
Introduction

Real-time systems are now used in many application
domains, including network infrastructure,
telecommunications and financial markets. As real-time
systems continue to evolve, their applications become more
complex, and often require timely access to, and processing
of, massive amounts of data. At the start of a real-time
system development project, it is often assumed that a fast
enough data processing engine, created specifically for the
system and tightly integrated with its code, will meet real-
time requirements. However, often the application’s input
data must be correlated, merged, or compared across all data
objects and across time, for filtering or analysis. In addition,
the data must be shared by concurrent tasks that have
different functions, time requirements and degrees of
importance. These issues are better addressed by a proven
database management system (DBMS). As a result, real-
time systems increasingly feature a commercial, off-the-
shelf DBMS as a part of the architecture, to simplify design,
streamline development and improve performance.

Real-time vs. Traditional Databases

Like traditional database systems, real-time database
systems (RTDBSs) serve as repositories for data and
provide efficient storage, retrieval and manipulation of data.
The main differences between conventional and real-time
databases lie in temporal requirements of the managed data,
timing constraints on transactions, and performance goals.

Temporal consistency of data requires the actual state of the
external world and the state represented in the database to
be close enough to remain within the limits of the
application. The most common performance metric of all
databases—whether real-time or not—is transaction
response time. For traditional database systems this
characteristic boils down to the number of transactions per
time unit; this measurement is used heavily in optimizing
average response time for “traditional” (not-real-time)
applications.

For RTDBS, on the other hand, the typical metric
is the number of transactions that violate timing
constraints (miss their deadline). But even within
real-time systems, tolerance for timing constraint
violations varies. The cost of missed transaction
deadlines ranges from a diminishing value return,
to zero value for missed transactions, to negative
value to increasingly negative value. This
decreasing value often correlates to data’s
susceptibility to aging. For example, the value of
the last known location of objects (e.g. aircraft on a
radar screen) diminishes with time, and after some
small time interval becomes irrelevant or useless.

One of the most important differences between the
databases used by real-time and non-real-time
systems is that while the conventional DBMS aims
to achieve good throughput or average response
time, the real-time DBMS must provide a
predictable response time to guarantee the
completion of time-critical transactions. Therefore,
the design of a real-time database subsystem
should avoid using components that introduce
unpredictable latencies, such as disk I/O
operations, message passing or garbage collection.
Thus real-time databases tend to be designed as in-
memory database systems. In-memory databases
forego disk I/O entirely, and their simplified design
(compared to conventional databases) minimizes
message passing. The validity of the real-time data
in the database may also be compromised if it
cannot be updated fast enough to reflect real-world
events. To avoid this, the best solution has been a
fully time-cognizant transaction manager. At the
very least, the database design should provide
some means of transaction prioritization.

Hard Real-time vs. Soft Real-time

Many real-time systems, such as nuclear power
plants and fly-by-wire vehicles, cannot tolerate any
missed deadlines for critical transactions. These are
commonly called hard real-time systems. The

Real-time Databases for
Embedded Systems

White paper

For real-time systems, emerging
commercial main-memory database
technology such as eXtremeDB provides a
good fit.

response time requirements of hard real-time transactions
are such that a failure to execute by the deadline could result
in catastrophic consequences. But the majority of real-time
systems and their databases fall into the soft real-time
category, where violation of timing constraints results in
degraded quality, but is to some degree tolerable.

Many factors make it hard to build RTDBSs—and limit the
applicability of commercial, off-the-shelf RTDBS almost
exclusively to the soft real-time domain. Due to the critical
nature of certain application domains (spacecraft control
systems, for instance), whole system designs, including
RTDBSs, are custom made with spare capacity. In a hard
real-time system, designers often use custom algorithms and
schedule excessive amounts of time for a transaction,
especially a critical one, just to cover a worst-case scenario.
These kinds of systems are often time-driven and time-slice
scheduled (in contrast to soft real-time systems, which are
often event-driven and priority scheduled). Virtually all
commercial database concurrency control approaches have
been designed to optimize average-case performance rather
than worst-case latency. Adapting these techniques for hard-
real time is usually impossible.

