
6/29/08 8:00 AMPicoContainer Web - Scoping Web Components

Page 1 of 4file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/scoping.html

Built onBuilt on
PicoPico
ContainerContainer

Pico Web Applications

» Overview
» Composition
» Scoping Web Components
» Composition by Script
» Javadocs
» Downloads

Web Frameworks

» Struts2
» Struts1
» WebWork2
» WebWork1

Axis

» Axis

Hosted by

Tools

 PicoPicoContainerContainerWebWeb
Published version: 2.0

Scoping Web Components

Choosing which scope for you components
requires you to understand understand how
scopes work. Consider a contrived stateful
web application that is all about buying cars.
A subset of the functions it must perform are
'add car to cart', 'remove car from cart' and
'go to checkout'

The Components we are going to need for
this minimalistic web application are
'ShoppingCart' and 'Store'. The actual
functions above are also going to be
transient components 'AddToCart',
'RemoveFromCart' and 'GotoCheckout'.

Assuming a composition script for these
components, the initial state of the stack is
one where all the components are in place,
but nothing has been instantiated yet.

The components we've described above are

http://picocontainer.org/
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/index.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/composition.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/script-composition.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/javadoc.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/downloads.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/struts2.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/struts1.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/webwork2.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/webwork1.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/axis.html
file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/composition.html

6/29/08 8:00 AMPicoContainer Web - Scoping Web Components

Page 2 of 4file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/scoping.html

shapes, and the dependencies describes with
arrowed lines. For these diagrams it does
not matter which type of Dependency
Injection is being used.

Next, consider the web container starting up,
or where there are no active sessions:

Colored shapes are instantiated, whereas
dotted shapes are not (for that session).
Solid arrows are actual injections, whereas
dotted arrows are ones that could injections
were the corresponding components to be
instantiated.

Then after the first web request from a new
session, a session scoped component is
instantiated, and an action that will modify it
based on input:

Cart is stateful at the session level, because
it contains a list of items to potentially
purchase.

http://picocontainer.org/injection.html

6/29/08 8:00 AMPicoContainer Web - Scoping Web Components

Page 3 of 4file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/scoping.html

Alternatively, a car could be removed from
the cart. In this case the AddToCart
component that had previously been
instantiated, is has already been garbage
collected for this session...

Finally, the user could go to the checkout
with the contents of the cart ...

6/29/08 8:00 AMPicoContainer Web - Scoping Web Components

Page 4 of 4file:///scm/oss/pico-d/java/2.x/trunk/web/distribution/target/site/scoping.html

Checkout is stateful at the session level
because it not only refers to the contents of
a cart, but also contains new details like a
payment mechanism for the pending
purchase.

