[ Index ]

PHP Cross Reference of moodle-2.8

title

Body

[close]

/lib/phpexcel/PHPExcel/Shared/JAMA/ -> SingularValueDecomposition.php (source)

   1  <?php
   2  /**
   3   *    @package JAMA
   4   *
   5   *    For an m-by-n matrix A with m >= n, the singular value decomposition is
   6   *    an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
   7   *    an n-by-n orthogonal matrix V so that A = U*S*V'.
   8   *
   9   *    The singular values, sigma[$k] = S[$k][$k], are ordered so that
  10   *    sigma[0] >= sigma[1] >= ... >= sigma[n-1].
  11   *
  12   *    The singular value decompostion always exists, so the constructor will
  13   *    never fail.  The matrix condition number and the effective numerical
  14   *    rank can be computed from this decomposition.
  15   *
  16   *    @author  Paul Meagher
  17   *    @license PHP v3.0
  18   *    @version 1.1
  19   */
  20  class SingularValueDecomposition  {
  21  
  22      /**
  23       *    Internal storage of U.
  24       *    @var array
  25       */
  26      private $U = array();
  27  
  28      /**
  29       *    Internal storage of V.
  30       *    @var array
  31       */
  32      private $V = array();
  33  
  34      /**
  35       *    Internal storage of singular values.
  36       *    @var array
  37       */
  38      private $s = array();
  39  
  40      /**
  41       *    Row dimension.
  42       *    @var int
  43       */
  44      private $m;
  45  
  46      /**
  47       *    Column dimension.
  48       *    @var int
  49       */
  50      private $n;
  51  
  52  
  53      /**
  54       *    Construct the singular value decomposition
  55       *
  56       *    Derived from LINPACK code.
  57       *
  58       *    @param $A Rectangular matrix
  59       *    @return Structure to access U, S and V.
  60       */
  61  	public function __construct($Arg) {
  62  
  63          // Initialize.
  64          $A = $Arg->getArrayCopy();
  65          $this->m = $Arg->getRowDimension();
  66          $this->n = $Arg->getColumnDimension();
  67          $nu      = min($this->m, $this->n);
  68          $e       = array();
  69          $work    = array();
  70          $wantu   = true;
  71          $wantv   = true;
  72          $nct = min($this->m - 1, $this->n);
  73          $nrt = max(0, min($this->n - 2, $this->m));
  74  
  75          // Reduce A to bidiagonal form, storing the diagonal elements
  76          // in s and the super-diagonal elements in e.
  77          for ($k = 0; $k < max($nct,$nrt); ++$k) {
  78  
  79              if ($k < $nct) {
  80                  // Compute the transformation for the k-th column and
  81                  // place the k-th diagonal in s[$k].
  82                  // Compute 2-norm of k-th column without under/overflow.
  83                  $this->s[$k] = 0;
  84                  for ($i = $k; $i < $this->m; ++$i) {
  85                      $this->s[$k] = hypo($this->s[$k], $A[$i][$k]);
  86                  }
  87                  if ($this->s[$k] != 0.0) {
  88                      if ($A[$k][$k] < 0.0) {
  89                          $this->s[$k] = -$this->s[$k];
  90                      }
  91                      for ($i = $k; $i < $this->m; ++$i) {
  92                          $A[$i][$k] /= $this->s[$k];
  93                      }
  94                      $A[$k][$k] += 1.0;
  95                  }
  96                  $this->s[$k] = -$this->s[$k];
  97              }
  98  
  99              for ($j = $k + 1; $j < $this->n; ++$j) {
 100                  if (($k < $nct) & ($this->s[$k] != 0.0)) {
 101                      // Apply the transformation.
 102                      $t = 0;
 103                      for ($i = $k; $i < $this->m; ++$i) {
 104                          $t += $A[$i][$k] * $A[$i][$j];
 105                      }
 106                      $t = -$t / $A[$k][$k];
 107                      for ($i = $k; $i < $this->m; ++$i) {
 108                          $A[$i][$j] += $t * $A[$i][$k];
 109                      }
 110                      // Place the k-th row of A into e for the
 111                      // subsequent calculation of the row transformation.
