, eXtremeDB, is an MMDB, and the 
other, db.linux, is designed for disk storage. The result: while RAM-drive deployment 
makes the disk-based database significantly faster, it cannot approach the main memory 
database performance. The sections below present the comparison and explain how 
caching, data transfer and other overhead sources inherent in a disk-based database (even 
on a RAM-drive) cause the performance disparity. 
 
The Emergence of Main Memory Databases 
 
Main memory databases are relative newcomers to database management. The 
technology first arose to enhance business application performance and to cache Web 
commerce sites for handling peak traffic. In keeping with this enterprise focus, the initial 
MMDBs were similar to conventional SQL/relational databases, stripped of certain 
functionality and stored entirely in main memory. 
 
Another new focus for database technology is embedded systems development. 
Increasingly, developers of network switches and routers, set-top boxes, consumer 
electronics and other hardware devices turn to commercial databases to support new 
features. Main memory databases have emerged to serve this market segment, delivering 
the required real-time performance along with additional benefits such as exceptional 
frugality in RAM and CPU resource consumption, and tight integration with embedded 



systems developers’ preferred third-generation programming languages (C/C++ and 
Java). 
 
The Comparison: eXtremeDB vs. db.linux 
 
McObject’s eXtremeDB is the first main memory database created for the embedded 
systems market. This DBMS is similar to disk-based embedded databases, such as 
db.linux, BerkleyDB, Empress, C-tree and others, in that all are intended for use by 
application developers to provide database management functionality from within an 
application.  They are “embedded” in the application, as opposed to being a separately 
administered server like Microsoft SQL Server, DB2 or Oracle.  Each also has a 
relatively small footprint when compared to enterprise class databases, and offers a 
navigational API for precise control over database operations. 
 
This paper compares eXtremeDB to db.linux, a disk-based embedded database. The open 
source db.linux DBMS was chosen because of its longevity (first released in 1986 under 
the name db_VISTA) and wide usage. eXtremeDB and db.linux also have similar 
database definition languages. 
 
The tests were performed on a PC running Red Hat Linux 6.2, with a 400Mhz Intel 
Celeron processor and 128 megabytes of RAM. 

 

Database Design 
 
The following simple database schema was developed to compare the two databases’ 
performance writing 30,000 similar objects to a database and reading them back via a 
key. 



 
/********************************************************** 
 *                                                        * 
 * Copyright(c) 2001 McObject,LLC. All Right Reserved.    *  
 *                                                        *  
 **********************************************************/ 
 
 
#define int1 signed<1> 
#define int2 signed<2> 
#define int4 signed<4> 
#define uint4     unsigned<4> 
#define uint2     unsigned<2> 
#define uint1     unsigned<1> 
 
 
declare database mcs[1000000]; 
 
struct stuff { 
   int2 a; 
}; 
/* 
 * 
 */ 
class Measure { 
   uint4 sensor_id; 
   uint4 timestamp; 
   string spectra; 
    
   stuff thing; 
 
   tree <sensor_id, timestamp> sensors; 
    
}; 
 
Figure 1. eXtremeDB schema 



 

/********************************************************** 
 *                                                        * 
 * Copyright(c) 2001 McObject,LLC. All Right Reserved.    *  
 *                                                        *  
 **********************************************************/ 
 
 
struct stuff {  
   short a;  
}; 
 
database mcs [8192] 
{ 
   data file "mcs.dat" contains Measure; 
   key  file "mcs.key" contains sensors; 
 
   record Measure 
   { 
      long sensor_id; 
      long m_timestamp; 
      char spectra[1000]; 
    
      struct stuff thing; 
 
      compound key sensors { 
         sensor_id; 
         m_timestamp; 
      } 
   } 
} 

 
Figure 2.  db.linux schema 
 
The only meaningful difference between the two schemas is the field ‘spectra’.  In the 
case of eXtremeDB it is defined as a ‘string’ type whereas with db.linux it is defined as 
char[1000].  The db.linux implementation will consume 1000 bytes for the spectra field, 
regardless of how many bytes are actually stored in the field.  In eXtremeDB a string is a 
variable length field.  db.linux does not have a direct corollary to the eXtremeDB string 
type, though there is a technique to use db.linux network model sets to emulate variable 
length fields with varying degrees of granularity (trading performance for space 
efficiency).  Doing so, however, would have caused significant differences in the two sets 
of implementation code, making it more difficult to perform a side-by-side comparison. 
eXtremeDB has a fixed length character data type; however, the variable length field was 
used for purposes of comparison, because it is the data type explicitly designed for this 
task. 
 