However, in the soft real-time database arena, the past
several years have seen unprecedented commercial
availability, and substantial innovation. Complex soft real-
time systems need databases to support concurrent data
access and provide well-defined interfaces between software
modules, while supporting levels of performance and
predictability lacking in traditional databases. In this article
we concentrate on soft RTDBS that are based on off-the-
shelf hardware and other elements. We will analyze some
common real-time systems attributes and usage scenarios,
and examine how the modern commercially available
RTDBS addresses the requirements.

Process Control

The shape of real-time computing has been formed by the
requirements of process control and similar applications.
Therefore, the database requirements imposed by such
systems may be seen as emblematic of data management
demands across a wide variety of soft real-time applications.

Industrial control systems are usually attached to sensors
that monitor the state of some real-world process, and to
controllers to manipulate valves, magnets, and other things
that operate in real-time. Industrial controllers are naturally
data-driven devices. Control decisions are made based on
the input data and the controller configuration parameters,
and are executed through the controller’s output channels.
Input data comes from the field devices (sensors,
transmitters, switches, etc.) via the controller’s data
acquisition interfaces, from supervisory control systems
(PC, DCS, PLC) via external controller links, and from

other controllers via inter-controller connections.
Output data is directed to field control and
indication devices, supervisory systems, and other
controllers.

Industrial control is characterized by event-driven
operations: system activities are driven largely by
interrupts coming from sensors that are bound to
specific functions, which transform the sensor
signal into a series of signals to the control devices.
Often, industrial control systems and their data
management subsystems must be highly available
because they control real-world processes. The key
performance requirement is guaranteed maximum
response time under peak load at least for the
functions of high priority—otherwise something
might crash or explode or expire. Therefore,
industrial control systems—and the real-time
databases underlying them—must be able to do
deadline scheduling

In a typical industrial control system incorporating
a real-time database, each device detects the values
of some attributes of the real world and makes
them available to the database. In turn the database
provides the information needed by various system
transactions to perform their functions. Figure 1
illustrates this process.

Some other potential real-life application scenarios
shed light on the requirements placed on RTDBSs.

Spacecraft Control Systems

The spacecraft control system has multiple
antennae, receivers and transmitters. The system
must monitor all devices, in addition to monitoring
the “health” of the spacecraft itself (power,
telemetry, etc.). The volume of data kept by this
kind of application is relatively small, but the
timing and permanence attributes are quite
stringent. In addition to control data, information
on each communication channel and device must
be maintained. The reliability requirements for
such systems dictate redundancy in all system
hardware and software components. Almost
without exception, spacecraft control systems have
not been implemented using commercial databases.
The data is kept in memory and directly shared
between application modules. However it is
conceivable that data management for less critical
parts of the spacecraft control systems (such as
telemetry archives) could be handled by a
commercial RTDBMS. Such data management

modules don’t fall into the hard-real time category, but
rather serve an advisory role to other control subsystems.

Training Simulation Systems

These systems are used to train personnel in such areas as
the use of equipment or in strategy, by simulating the real
environment and letting trainees interact with it. The timing
requirements for such systems are usually derived from the

real equipment specifications. The databases for
simulation systems usually do not impose any hard
real-time requirements, but still need
responsiveness.

Telecommunications

Databases play an increasingly important role in
telecommunications systems. Developments in

network and switching technologies have made telecom
systems and services very data intensive. For example, for
network management, the complexity of modern networks
creates large amounts of data on network topology,
configuration, equipment settings and other parameters. In
addition, switches generate large amounts of data on
network traffic, faults, etc. The integration of network
control, network management, and network administration
leads to the use of databases in the core of the network.
Architectures such as Intelligent Networks (IN), the
Telecommunications Management Network (TMN) and the
Telecommunications Information Networking Architecture
(TINA) need databases to support their data management
services in near real-time. Mobile services entail additional
tracking and tracing of mobile equipment. Enhanced
provisioning services like the Universal Mobile
Telecommunications System (UMTS, or the third
generation of mobile network) also require resilient (24x7)
near real-time database processing.

The database requirements for the scenarios above vary in
their timing requirements, from microseconds to register the
electrical current changes or to make routing decisions, to
milliseconds for opening and closing valves, to seconds for
materials movement.

Commercial real-time database system

Commercial RTDBS technology is still in its infancy,
especially when compared to the traditional (non-real-time)
database industry, which offers a wide variety of proven
commercial products. However, traditional disk-based
systems cannot achieve predictable response times in the
microseconds or milliseconds range. Main memory is the
only technology that fits the profile. Main-memory DBMS
are at the heart of real-time databases. Research and
development in main-memory database theory and
implementation has been active since the mid-eighties. In
the past several years it has taken on a new urgency, as
inexpensive memory and 64-bit addressing have become a
reality.