 112                      $e[$j] = $A[$k][$j];
 113                  }
 114              }
 115  
 116              if ($wantu AND ($k < $nct)) {
 117                  // Place the transformation in U for subsequent back
 118                  // multiplication.
 119                  for ($i = $k; $i < $this->m; ++$i) {
 120                      $this->U[$i][$k] = $A[$i][$k];
 121                  }
 122              }
 123  
 124              if ($k < $nrt) {
 125                  // Compute the k-th row transformation and place the
 126                  // k-th super-diagonal in e[$k].
 127                  // Compute 2-norm without under/overflow.
 128                  $e[$k] = 0;
 129                  for ($i = $k + 1; $i < $this->n; ++$i) {
 130                      $e[$k] = hypo($e[$k], $e[$i]);
 131                  }
 132                  if ($e[$k] != 0.0) {
 133                      if ($e[$k+1] < 0.0) {
 134                          $e[$k] = -$e[$k];
 135                      }
 136                      for ($i = $k + 1; $i < $this->n; ++$i) {
 137                          $e[$i] /= $e[$k];
 138                      }
 139                      $e[$k+1] += 1.0;
 140                  }
 141                  $e[$k] = -$e[$k];
 142                  if (($k+1 < $this->m) AND ($e[$k] != 0.0)) {
 143                      // Apply the transformation.
 144                      for ($i = $k+1; $i < $this->m; ++$i) {
 145                          $work[$i] = 0.0;
 146                      }
 147                      for ($j = $k+1; $j < $this->n; ++$j) {
 148                          for ($i = $k+1; $i < $this->m; ++$i) {
 149                              $work[$i] += $e[$j] * $A[$i][$j];
 150                          }
 151                      }
 152                      for ($j = $k + 1; $j < $this->n; ++$j) {
 153                          $t = -$e[$j] / $e[$k+1];
 154                          for ($i = $k + 1; $i < $this->m; ++$i) {
 155                              $A[$i][$j] += $t * $work[$i];
 156                          }
 157                      }
 158                  }
 159                  if ($wantv) {
 160                      // Place the transformation in V for subsequent
 161                      // back multiplication.
 162                      for ($i = $k + 1; $i < $this->n; ++$i) {
 163                          $this->V[$i][$k] = $e[$i];
 164                      }
 165                  }
 166              }
 167          }
 168  
 169          // Set up the final bidiagonal matrix or order p.
 170          $p = min($this->n, $this->m + 1);
 171          if ($nct < $this->n) {
 172              $this->s[$nct] = $A[$nct][$nct];
 173          }
 174          if ($this->m < $p) {
 175              $this->s[$p-1] = 0.0;
 176          }
 177          if ($nrt + 1 < $p) {
 178              $e[$nrt] = $A[$nrt][$p-1];
 179          }
 180          $e[$p-1] = 0.0;
 181          // If required, generate U.
 182          if ($wantu) {
 183              for ($j = $nct; $j < $nu; ++$j) {
 184                  for ($i = 0; $i < $this->m; ++$i) {
 185                      $this->U[$i][$j] = 0.0;
 186                  }
 187                  $this->U[$j][$j] = 1.0;
 188              }
 189              for ($k = $nct - 1; $k >= 0; --$k) {
 190                  if ($this->s[$k] != 0.0) {
 191                      for ($j = $k + 1; $j < $nu; ++$j) {
 192                          $t = 0;
 193                          for ($i = $k; $i < $this->m; ++$i) {
 194                              $t += $this->U[$i][$k] * $this->U[$i][$j];
 195                          }
 196                          $t = -$t / $this->U[$k][$k];
 197                          for ($i = $k; $i < $this->m; ++$i) {
 198                              $this->U[$i][$j] += $t * $this->U[$i][$k];
 199                          }
 200                      }
 201                      for ($i = $k; $i < $this->m; ++$i ) {
 202                          $this->U[$i][$k] = -$this->U[$i][$k];
 203                      }
 204                      $this->U[$k][$k] = 1.0 + $this->U[$k][$k];
 205                      for ($i = 0; $i < $k - 1; ++$i) {
 206                          $this->U[$i][$k] = 0.0;
 207                      }
 208                  } else {
 209                      for ($i = 0; $i < $this->m; ++$i) {
 210                          $this->U[$i][$k] = 0.0;
 211                      }
 212                      $this->U[$k][$k] = 1.0;
 213                  }
 214              }
 215          }
 216  
 217          // If required, generate V.