(An interesting exercise for the reader may be to alter the eXtremeDB implementation to 
use a char[1000] type for spectra, and to alter the db.linux implementation to employ the 
variable length field implementation. The pseudo-code for implementing this is shown in 
Appendix A). 



 
Benchmark Application 
 
The first half of the test application populates the database with 30,000 instances of the 
‘Measure’ class/record. 
 
The eXtremeDB implementation allocates memory for the database, allocates memory 
for randomized strings, opens the database, and establishes a connection to it. 

 

   void   *start_mem = malloc( DBSIZE ); 
 
   if ( !start_mem ) { 
      printf( "\nToo bad ..." ); 
      exit( 1 ); 
   } 
 
   make_strings(); 
 
   rc = mco_db_open( dbName, mcs_get_dictionary(), start_mem,  
                     DBSIZE, (uint2) PAGESIZE ); 
   if ( rc ) { 
      printf( "\nerror creating database" ); 
      exit( 1 ); 
   } 
 
   /* connect to the database, obtain a database handle */ 
   mco_db_connect( dbName, &db ); 

 
Figure 3.  eXtremeDB startup implementation 
 
The db.linux implementation allocates memory for randomized strings, initializes a 
DB_TASK structure, and opens the database in the “s” shared mode that enables multi-
threaded access and requires transactions for assured data integrity. 
 
   make_strings(); 
 
   stat = d_opentask(&task); 
 
   if((stat = d_dbuserid("rdmtest", &task))) return; 
 
   if((stat = d_open("mcs", "s", &task))) return; 
 
 
Figure 4.  db.linux startup implementation 
 
From this point, both implementations enter two loops: 100 iterations for the outer loop, 
300 iterations for the inner loop (total 30,000).  
 
To add a record to eXtremeDB, a write transaction is started and space is reserved for a 
new object in the database (Measure_new). Then the sensor_id and timestamp fields are 



put to the object, a random string is taken from the pool created earlier and put to the 
object, and the transaction committed. 

 

   for ( sensor_num = 0; sensor_num < SENSORS; sensor_num++ ) { 
      for ( measure_num = 0; measure_num < MEASURES; measure_num++ ) { 
         mco_trans_start(db, MCO_READ_WRITE, MCO_TRANS_FOREGROUND, &t); 
         rc = Measure_new( t, &measure ); 
         if ( MCO_S_OK == rc ) { 
            Measure_sensor_id_put(&measure, (uint4) sensor_num ); 
            Measure_timestamp_put(&measure, sensor_num + measure_num ); 
            get_random_string( str ); 
            Measure_spectra_put( &measure, str, (uint2) strlen(str) ); 
            rc = mco_trans_commit( t ); 
            if ( rc != 0 ) 

                        goto rep1; 
         } 
         else { 
            mco_trans_rollback( t ); 
            printf( "\n\n\tOops, error allocating object: %d\n", rc ); 
            goto rep1; 
         } 
      } 
      putchar( ‘.’ ); 
   } 
 
Figure 5.  eXtremeDB ‘write’ implementation 
 
In the db.linux implementation a transaction is started, requiring a write-lock.  The code 
next assigns values to a local structure for sensor_id and timestamp, copies a random 
string from the pool of strings created earlier, writes the record to the database 
(d_fillnew), and commits the transaction. 



 
for( sensor_num = 0; sensor_num < NSENSORS; sensor_num++ ) { 
   for( measure_num = 0; measure_num < NMEASURES; measure_num++ ) { 
      if((stat = d_trbegin( "tid", &task )))  
         break; 

if((stat = d_reclock(MEASURE, "w", &task, CURR_DB)))  
         break; 
      mr.sensor_id = sensor_num; 

mr.m_timestamp = measure_num + sensor_num; 
      get_random_string( &mr.spectra[0] ); 
      if((stat = d_fillnew( MEASURE, &mr, &task, CURR_DB )))  
         break; 

if( stat == S_OKAY ) { 
         if((stat = d_trend( &task )))  
            break; 

   } else if((stat = d_trabort( &task )))  { 
              break; 
         } 

   putchar('.'); 
      } 
   }       
} 

 
Figure 6.  db.linux ‘write’ implementation 
 
Because eXtremeDB is a multi-threaded database, all database operations, including read 
access, are carried out within the scope of a transaction, so there is no need to specify the 
open-mode when opening the database. In contrast, db.linux has distinct single-user (so 
called one-user) and multi-user modes.  Transactions are optional in the db.linux one-user 
mode, but required with the multi-user mode in order to ensure multi-user cache 
consistency. 
   