McObject’s eXtremeDB is the latest commercial addition to
the family of embedded databases for real-time systems.
The main principal behind the design of eXtremeDB is to
eliminate performance overhead while providing a
predictable and reliable transactional model. McObject’s
approach works best for pseudo-real-time and real-time
systems such as telecommunications equipment, factory
floor automation systems, process control, zero-latency
consumer electronics devices, and medical equipment.

eXtremeDB is a main-memory storage manager that
provides direct access to data. eXtremeDB maps its
database directly into the application’s

address space, providing applications with direct
pointers to the data elements, eliminating
expensive buffer management. This access to data
is further optimized by placing the associated
access structures on the application’s stack. The
eXtremeDB runtime code is directly linked with
the application so remote procedure calls are
eliminated from the execution path. As a
consequence, the execution path generally requires
just a few CPU instructions.

As a main-memory database, eXtremeDB removes
the bottleneck of paging data in and out during I/O
operations. To further improve the predictability
and performance of database read and write
operations, the eXtremeDB runtime uses its own
highly optimized memory manager that is
responsible for all allocations and de-allocations
made by the database runtime. eXtremeDB never
relies on the operating system’s memory
management.

The eXtremeDB transaction manager is
implemented via a simple transaction queue, but
adds a modern twist: it is possible to assign
priorities to transactions at runtime. Five
transaction priority levels are supported, from the
highest level (ISR) to the lowest (IDLE). McObject
promises to extend the priority scheme to support a
fully time-cognizant transaction manager in a
future version. This approach to the transaction
management is well justified when the number of
simultaneous transactions are low, and the
transactions themselves are short in duration – the
time that an application spends in communication
with a “lock arbiter” would be comparable with the
time to complete the transaction, eliminating any
justification for more complex concurrency
controls.

eXtremeDB implicitly limits transaction duration
(the maximum number of database operations
within a transaction is limited), achieving its
primary objective of supporting extremely high
transaction rates. To provide consistent response
times, eXtremeDB implements its own user-space
spin-locks to control the mutual exclusion, rather
than relying on operating system semaphores. The
runtime can be configured to use various
techniques such as the “test and set” or the
“compare and set” CPU instructions, or direct
access to interrupts.

To address the event-driven nature of real-time
systems, McObject’s eXtremeDB provides

synchronous and asynchronous event processing
functionality, which is also designed to be completely self-
sufficient with no dependencies on operating system
services.

A high availability control interface (HA API) is exposed by
the eXtremeDB High Availability runtime extensions and
provides the means for the application to configure,
establish, maintain and terminate eXtremeDB HA
connections. Unlike other vendors who use replication
algorithms to provide fault-tolerant system configurations,
following the spirit of its design principals, eXtremeDB
offers a time-cognizant two-phase commit protocol and
time-cognizant failure notifications to ensure high
availability of the real-time system.

eXtremeDB does not require an operating system to run but
if an operating system is available, eXtremeDB can take
advantage of it. It is currently available on many RTOS
including VxWorks, QNX, Windows CE, real-time Linux
platforms, as well as non-real time OS including Linux,
Windows NT/2000/XP, Sun Solaris and HP-UX 11.x.

Conclusion

Database systems are designed to manage the
persistent data shared among multiple tasks. One of
the primary objectives of a database management
system is to move the database from one consistent
state to the next through the application of
transactions supporting the ACID properties
(Atomicity, Consistency, Isolation, and Durability).
In real-time systems, temporal characteristics of the
data are equally important. The majority of real-
time systems could be considered as soft-real time
systems that do not have critical timing constraints:
the expired or missed transactions simply have no
value rather than lead to catastrophic
consequences. Telecommunications equipment,
real-time billing, most process control systems, and
consumer electronics devices all fall into this
category. For soft real time systems, the modern
commercial main-memory database technology
such as McObject’s eXtremeDB, can provide a
good fit. eXtremeDB is designed to operate in the
harsh environment of real-time systems, with strict
requirements for resource utilization, and is ready
to provide the performance and reliability required
by real-life applications.