 218          if ($wantv) {
 219              for ($k = $this->n - 1; $k >= 0; --$k) {
 220                  if (($k < $nrt) AND ($e[$k] != 0.0)) {
 221                      for ($j = $k + 1; $j < $nu; ++$j) {
 222                          $t = 0;
 223                          for ($i = $k + 1; $i < $this->n; ++$i) {
 224                              $t += $this->V[$i][$k]* $this->V[$i][$j];
 225                          }
 226                          $t = -$t / $this->V[$k+1][$k];
 227                          for ($i = $k + 1; $i < $this->n; ++$i) {
 228                              $this->V[$i][$j] += $t * $this->V[$i][$k];
 229                          }
 230                      }
 231                  }
 232                  for ($i = 0; $i < $this->n; ++$i) {
 233                      $this->V[$i][$k] = 0.0;
 234                  }
 235                  $this->V[$k][$k] = 1.0;
 236              }
 237          }
 238  
 239          // Main iteration loop for the singular values.
 240          $pp   = $p - 1;
 241          $iter = 0;
 242          $eps  = pow(2.0, -52.0);
 243  
 244          while ($p > 0) {
 245              // Here is where a test for too many iterations would go.
 246              // This section of the program inspects for negligible
 247              // elements in the s and e arrays.  On completion the
 248              // variables kase and k are set as follows:
 249              // kase = 1  if s(p) and e[k-1] are negligible and k<p
 250              // kase = 2  if s(k) is negligible and k<p
 251              // kase = 3  if e[k-1] is negligible, k<p, and
 252              //           s(k), ..., s(p) are not negligible (qr step).
 253              // kase = 4  if e(p-1) is negligible (convergence).
 254              for ($k = $p - 2; $k >= -1; --$k) {
 255                  if ($k == -1) {
 256                      break;
 257                  }
 258                  if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k+1]))) {
 259                      $e[$k] = 0.0;
 260                      break;
 261                  }
 262              }
 263              if ($k == $p - 2) {
 264                  $kase = 4;
 265              } else {
 266                  for ($ks = $p - 1; $ks >= $k; --$ks) {
 267                      if ($ks == $k) {
 268                          break;
 269                      }
 270                      $t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks-1]) : 0.);
 271                      if (abs($this->s[$ks]) <= $eps * $t)  {
 272                          $this->s[$ks] = 0.0;
 273                          break;
 274                      }
 275                  }
 276                  if ($ks == $k) {
 277                      $kase = 3;
 278                  } else if ($ks == $p-1) {
 279                      $kase = 1;
 280                  } else {
 281                      $kase = 2;
 282                      $k = $ks;
 283                  }
 284              }
 285              ++$k;
 286  
 287              // Perform the task indicated by kase.
 288              switch ($kase) {
 289                  // Deflate negligible s(p).
 290                  case 1:
 291                          $f = $e[$p-2];
 292                          $e[$p-2] = 0.0;
 293                          for ($j = $p - 2; $j >= $k; --$j) {
 294                              $t  = hypo($this->s[$j],$f);
 295                              $cs = $this->s[$j] / $t;
 296                              $sn = $f / $t;
 297                              $this->s[$j] = $t;
 298                              if ($j != $k) {
 299                                  $f = -$sn * $e[$j-1];
 300                                  $e[$j-1] = $cs * $e[$j-1];
 301                              }
 302                              if ($wantv) {
 303                                  for ($i = 0; $i < $this->n; ++$i) {
 304                                      $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p-1];
 305                                      $this->V[$i][$p-1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p-1];
 306                                      $this->V[$i][$j] = $t;
 307                                  }
 308                              }
 309                          }
 310                          break;
 311                  // Split at negligible s(k).