A second pair of nested loops is set up to conduct the performance evaluation of reading 
the 30,000 objects previously created. 



 
   for ( sensor_num = 0; sensor_num < SENSORS; sensor_num++ ) { 
      uint2 len; 
      for ( measure_num = 0; measure_num < MEASURES; measure_num++ ) { 
         mco_trans_start(db, MCO_READ_ONLY, MCO_TRANS_FOREGROUND, &t ); 
         rc = Measure_sensors_index_cursor( t, &csr ); 
         rc = Measure_sensors_find( t, &csr, MCO_EQ, sensor_num,  
                                    sensor_num + measure_num); 
         if ( rc != 0 ) { 
            rc = mco_trans_commit( t ); 
            goto rep2; 
         } 
         rc = Measure_from_cursor( t, &csr, &measure ); 
         /* read the spectra */ 
         rc = Measure_spectra_get( &measure, str, sizeof(str), &len ); 
         rc = Measure_sensor_id_get( &measure, &id ); 
         rc = Measure_timestamp_get( &measure, &ts ); 
         rc = mco_trans_commit( t ); 
      } 
   } 

 
Figure 7.  eXtremeDB ‘read’ implementation 
 
The eXtremeDB implementation sets up the loops and, for each iteration, starts a read 
transaction, instantiates a cursor, and finds the Measure object by its key fields.  Upon 
successfully finding the object, an object handle is initialized from the cursor and the 
object’s fields are read from the object handle.  Lastly, the transaction is completed. 
 
   for( sensor_num = 0; sensor_num < NSENSORS; sensor_num++ ) { 
      for( measure_num = 0; measure_num < NMEASURES; measure_num++ ) { 
         mr.sensor_id = sensor_num; 
         mr.m_timestamp = measure_num + sensor_num; 
         if((stat = d_reclock(MEASURE, "r", &task, CURR_DB)))  
            break; 
         if((stat = d_keyfind( SENSORS, &mr, &task, CURR_DB )))  
            break; 
         if((stat = d_recread( &mr, &task, CURR_DB ))) 
            break; 
         if((stat = d_recfree(MEASURE, &task, CURR_DB)))  
            break; 
      } 
   } 
 
Figure 8.  db.linux ‘read’ implementation 
 
For the db.linux implementation, the two loops are set up and on each iteration, the key 
search values are assigned to a structure’s fields.  db.linux does not use transactions for 
read-only access, but requires that the record-type be explicitly locked.  Upon 
successfully acquiring the record lock, the structure holding the key lookup values is 
passed to the d_keyfind function.  If the key values are found, the record is read into the 
same structure by d_recread and the record lock is released. 



 
As alluded to above, the key implementation differences revolve around transactions and 
multi-user (multi-threaded) concurrent access (there is also a philosophical difference 
between the object-oriented approach to database access of eXtremeDB, but it is 
unrelated to in-memory versus disk-based databases, so we do not explore it here). 
 
With eXtremeDB, all concurrency controls are implicit, only requiring that all database 
access occur within the scope of a read or write transaction.  In contrast, db.linux requires 
the application to explicitly acquire read or write record type locks, as appropriate, prior 
to attempting to access the record type.  Because db.linux requires explicit locking, it 
does not require a transaction for read-only access. 
 
The following graph depicts the relative performance of eXtremeDB and db.linux in a 
multi-threaded, transaction-controlled environment, with db.linux maintaining the 
database files on disk, as it naturally does. 
 