 312                  case 2:
 313                          $f = $e[$k-1];
 314                          $e[$k-1] = 0.0;
 315                          for ($j = $k; $j < $p; ++$j) {
 316                              $t = hypo($this->s[$j], $f);
 317                              $cs = $this->s[$j] / $t;
 318                              $sn = $f / $t;
 319                              $this->s[$j] = $t;
 320                              $f = -$sn * $e[$j];
 321                              $e[$j] = $cs * $e[$j];
 322                              if ($wantu) {
 323                                  for ($i = 0; $i < $this->m; ++$i) {
 324                                      $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k-1];
 325                                      $this->U[$i][$k-1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k-1];
 326                                      $this->U[$i][$j] = $t;
 327                                  }
 328                              }
 329                          }
 330                          break;
 331                  // Perform one qr step.
 332                  case 3:
 333                          // Calculate the shift.
 334                          $scale = max(max(max(max(
 335                                      abs($this->s[$p-1]),abs($this->s[$p-2])),abs($e[$p-2])),
 336                                      abs($this->s[$k])), abs($e[$k]));
 337                          $sp   = $this->s[$p-1] / $scale;
 338                          $spm1 = $this->s[$p-2] / $scale;
 339                          $epm1 = $e[$p-2] / $scale;
 340                          $sk   = $this->s[$k] / $scale;
 341                          $ek   = $e[$k] / $scale;
 342                          $b    = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;
 343                          $c    = ($sp * $epm1) * ($sp * $epm1);
 344                          $shift = 0.0;
 345                          if (($b != 0.0) || ($c != 0.0)) {
 346                              $shift = sqrt($b * $b + $c);
 347                              if ($b < 0.0) {
 348                                  $shift = -$shift;
 349                              }
 350                              $shift = $c / ($b + $shift);
 351                          }
 352                          $f = ($sk + $sp) * ($sk - $sp) + $shift;
 353                          $g = $sk * $ek;
 354                          // Chase zeros.
 355                          for ($j = $k; $j < $p-1; ++$j) {
 356                              $t  = hypo($f,$g);
 357                              $cs = $f/$t;
 358                              $sn = $g/$t;
 359                              if ($j != $k) {
 360                                  $e[$j-1] = $t;
 361                              }
 362                              $f = $cs * $this->s[$j] + $sn * $e[$j];
 363                              $e[$j] = $cs * $e[$j] - $sn * $this->s[$j];
 364                              $g = $sn * $this->s[$j+1];
 365                              $this->s[$j+1] = $cs * $this->s[$j+1];
 366                              if ($wantv) {
 367                                  for ($i = 0; $i < $this->n; ++$i) {
 368                                      $t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j+1];
 369                                      $this->V[$i][$j+1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j+1];
 370                                      $this->V[$i][$j] = $t;
 371                                  }
 372                              }
 373                              $t = hypo($f,$g);
 374                              $cs = $f/$t;
 375                              $sn = $g/$t;
 376                              $this->s[$j] = $t;
 377                              $f = $cs * $e[$j] + $sn * $this->s[$j+1];
 378                              $this->s[$j+1] = -$sn * $e[$j] + $cs * $this->s[$j+1];
 379                              $g = $sn * $e[$j+1];
 380                              $e[$j+1] = $cs * $e[$j+1];
 381                              if ($wantu && ($j < $this->m - 1)) {
 382                                  for ($i = 0; $i < $this->m; ++$i) {
 383                                      $t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j+1];
 384                                      $this->U[$i][$j+1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j+1];
 385                                      $this->U[$i][$j] = $t;
 386                                  }
 387                              }
 388                          }
 389                          $e[$p-2] = $f;
 390                          $iter = $iter + 1;
 391                          break;
 392                  // Convergence.