 

 



eXtremeDB (main memory)
vs.

db.linux (disk drive)

3118.25

16.25

2.6

1

0 500 1000 1500 2000 2500 3000 3500

write

read

write

read

db
.li

nu
x

db
.li

nu
x

eX
tr

em
eD

B
eX

tr
em

eD
B

Seconds

 
Figure 9. eXtremeDB and a disk-bound database 
 
 
Clearly, processing in main memory led to dramatically better performance for 
eXtremeDB. By using a RAM-disk, will db.linux’s performance equal or approximate 
that of an in-memory database? 
 
Figure 10 shows the performance of the same eXtremeDB implementation used above, 
alongside db.linux with the database files on a RAM-disk, completely eliminating 
physical disk access (for details on the implementation of this RAM-disk on Red Hat 
Linux 6.2, see Appendix B). 
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Figure 10. eXtremeDB and a RAM-disk database 
 

Figure 10 demonstrates that RAM-drive deployment improves db.linux performance by 
almost 4X for read access and approximately 3X for writing the database.  Clearly, 
moving a disk-based database’s files to a RAM-drive can improve performance. 
 
However, it is equally obvious that the database fundamentally designed for in-memory 
use delivers superior performance. The main memory database still outperforms the 
RAM-deployed, disk-based database by 420X for database writing, and by more than 4X 
for database reads. The following section analyzes the reasons for this disparity. 
 
Analysis – Where’s the Overhead? 
 
The RAM-drive approach eliminates physical disk access. So why does the disk-based 
database still lag the main memory database in performance? The problem is that disk-
based databases incorporate processes that are irrelevant for main memory processing, 



and the RAM-drive deployment does not change such internal functioning. These 
processes “go through the motions” even when no longer needed, adding several distinct 
types of performance overhead.  
 
Caching overhead 
 
Due to the significant performance drain of physical disk access, virtually all disk-based 
databases incorporate sophisticated techniques to minimize the need to go to disk. 
Foremost among these is database caching, which strives to keep the most frequently 
used portions of the database in memory. Caching logic includes cache synchronization, 
which makes sure that an image of a database page in cache is consistent with the 
physical database page on disk, to prevent the application from reading invalid data.  
 
Another process, cache lookup, determines if data requested by the application is in cache 
and, if not, retrieves the page and adds it to the cache for future reference.  It also selects 
data to be removed from cache, to make room for incoming pages.  If the outgoing page 
is “dirty” (holds one or more modified records), additional logic is invoked to protect 
other applications from seeing the modified data until the transaction is committed. 
 
These caching functions present only minor overhead when considered individually, but 
present significant overhead in aggregate. Each process plays out every time the 
application makes a function call to read a record from disk (in the case of db.linux, 
examples are d_recfrst, d_recnext, d_findnm, d_keyfind, etc.). In the demonstration 
application above, this amounts to some 90,000 function calls: 30,000 d_fillnew, 30,000 
d_keyfind and 30,000 d_recread. In contrast, all records in a main memory database such 
as eXtremeDB are always in memory, and therefore require zero caching 
 
Transaction Processing Overhead 
 
Transaction processing logic is a major source of processing latency. In the event of a 
catastrophic failure such as loss of power, a disk-based database recovers by committing 
or rolling back complete or partial transactions from one or more log files when the 
system is restarted. Disk-based databases are hard-wired to keep transaction logs, and to 
flush transaction log files and cache to disk after the transactions are committed. A disk-
based database doesn’t know that it is running in a RAM-drive, and this complicated 
processing continues, even when the log file exists only in memory and cannot aid in 
recovery should system failure occur.  
 
Main memory databases must also provide transactional integrity, or so-called ACID 
compliant transactions.  In plain English, a main memory database application thread 
must be able to commit or abort a series of updates as a single unit.  To do this, 
eXtremeDB maintains a before-image of the objects that are updated or deleted, and a list 
of database pages added during a transaction. When the application commits the 
transaction, the memory for before-images and page references returns to the memory 
pool (a very fast and efficient process). If an in-memory database must abort a 



transaction—for example, if the in-bound data stream is interrupted— the before-images 
are returned to the database and the newly inserted pages are returned to the memory. 
 
In the event of catastrophic failure, the in-memory database image is lost—which suits 
MMDBs’ intended applications.  If the system is turned off or some other event causes 
the in-memory image to expire, the database is simply re-provisioned upon restart.  
Examples of this include a program guide application in a set-top box that is continually 
downloaded from a satellite or cable head-end, a network switch that discovers network 
topology on startup, or a wireless access point that is provisioned by a server upstream. 
 