 393                  case 4:
 394                          // Make the singular values positive.
 395                          if ($this->s[$k] <= 0.0) {
 396                              $this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0);
 397                              if ($wantv) {
 398                                  for ($i = 0; $i <= $pp; ++$i) {
 399                                      $this->V[$i][$k] = -$this->V[$i][$k];
 400                                  }
 401                              }
 402                          }
 403                          // Order the singular values.
 404                          while ($k < $pp) {
 405                              if ($this->s[$k] >= $this->s[$k+1]) {
 406                                  break;
 407                              }
 408                              $t = $this->s[$k];
 409                              $this->s[$k] = $this->s[$k+1];
 410                              $this->s[$k+1] = $t;
 411                              if ($wantv AND ($k < $this->n - 1)) {
 412                                  for ($i = 0; $i < $this->n; ++$i) {
 413                                      $t = $this->V[$i][$k+1];
 414                                      $this->V[$i][$k+1] = $this->V[$i][$k];
 415                                      $this->V[$i][$k] = $t;
 416                                  }
 417                              }
 418                              if ($wantu AND ($k < $this->m-1)) {
 419                                  for ($i = 0; $i < $this->m; ++$i) {
 420                                      $t = $this->U[$i][$k+1];
 421                                      $this->U[$i][$k+1] = $this->U[$i][$k];
 422                                      $this->U[$i][$k] = $t;
 423                                  }
 424                              }
 425                              ++$k;
 426                          }
 427                          $iter = 0;
 428                          --$p;
 429                          break;
 430              } // end switch
 431          } // end while
 432  
 433      } // end constructor
 434  
 435  
 436      /**
 437       *    Return the left singular vectors
 438       *
 439       *    @access public
 440       *    @return U
 441       */
 442  	public function getU() {
 443          return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));
 444      }
 445  
 446  
 447      /**
 448       *    Return the right singular vectors
 449       *
 450       *    @access public
 451       *    @return V
 452       */
 453  	public function getV() {
 454          return new Matrix($this->V);
 455      }
 456  
 457  
 458      /**
 459       *    Return the one-dimensional array of singular values
 460       *
 461       *    @access public
 462       *    @return diagonal of S.
 463       */
 464  	public function getSingularValues() {
 465          return $this->s;
 466      }
 467  
 468  
 469      /**
 470       *    Return the diagonal matrix of singular values
 471       *
 472       *    @access public
 473       *    @return S
 474       */
 475  	public function getS() {
 476          for ($i = 0; $i < $this->n; ++$i) {
 477              for ($j = 0; $j < $this->n; ++$j) {
 478                  $S[$i][$j] = 0.0;
 479              }
 480              $S[$i][$i] = $this->s[$i];
 481          }
 482          return new Matrix($S);
 483      }
 484  
 485  
 486      /**
 487       *    Two norm
 488       *
 489       *    @access public
 490       *    @return max(S)
 491       */
 492  	public function norm2() {
 493          return $this->s[0];
 494      }
 495  
 496  
 497      /**
 498       *    Two norm condition number
 499       *
 500       *    @access public
 501       *    @return max(S)/min(S)
 502       */
 503  	public function cond() {
 504          return $this->s[0] / $this->s[min($this->m, $this->n) - 1];
 505      }
 506  
 507  
 508      /**
 509       *    Effective numerical matrix rank
 510       *
 511       *    @access public
 512       *    @return Number of nonnegligible singular values.
 513       */
 514  	public function rank() {
 515          $eps = pow(2.0, -52.0);
 516          $tol = max($this->m, $this->n) * $this->s[0] * $eps;
 517          $r = 0;
 518          for ($i = 0; $i < count($this->s); ++$i) {
 519              if ($this->s[$i] > $tol) {
 520                  ++$r;
 521              }
 522          }
 523          return $r;
 524      }
 525  
 526  }    //    class SingularValueDecomposition


Generated: Fri Nov 28 20:29:05 2014 Cross-referenced by PHPXref 0.7.1