This does not preclude the use of saved local data. The application can open a stream (a 
socket, pipe, or a file pointer) and instruct eXtremeDB to read or write a database image 
from, or to, the stream.  This feature could be used to create and maintain boot-stage data, 
i.e. an initial starting point for the database. The other end of the stream can be a pipe to 
another process, or a file system pointer (any file system, whether it’s magnetic, optical, 
or FLASH). However, eXtremeDB’s transaction processing operates independently from 
these capabilities, limiting its scope to main memory processing in order to provide 
maximum availability. 
 
Data Transfer Overhead 
 
With a disk-based database, data is transferred and copied extensively. In fact, the 
application works with a copy of the data contained in a program variable that is several 
times removed from the database.  Consider the “handoffs” required for an application to 
read a piece of data from the disk-based database, modify it, and write that piece of data 
back to the database. 
 
1. The application requests the data item from the database runtime through some 

database API (e.g. db.linux’s d_recread function). 
2. The database runtime instructs the file system to retrieve the data from the 

physical media (or memory-based storage location, in the case of a RAM-disk). 
3. The file system makes a copy of the data for its cache and passes another copy to 

the database. 
4. The database keeps one copy in its cache and passes another copy to the 

application. 
5. The application modifies its copy and passes it back to the database through some 

database API (e.g. db.linux’s d_recwrite function). 
6. The database runtime copies the modified data item back to database cache. 
7. The copy in the database cache is eventually written to the file system, where it is 

updated in the file system cache. 
8. Finally, the data is written back to the physical media (or RAM-disk). 
 
In this scenario there are 4 copies of the data (application copy, database cache, file 
system cache, file system) and 6 transfers to move the data from the file system to the 
application and back to the file system. And this simplified scenario doesn’t account for 
additional copies and transfers that are required for transaction logging! 



 
In contrast, a main memory database such as eXtremeDB requires little or no data 
transfer.  The application may make copies of the data, in local program variables, for its 
own purposes or convenience, but is not required to by eXtremeDB.  Instead, eXtremeDB 
will give the application a pointer that refers directly to the data item in the database, 
enabling the application to work with the data directly. The data is still protected because 
the pointer is only used through the eXtremeDB-provided API, which insures that it is 
used properly. 
 
Operating System Dependency 
 
A RAM-disk database still uses the underlying file system to access data within the 
database.  Therefore, it still relies on the file system function lseek() to locate the data.  
Differing implementations of lseek() (for disk file systems as well as RAM disks) will 
exhibit better or worse performance based on the quality of the implementation, but the 
DBMS has no knowledge or control over this performance factor.  In constrast, 
eXtremeDB has complete control over access methods and is highly optimized. 
 
db.linux, in particular, is heavily dependent upon inter-process communication (IPC) for 
synchronization of concurrent access and transaction log recovery in the event of the 
failure of one or more clients, or the failure of the lock manager itself.  The quality of the 
IPC implementation will impact the performance of db.linux but even the best 
implementation represents an area of significant processing overhead.  Other embedded 
databases may or may not be dependent on inter-process communication. 
 
Conclusion 
 
This paper confirms two points: 
 
• Deploying a disk-based database on a RAM-drive improves DBMS performance. 
• This performance significantly lags that of a main memory database, given an 

identical application task and processing environment. 
 
The reason boils down to fundamental architectural differences between main memory 
databases and traditional databases. Ironically, a major reason for disk-based databases 
lagging, even on RAM-disk, is logic that has been incorporated to avoid disk access, 
which continues to operate even though it is irrelevant in this setting.  Other traditional 
database functions, such as sophisticated recovery from catastrophic failure, are similarly 
unnecessary in a memory-only environment, but cannot be “turned off” to achieve higher 
performance. MMDBs, while perhaps not suited for every application, offer a compelling 
alternative when high availability and performance are required. 
 
While not this paper’s primary focus, two other benefits of the main memory database 
emerge from the experiment above. One is database footprint—the absence of caching 
functions and other unnecessary logic means that memory and storage demands are 
correspondingly low. In fact, the eXtremeDB database maintained a total RAM footprint 



of 108K in this test and 20.85MB when fully loaded with data (the raw data size is 
16.7MB), compared to db.linux’s footprint of 323K and 31.8MB with data (raw data is 
the same, 16.7MB). The second benefit is greater reliability stemming from a less 
complex database system architecture. It stands to reason that with fewer interacting 
processes, this streamlined database system should result in fewer negative surprises for 
end-users and developers.  



Appendix A – db.linux variable length string emulation 

 
To emulate a variable length string field with db.linux, alter the database schema as 
follows: 
 
/********************************************************** 
 *                                                        * 
 * Copyright(c) 2001 McObject,LLC. All Right Reserved.    *  
 *                                                        *  
 **********************************************************/ 
 
 
struct stuff {  
   short a;  
}; 
 
database mcs 
{ 
   data file "mcs.dat" contains Measure; 
   key  file "mcs.key" contains sensors; 
 
   record Measure 
   { 
      long sensor_id; 
      long m_timestamp; 
    
      struct stuff thing; 
 
      compound key sensors { 
         sensor_id; 
         m_timestamp; 
      } 
   } 
   record Text100 { 
      char spectra100[100]; 
   } 
   record Text200 { 
      char spectra200[200]; 
   } 
   record Text300 { 
      char spectra300[300]; 
   } 
   set Spectra { 
      order last; 
      owner Measure; 
      member Text100; 
      member Text200; 
      member Text300; 
   } 
} 
 



When populating the database, the following pseudo-code is used: 
 
d_fillnew (MEASURE) 
d_setor(SPECTRA) 
char *p = spectra 
do { 
   if strlen(p) >= sizeof_spectra300 

   strncpy( Text300.spectra300, p, sizeof_spectra300 ) 
      d_fillnew the Text300 record 
      d_connect(SPECTRA) 
      p += sizeof_spectra300 

else if strlen(p) >= sizeof_spectra200 
      strncpy( Text200.spectra200, p, sizeof_spectra200 ) 
      d_fillnew the Text200 record 
      d_connect(SPECTRA) 

   p += sizeof_spectra200 
else if strlen(p) >= sizeof_spectra100 

      strncpy( Text100.spectra100, p, sizeof_spectra100 ) 
      d_fillnew the Text100 record 
      d_connect(SPECTRA) 
   p = NULL 
} while (p) 
 
Note: the above pseudo-code is greatly simplified and does not cover all of the border 
conditions.  The general idea is to break off the largest piece of the spectra string possible 
and store it in the appropriately sized TextNNN record and create a linked list of these 
records with db.linux’s multi-member network model set, named SPECTRA in this 
example. 
 
When retrieving the data, the linked list is traversed, concatenating the segmented spectra 
string back together into the whole: 
 
d_keyfind (MEASURE) 
d_recread (MEASURE) 
d_setor(SPECTRA) 
char spectra[1000]; 
for( (stat = d_findfm(SPECTRA)); stat != S_EOS; (stat = 
d_findnm(SPECTRA)) { 

d_recread( &text300rec ) 
strcat( spectra, text300rec.spectra300 ) 

} 
 

The code to reassemble the string iterates over the set reading each 
set member record and concatenating the string segment to the whole.  
Again, the pseudo code is simplified to illustrate the primary logic of 
the variable length string technique.



Appendix B – RAM-Disk configuration 

 
For the Red Hat Linux 6.2 operating system. 

RAM disk setup procedures: 

1. Add a line to  /etc/lilo.config file: 

 ramdisk=38000 
 

Here's an example of lilo.conf: 

boot=/dev/hda 
map=/boot/map 
install=/boot/boot.b 
prompt 
timeout=50 
image=/boot/vmlinuz-2.2.5-15 
        label=linux 
        root=/dev/hda6 
        read-only 
        ramdisk=38000 

  

2. Type /sbin/lilo and reboot 

3. Create a mount point for the ram disk, for example: 

 mkdir /tmp/ramdisk0 

Make sure to give appropriate access rights to this directory. 

4. Create a file system on the block device: 

 /sbin/mke2fs /dev/ram0 

Running df -k /dev/ram0 tells you how much can be used (the file system takes 
some space, too). 

5. Mount the ramdisk 

 mount /dev/ram0 /tmp/ramdisk0 

You are set to go. 

 


